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Abstract.  This paper shows how probabilistic reasoning can be applied to the 
predicative style of programming.

0  Introduction

Probabilistic programming refers to programming in which the probabilities of the values of 
variables are of interest.  For example, if we know the probability distribution from which 
the inputs are drawn, we may calculate the probability distribution of the outputs.  We may 
introduce a programming notation whose result is known only probabilistically.  A 
formalism for probabilistic programming was introduced by Kozen [3], and further developed 
by Morgan, McIver, Seidel and Sanders [4].  Their work is based on the predicate transformer 
semantics of programs;  it generalizes the idea of predicate transformer from a function that 
produces a boolean result to a function that produces a probability result.  The work of 
Morgan et al. is particularly concerned with the interaction between probabilistic choice and 
nondeterministic choice, which is required for refinement.

The term “predicative programming” [0,2] describes programming according to a first-
order semantics, or relational semantics.  The purpose of this paper is to show how 
probabilistic reasoning can be applied to the predicative style of programming.

1  Predicative Programming

Predicative programming is a way of writing programs so that each programming step is 
proven as it is made.  We first decide what quantities are of interest, and introduce a variable 
for each such quantity.  A specification is then a boolean expression whose variables 
represent the quantities of interest.  The term “boolean expression” means an expression of 
type boolean, and is not meant to restrict the types of variables and subexpressions, nor the 
operators, within a specification.  Quantifiers, functions, terms from the application domain, 
and terms invented for one particular specification are all welcome.

In a specification, some variables may represent inputs, and some may represent 
outputs.  A specification is implemented on a computer when, for any values of the input 
variables, the computer generates (computes) values of the output variables to satisfy the 
specification.  In other words, we have an implementation when the specification is true of 
every computation.  (Note that we are specifying computations, not programs.)  A 
specification  S  is implementable if

∀σ· ∃σ′· S
where  σ  = x, y , ...  are the inputs and  σ′  = x ′, y′, ...  are the outputs.  In addition, 
specification  S  is deterministic if, for each input, the satisfactory output is unique.  A 
program is a specification that has been implemented, so that a computer can execute it.

Suppose we are given specification  S .  If  S  is a program, a computer can execute it.  
If not, we have some programming to do.  That means building a program  P   such that  



S⇐P  is a theorem;  this is called refinement.  Since  S  is implied by  P , all computer 
behavior satisfying  P  also satisfies  S .  We might refine in steps, finding specifications  
R ,  Q , ... such that  S⇐R⇐Q⇐ ...⇐P .

2  Notation

Here are all the notations used in this paper, arranged by precedence level.

0. † ƒ    0 1 2 ∞   x y   ( ) booleans, numbers, variables, bracketed expressions
1. f x function application
2. xy   → exponentiation, function space
3. ×   / multiplication, division
4. +   –   ⊕ addition, subtraction, modular addition
5. ,.. from (including) to (excluding)
6. =   +    <   >   ≤   ≥   : comparisons, inclusion
7. ¬ negation
8. ∧ conjunction
9. ∨ disjunction
10. ⇒   ⇐ implications
11. :=   if then else assignment, conditional composition
12. ∀ ·   ∃·   Σ ·   ; quantifiers, sequential composition
13. =   ⇒    ⇐    ≥ equality, implications, comparison

Exponentiation serves to bracket all operations within the exponent.  The infix operators  
/  –  associate from left to right.  The infix operators  ×  +  ⊕  ∧  ∨  ;  are associative (they 
associate in both directions).  On levels 6, 10, and 13 the operators are continuing;  for 
example,  a=b=c  neither associates to the left nor associates to the right, but means  
a=b ∧ b=c .  On any one of these levels, a mixture of continuing operators can be used.  
For example,  a≤b<c  means  a≤b ∧ b<c .  The operators   =   ⇒   ⇐   ≥   are identical 
to   =   ⇒   ⇐   ≥   except for precedence.

We use unprimed and primed identifiers (for example,  x  and  x′ ) for the initial and 
final values of a variable.  We use  ok  to specify that all variables are unchanged.

ok   =   x′=x ∧ y′=y ∧ ...
The assignment notation  x:= e  specifies that  x  is assigned the value  e  and that all other 
variables are unchanged.

x:= e   =   x′=e ∧ y′=y ∧ ...
Conditional composition is defined as follows:

if b then P  else Q =    (b ⇒ P) ∧ (¬b ⇒ Q)
=    b ∧ P  ∨  ¬b ∧ Q

Sequential composition is defined as follows:
P;Q   =   ∃σ′′· (substitute  σ′′  for  σ′  in  P ) ∧ (substitute  σ′′  for  σ  in  Q )

where  σ = x, y, ...  are the initial values,  σ′′ = x′′, y′′, ...  are the intermediate values, and  
σ′ = x′, y′, ...  are the final values of the variables.  There are many laws that can be proven 
from these definitions;  one of the most useful is the Substitution Law:

x:= e; P   =   (for  x  substitute  e  in  P )
where  P   is a specification not employing the assignment or sequential composition 
operators.  To account for execution time, we use a time variable;  we use  t  for the time at 
which execution starts, and  t′  for the time at which execution ends.  In the case of 
nontermination,  t′=∞ .
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3  Example of Predicative Programming

As an example of predicative programming, we write a program that cubes using only 
addition, subtraction, and test for zero.  Let  x  and  y  be natural (non-negative integer 
valued) variables, and let  n  be a natural constant.  Then  x′=n3  specifies that the final value 
of variable  x  is  n3 .  One way to refine (or implement) this specification is as follows:

x′=n3   ⇐    x:= n;  x′=x×n;  x′=x×n
An initial assignment of  n  to  x  followed by two multiplications implies  x′=n3 .  Now 
we need to refine  x′=x×n .

x′=x×n   ⇐    y:= x;  x:= 0;  x′ = x + y×n
This one is proven by two applications of the Substitution Law:  in the specification at the 
right end  x′ = x  + y×n , first replace  x   by  0  and then replace  y   by  x  ;  after 
simplification, the right side is now identical to the left side, and so the implication is 
proven.  Now we have to refine  x′ = x + y×n .

x′ = x + y×n   ⇐    if y=0 then ok else (x:= x+n;  y:= y–1;  x′ = x + y×n)
To prove it, let's start with the right side.

if y=0 then ok else (x:= x+n;  y:= y–1;  x′ = x + y×n) Substitution Law twice
= if y=0 then ok else x′ = x +n + (y–1)×n now simplify
= if y=0 then ok else x′ = x  + y×n expand  ok  and rewrite if
= y=0 ∧ x′=x ∧ y′=y   ∨   y+0 ∧ x′=x+y×n In the left disjunct,  y=0  allows us to

add  0  in the form of  y×n  to  x.  We drop  y′=y .
⇒ y=0 ∧ x′=x+y×n   ∨   y+0 ∧ x′=x+y×n boolean algebra
= x′=x+y×n
This latest refinement has not raised any new, unrefined specifications, so we now have a 
complete program.  Using identifiers  P ,  Q , and  R  for the three specifications that are not 
programming notations, we have

P   ⇐    x:= n;  Q;  Q
Q   ⇐    y:= x;  x:= 0;  R
R   ⇐    if y=0 then ok else (x:= x+n;  y:= y–1;  R)

and we can compile it to C as follows:
void P (void) {x = n; Q( ); Q( );}
void Q (void) {y = x; x = 0; R( );}
void R (void) {if (y==0) ; else {x = x+n; y = y–1; R( );}}

or, to avoid the poor implementation of recursive call supplied by most compilers,
void P (void) {x = n; Q( ); Q( );}
void Q (void) {y = x; x = 0; R: if (y==0) ; else {x = x+n; y = y–1; goto R;}}

To account for time, we add a time variable  t .  We can account for real time if we 
know the computing platform well enough, but let's just count iterations.  We augment the 
specifications to talk about time, and we increase the time variable each iteration.

x′=n3 ∧ t′=t+n2+n   ⇐    x:= n;  x′=x×n ∧ t′=t+x;  x′=x×n ∧ t′=t+x
x′=x×n ∧ t′=t+x   ⇐    y:= x;  x:= 0;  x′ = x + y×n ∧ t′=t+y
x′ = x + y×n ∧ t′=t+y   ⇐
            if y=0 then ok else (x:= x+n;  y:= y–1;  t:= t+1;  x′ = x + y×n ∧ t′=t+y)

We leave these proofs for the interested reader.
Here is a linear solution in which  n  is a natural variable.  We can try to find  n3  in 

terms of  (n–1)3  using the identity  n3  =  (n–1)3 + 3×n2 – 3×n + 1 .  The problem is the 
occurrence of   n2 , which we can find using the identity  n2 = (n–1)2 + 2×n – 1 .  So we 
need a variable  x  for the cubes and a variable  y  for the squares.  We start refining:

x′=n3   ⇐    x′=n3 ∧ y′=n2

x′=n3 ∧ y′=n2   ⇐    if n=0 then (x:= 0;  y:= 0) else (n:= n–1;  x′=n3 ∧ y′=n2;

Probabilistic Predicative Programming          2



We cannot complete that refinement due to a little problem:  in order to get the new values 
of  x  and  y , we need not only the values of  x  and  y  just produced by the recursive call, 
but also the original value of  n , which was not saved.  So we revise:

x′=n3   ⇐    x′=n3 ∧ y′=n2 ∧ n′=n
x′=n3 ∧ y′=n2 ∧ n′=n   ⇐

if n=0 then (x:= 0;  y:= 0)
else ( n:= n–1;  x′=n3 ∧ y′=n2 ∧ n′=n;  n:= n+1;

y:= y + n + n – 1;  x:= x + y + y + y – n – n – n + 1)
After we decrease  n , the recursive call promises to leave it alone, and then we increase it 
back to its original value (which fulfills the promise).  With time,

x′=n3 ∧ t′=t+n   ⇐    x′=n3 ∧ y′=n2 ∧ n′=n ∧ t′=t+n
x′=n3 ∧ y′=n2 ∧ n′=n ∧ t′=t+n   ⇐

if n=0 then (x:= 0;  y:= 0)
else ( n:= n–1;  t:= t+1;  x′=n3 ∧ y′=n2 ∧ n′=n ∧ t′=t+n;  n:= n+1;

y:= y + n + n – 1;  x:= x + y + y + y – n – n – n + 1)
Compiling it to C produces

void P (void)
{if (n==0) {x = 0; y = 0;}
  else {n = n–1; P( ); n = n+1; y = y+n+n–1; x = x+y+y+y–n–n–n+1;}}

Here is linear solution without general recursion.  Let  z  be a natural variable.  Let
Q   =   y = 3×x2/3 + 3×x1/3 + 1  ∧  z = 6×x1/3 + 6   ⇒    x′ = (x1/3+n)3

or, more convenient for proof,
Q   =   ∀k: nat· x=k3  ∧  y = 3×k2 + 3×k + 1  ∧  z = 6×k + 6  ⇒   x′ = (k+n)3

Then
x′=n3 ∧ t′=t+n   ⇐    x:= 0;  y:= 1;  z:= 6;  Q ∧ t′=t+n
Q ∧ t′=t+n   ⇐

if n=0 then ok
else (x:= x+y;  y:= y+z.  z:= z+6;  n:= n–1;  t:= t+1;  Q ∧ t′=t+n)

The proofs, which are just substitutions and simplifications, are left to the reader.  
Compiling to C produces

x = 0; y = 1; z = 6;
Q: if (n==0) ; else {x = x+y; y = y+z; z = z+6; goto Q;}

4  Exact Precondition

We say that specification  S  is refined by specification  P  if  S⇐P  is a theorem.  That 
means, quantifying explicitly, that

∀σ, σ′· S ⇐  P
can be simplified to  † .  For any two specifications  S  and  P , if we quantify over only 
the output variables σ′ , we obtain the exact precondition, or necessary and sufficient 
precondition (called “weakest precondition” by others) for  S   to be refined by  P  .  For 
example, in one integer variable  x ,

∀x′· x′>5 ⇐ (x:= x+1)
= ∀x′· x′>5 ⇐ x′=x+1 One-Point Law
= x+1 > 5
= x > 4
This means that a computation satisfying  x:= x+1  will also satisfy  x′>5  if and only if it 
starts with  x>4 .  (If instead we quantify over the input variables σ , we obtain the exact 
(necessary and sufficient) postcondition.)
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Now suppose  P  is an implementable and deterministic specification, and  R ′  is a 
specification that refers only to output (primed) variables.  Then the exact (necessary and 
sufficient) precondition for  P  to refine  R′  (“weakest precondition for  P  to establish 
postcondition  R′ ”) is

∀σ′· P ⇒  R′ by a generalized one-point law
= ∃σ′· P ∧ R′
= P; R
where  R  is the same expression as  R′  except with unprimed variables.  For example,  the 
exact precondition for execution of  x:= x+1  to satisfy  x′>5  is

x:= x+1;  x>5 Substitution Law
= x+1 > 5
= x > 4

5  Probability

A specification tells us whether an observation is acceptable or unacceptable.  We now 
consider how often the various observations occur.  For the sake of simplicity, this paper 
will treat only boolean and integer program variables, although the story is not very different 
for rational and real variables (summations become integrals).

A distribution is an expression whose value (for all assignments of values to its 
variables) is a probability, and whose sum (over all assignments of values to its variables) is  
1 .  For example, if  n: nat+1 ( n  is a positive natural), then  2–n  is a distribution because

(∀n: nat+1· 2–n: prob)  ∧  (Σn: nat+1· 2–n)=1
where  prob  is the reals from  0  to  1  inclusive.  A distribution is used to tell the 
frequency of occurrence of values of its variables.  For example,  2–n  says that  n  has value  
3  one-eighth of the time.  If we have two variables  n, m : nat+1 , then  2– n – m   is a 
distribution because

(∀n, m: nat+1· 2–n–m: prob)  ∧  (Σn, m: nat+1· 2–n–m)=1
Distribution  2–n–m  says that the state in which  n  has value  3  and  m   has value  1  
occurs one-sixteenth of the time.

If we have a distribution of several variables and we sum over some of them, we get a 
distribution describing the frequency of occurrence of the values of the other variables.  If  
n, m: nat+1  are distributed as  2–n–m , then  Σm: nat+1· 2–n–m , which is  2–n , tells us the 
frequency of occurrence of values of  n .

If a distribution of several variables can be written as a product of distributions whose 
factors partition the variables, then each of the factors is a distribution describing the 
variables in its part, and the parts are said to be independent.  For example, we can write  
2–n–m  as  2–n × 2–m , so  n  and  m  are independent.

The average value of number expression  e  as variables  v  vary over their domains 
according to distribution  p  is

Σv· e × p
For example, the average value of  n2  as  n  varies over  nat+1  according to distribution  
2–n  is  Σn: nat+1· n2 × 2–n , which is  6 .  The average value of  n–m  as  n  and  m  vary 
over  nat+1  according to distribution  2–n–m  is  Σn, m: nat+1· (n–m) × 2–n–m , which is  0 .
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6  Probabilistic Specifications

To facilitate the combination of specifications and probabilities, add axioms
† = 1
ƒ = 0

equating booleans with numbers.
Let  S  be an implementable deterministic specification.  Let  p  be the distribution 

describing the initial state  σ .  Then the distribution describing the final state  σ′  is
Σσ· S × p

which is a generalization of the formula for average.  Here is an example in two integer 
variables  x  and  y .  Suppose  x  starts with value  7  one-third of the time, and starts with 
value  8  two-thirds of the time.  Then the distribution of  x  is

(x=7) × 1/3  +  (x=8) × 2/3
The probability that  x  has value  7  is therefore

(7=7) × 1/3  +  (7=8) × 2/3
= † × 1/3  +  ƒ  × 2/3
= 1 × 1/3  +  0 × 2/3
= 1/3
Similarly, the probability that  x  has value  8  is  2/3 , and the probability that  x  has 
value  9  is  0 .  Let  X  be the preceding distribution of  x .  Suppose that  y  also starts 
with value  7  one-third of the time, and starts with value  8  two-thirds of the time, 
independently of  x .  Then its distribution  Y  is given by

Y   =   (y=7) / 3  +  (y=8) × 2/3
and the distribution of initial states is  X × Y .  Let  S  be

if x=y then (x:= 0;  y:= 0) else (x:= abs(x–y);  y:= 1)
Then the distribution of final states is

Σx, y· S × X  × Y
= Σx, y· (x=y ∧ x′=y′=0  ∨  x+y ∧ x′=abs(x–y) ∧ y′=1)

× ((x=7) / 3  +  (x=8) × 2/3)
× ((y=7) / 3  +  (y=8) × 2/3)

= (x′=y′=0) × 5/9  +  (x′=y′=1) × 4/9
We should see  x′=y′=0  five-ninths of the time, and  x′=y′=1  four-ninths of the time.

A probability distribution such as  (x′=y′=0) × 5/9  +  (x′=y′=1) × 4/9  describes what 
we expect to see.  It can equally well be used as a probabilistic specification of what we want 
to see.  A boolean specification is just a special case of probabilistic specification.  We now 
generalize conditional composition and sequential composition to apply to probabilistic 
specifications as follows.  If  b  is a probability, and  P  and  Q  are distributions of final 
states, then

if b then P else Q   =   b × P  +  (1–b) × Q
P;Q   =   Σσ′′· (substitute  σ′′  for  σ′  in  P ) × (substitute  σ′′  for  σ  in  Q )

are distributions of final states.  For example, in one integer variable  x , suppose we start 
by assigning  0  with probability  1/3  or  1  with probability  2/3 ;  that's

if 1/3 then x:= 0 else x:= 1
Subsequently, if  x=0  then we add  2  with probability  1/2  or  3  with probability  1/2 , 
otherwise we add  4  with probability  1/4  or  5  with probability  3/4 ;  that's

if x=0 then if 1/2 then x:= x+2 else x:= x+3
else if 1/4 then x:= x+4 else x:= x+ 5

Notice that the programmer's  if  gives us conditional probability.  Our calculation
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if 1/3 then x:= 0 else x:= 1;
if x=0 then if 1/2 then x:= x+2 else x:= x+3
else if 1/4 then x:= x+4 else x:= x+ 5

= Σx′′· ((x′′=0)/3 + (x′′=1)×2/3)
× ( (x′′=0) × ((x′=x′′+2)/2 + (x′=x′′+3)/2)

+ (x′′+0) × ((x′=x′′+4)/4 + (x′=x′′+5)×3/4))
= (x′=2)/6 + (x′=3)/6 + (x′=5)/6 + (x′=6)/2
says that the result is  2  with probability  1/6 ,  3  with probability  1/6 ,  5  with 
probability  1/6 , and  6  with probability  1/2 .

We earlier used the formula  Σσ· S × p  to calculate the distribution of final states from 
the distribution  p  of initial states and an operation specified by  S .  We can now restate 
this formula as  (p′; S)  where  p′  is the same as  p  but with primes on the variables.  And 
the formula  (S; p)  giving the exact precondition for implementable deterministic  S   to 
refine  p′  also works when  S  is a distribution.

Various distribution laws are provable from probabilistic sequential composition.  Let  
n  be a number, and let  P ,  Q , and  R  be probabilistic specifications.  Then

n×P; Q   =   n×(P; Q)   =   P; n×Q
P+Q; R   =   (P; R) + (Q; R)
P; Q+R   =   (P; Q) + (P; R)

Best of all, the Substitution Law still works.  (We postpone disjunction to Section 10.)

7  Random Number Generators

Many programming languages provide a random number generator (sometimes called a 
“pseudo-random number generator”).  The usual notation is functional, and the usual result is 
a value whose distribution is uniform (constant) over a nonempty finite range.  If  n: nat+1 , 
we use the notation  rand n  for a generator that produces natural numbers uniformly 
distributed over the range  0,..n  (from (including)  0  to (excluding)  n ).  So  rand n   has 
value  r  with probability  (r: 0,..n) / n .  (Recall:  r: 0,..n  is  †  or  1  if  r  is one of  0, 1, 
2, ..., n–1 , and  ƒ  or  0  otherwise.)

Functional notation for a random number generator is inconsistent.  Since  x=x   is a 
law, we should be able to simplify  rand n  = rand n  to  † , but we cannot because the two 
occurrences of  rand n  might generate different numbers.  Since  x+x = 2×x  is a law, we 
should be able to simplify  rand n + rand n  to  2 × rand n , but we cannot.  To restore 
consistency, we replace each use of  rand n  with a fresh integer variable  r  whose value has 
probability  (r: 0,..n) / n  before we do anything else.  Or, if you prefer, we replace each use 
of  rand n  with a fresh variable  r: 0,..n  whose value has probability  1/n  .  (This is a 
mathematical variable, not a state variable;  in other words, there is no  r′ .)  For example, 
in one state variable  x ,

x:= rand 2;  x:= x + rand 3 replace the two  rands with  r  and  s
= Σr: 0,..2· Σs: 0,..3· (x:= r;  x:= x + s) × 1/2 × 1/3 Substitution Law
= Σr: 0,..2· Σs: 0,..3· (x′ = r+s) / 6 sum
= ((x′ = 0+0) + (x′ = 0+1) + (x′ = 0+2) + (x′ = 1+0) + (x′ = 1+1) + (x′ = 1+2)) / 6
= (x′=0) / 6  +  (x′=1) / 3 + (x′=2) / 3  +  (x′=3) / 6
which says that  x′  is  0  one-sixth of the time,  1  one-third of the time,  2  one-third of 
the time, and  3  one-sixth of the time.

Whenever  rand  occurs in the context of a simple equation, such as  r = rand n , we 
don't need to introduce a variable for it, since one is supplied.  We just replace the deceptive 
equation with  (r: 0,..n) / n .  For example, in one variable  x ,
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x:= rand 2;  x:= x + rand 3 replace assignments
= (x′: 0,..2)/2;  (x′: x,..x+3)/3 sequential composition
= Σx′′· (x′′: 0,..2)/2 × (x′: x′′,..x′′+3)/3 sum
= 1/2 × (x′: 0,..3)/3  +  1/2 × (x′: 1,..4)/3
= (x′=0) / 6  +  (x′=1) / 3 + (x′=2) / 3  +  (x′=3) / 6
as before.

Although  rand  produces uniformly distributed natural numbers, it can be transformed 
into many different distributions.  We just saw that  rand 2 + rand 3  has value  n   with 
distribution  (n=0 ∨ n=3) / 6  +  (n=1 ∨ n=2) / 3 .  As another example,  rand 8 < 3  has 
boolean value  b  with distribution

Σr: 0,..8· (b = (r<3)) / 8
= (b=†) × 3/8  +  (b=ƒ) × 5/8
= 5/8 – b/4
which says that  b  is  †  three-eighths of the time, and  ƒ   five-eighths of the time.

8  Blackjack

This example is a simplified version of the card game known as blackjack.  You are dealt a 
card from a deck;  its value is in the range  1  through  13  inclusive.  You may stop with 
just one card, or have a second card if you want.  Your object is to get a total as near as 
possible to  14 , but not over  14 .  Your strategy is to take a second card if the first is under  
7 .  Assuming each card value has equal probability (actually, the second card drawn has a 
diminished probability of having the same value as the first card drawn, but let's ignore that 
complication), we represent a card as  (rand 13) + 1 .  In one variable  x , the game is

x:= (rand 13) + 1;  if x<7 then x:= x + (rand 13) + 1 else ok
First we introduce variables  c, d: 0,..13  for the two uses of  rand , each with probability  
1/13 .  The program becomes

x:= c+1;  if x<7 then x:= x+d+1 else ok Substitution Law
= if c+1 < 7 then x′ = c+d+2 else x′ = c+1
Then  x′  has distribution

Σc, d: 0,..13· (if c+1 < 7 then x′ = c+d+2 else x′ = c+1) × 1/13 × 1/13
by several omitted steps

= ((2≤x′<7)×(x′–1) + (7≤x′<14)×19 + (14≤x′<20)×(20–x′)) / 169
Alternatively, we can use the variable provided rather than introduce new ones, as follows.

x:= (rand 13) + 1;  if x<7 then x:= x + (rand 13) + 1 else ok
replace assignments and  ok

= (x′: 1,..14)/13;  if x<7 then (x′: x+1,..x+14)/13 else x′=x replace  ;  and  if
= Σx′′· (x′′: 1,..14)/13 × ((x′′<7)×(x′: x′′+1,..x′′+14)/13 + (x′′≥7)×(x′=x′′))

by several omitted steps
= ((2≤x′<7)×(x′–1) + (7≤x′<14)×19 + (14≤x′<20)×(20–x′)) / 169

That is the distribution of  x′  if we use the “under  7 ” strategy.  We can similarly find 
the distribution of  x′  if we use the “under  8 ” strategy, or any other strategy.  But which 
strategy is best?  To compare two strategies, we play both of them at once.  Player  x  will 
play “under  n ” and player  y  will play “under  n+1 ” using exactly the same cards (the 
result would be no different if they used different cards, but it would require more variables).  
Here is the new game:
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if c+1 < n then x:= c+d+2 else x:= c+1;
if c+1 < n+1 then y:= c+d+2 else y:= c+1;
y<x≤14 ∨ x≤14<y This line is the condition that  x  wins.  We want to know

the probability that it is true.  Factor out  x:=  and  y:= .
= x:= if c+1 < n then c+d+2 else c+1;

y:= if c+1 < n+1 then c+d+2 else c+1;
y<x≤14 ∨ x≤14<y Use the substitution law twice.

=     (if c+1<n+1 then c+d+2 else c+1) < (if c+1<n then c+d+2 else c+1) ≤ 14
∨  (if c+1<n then c+d+2 else c+1) ≤ 14 < (if c+1<n+1 then c+d+2 else c+1)

= c = n–1  ∧  d > 13–n
Now the probability that  x  wins is

Σc, d: 0,..13· (c = n–1  ∧  d > 13–n) × 1/13 × 1/13
= (n–1) / 169
By similar calculations we can find that the probability that  y  wins is  (14–n) / 169 , and 
the probability of a tie is  12/13 .  For  n<8 , “under  n+1 ” beats “under  n ”.  For  n≥ 8 , 
“under  n ” beats “under  n+1 ”.  So “under  8 ” beats both “under  7 ” and “under  9 ”.

9  Dice

If you repeatedly throw a pair of six-sided dice until they are equal, how long does it take?  
The program is

R   ⇐    u:= (rand 6) + 1;  v:= (rand 6) + 1;  if u=v then ok else (t:= t+1;  R)
for an appropriate definition of  R .  First, introduce variables  r, s: 0,..6 , each having 
probability  1/6 , for the two uses of  rand , and simplify by eliminating variables  u  and  v.

R   ⇐    if r=s then t′=t else (t:= t+1;  R)
But there's a problem.  As it stands, we could define  R   =   if  r=s then t′=t else t′=∞ , 
which says that the execution time is either  0  or  ∞ .  The problem is that variable  r  
stands for a single use of  rand , and similarly for  s .  In the previous example, we had no 
loops, so a single appearance of  rand  was a single use of  rand .  Now we have a loop, and  
r  has the same value each iteration, and so has  s .  The solution to this problem is to 
parameterize  r  and  s  by iteration or by time.  We introduce  r, s: time→(0,..6) , with  r t  
and  s t  each having probability  1/6 .  The program is

R   ⇐    if r t = s t then t′=t else (t:= t+1;  R)
Now we can define  R  to tell us the execution time.

(∀i: t,..t′· r i + s i)  ∧  r t′ = s t′
says that  t′  is the first time (from  t  onward) that the two dice are equal.  The refinement is 
proved as follows:

if rt=st then t′=t else (t:= t+1;  (∀i: t,..t′· ri+si) ∧ rt′=st′) case and substitution
= rt=st ∧ t′=t  ∨  rt+st ∧ (∀i: t+1,..t′· ri+ si) ∧ rt′=st′ axioms of  ∀
= (∀i: t,..t′· ri+si) ∧ rt′=st′

Treating  ri  and  si  as though they were simple variables,  ri+si  with probability
Σri, si: 0,..6· (ri+si) × 1/6 × 1/6  =  5/6

and  ri=si  with probability
Σri, si: 0,..6· (ri=si) × 1/6 × 1/6  =  1/6

So we offer the hypothesis that the final time  t′  has the distribution
(t′≥t) × (5/6)t′–t × 1/6

We can verify this distribution as follows.  The distribution of the implementation (right 
side) is
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Σrt, st· (if rt=st then t′=t else (t:= t+1;  (t′≥t) × (5/6)t′–t × 1/6)) × 1/6 × 1/6 sum
= (6 × (t′=t)  +  30 × (t:= t+1;  (t′≥t) × (5/6)t′–t × 1/6)) × 1/6 × 1/6 substitution
= (6 × (t′=t)  +  30 × (t′≥t+1) × (5/6)t′–t–1 × 1/6) × 1/6 × 1/6 arithmetic
= (t′=t) × 1/6  +  (t′≥t+1) × (5/6)t′–t × 1/6
= (t′≥t) × (5/6)t′–t × 1/6
The last line is the distribution of the specification, which concludes the proof.

The alternative to introducing new variables  r  and  s  is as follows.  Starting with the 
implementation,

u:= (rand 6) + 1;  v:= (rand 6) + 1; replace  rand  and
if u=v then t′=t else (t:= t+1;  (t′≥t) × (5/6)t′–t × 1/6) Substitution Law

= ((u′: 1,..7) ∧ v′=v ∧ t′=t)/6;  (u′=u ∧ (v′: 1,..7) ∧ t′=t)/6; replace first ;
if u=v then t′=t else (t′≥t+1) × (5/6)t′–t–1 / 6 and simplify

= ((u′: 1,..7) ∧ (v′: 1,..7) ∧ t′=t)/36; replace remaining  ;
if u=v then t′=t else (t′≥t+1) × (5/6)t′–t–1 / 6 and replace  if

= Σu′′, v′′: 1,..7· Σt′′· (t′′=t)/36 × ((u′′=v′′) × (t′=t′′)
+ (u′′+v′′) × (t′≥t′′+1) × (5/6)t′–t′′–1 / 6) sum

= 1/36 × (6 × (t′=t)  +  30 × (t′≥t+1) × (5/6)t′–t–1 / 6) combine
= (t′≥t) × (5/6)t′–t × 1/6
which is the probabilistic specification.

The average value of  t′  is
Σt′· t′ × (t′≥t) × (5/6)t′–t × 1/6   =   t+5

so on average it takes  5  additional throws of the dice to get an equal pair.

10  Nondeterminism

According to some authors, nondeterminism comes in several varieties:  angelic, demonic, 
oblivious, and prescient.  To illustrate the differences, consider

x:= rand 2;  y:= 0 or y:= 1
and we want the result  x′=y′ .  If  or  is angelic nondeterminism, it chooses between its 
operands  y:= 0  and  y:= 1  in such a way that the desired result  x′=y′  is always achieved.  
If  or  is demonic nondeterminism, it chooses between its operands in such a way that the 
desired result is never achieved.  Both angelic and demonic nondeterminism require 
knowledge of the value of variable  x   when choosing between assignments to  y  .  
Oblivious nondeterminism is restricted to making a choice without looking at the current (or 
past) state.  It achieves  x′=y′  half the time.  Now consider

x:= 0 or x:= 1;  y:= rand 2
and we want  x′=y′ .  If  or  is angelically prescient,  x  will be chosen to match the future 
value of  y , always achieving  x′=y′ .  If  or  is demonically prescient,  x  will be chosen to 
avoid the future value of  y , never achieving  x′=y′ .  If  or  is not prescient, then  x′=y′  is 
achieved half the time.

In predicative programming, nondeterminism is disjunction.  Angelic, demonic, 
oblivious, and prescient are not kinds of nondeterminism, but ways of refining 
nondeterminism.  In the example

x:= rand 2;  (y:= 0) ∨ (y:= 1)
with desired result  x′=y′ , we can refine the nondeterminism angelically as  y:= x  , or 
demonically as  y:= 1–x , or obliviously as either  y:= 0  or  y:= 1 .  In the example

(x:= 0) ∨ (x:= 1);  y:= rand 2
with desired result  x′=y′ , we first have to replace  rand 2  by boolean variable  r  having 
probability  1/2 .  Then we can refine the nondeterminism with angelic prescience as  x:= r , 
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or with demonic prescience as  x:= 1–r , or without prescience as either  x:= 0  or  x:= 1 .
Suppose we have one natural variable  n  whose initial value is  5 .  After executing the 

nondeterministic specification  ok ∨ (n:= n+1) , we can say that the final value of  n   is 
either  5  or  6 .  Now suppose this specification is executed many times, and the 
distribution of initial states is  n=5  ( n   always starts with value  5 ).  What is the 
distribution of final states?  Nondeterminism is a freedom for the implementer, who may 
refine the specification as  ok , which always gives the answer  n′=5 , or as  n:= n+1 , which 
always gives the answer  n′=6 , or as

if even t then ok else n:= n+1
which gives  n′=5  or  n′=6  unpredictably.  In general, we cannot say the distribution of 
final states after a nondeterministic specification.  If we apply the formula  Σσ· S×p  to a 
specification  S  that is nondeterministic, the result may not be a distribution.  For example,

Σn·  (ok ∨ (n:= n+1)) × (n=5)  =  n′=5 ∨ n′=6
which is not a distribution because

Σn′·  n′=5 ∨ n′=6  =  2
Although  n′=5 ∨ n′=6  is not a distribution, it does accurately describe the final state.

Suppose the initial value of  n  is described by the distribution  (n=5)/2 + (n=6)/2 .  
Application of the formula  Σσ· S × p  to our nondeterministic specification yields

Σn·  (ok ∨ (n:= n+1)) × ((n=5)/2 + (n=6)/2)
= (n′=5 ∨ n′=6)/2 + (n′=6 ∨ n′=7)/2
Again, this is not a distribution, summing to  2  (the degree of nondeterminism).  
Interpretation of nondistributions is problematic, but this might be interpreted as saying that 
half of the time we will see either  n′=5  or  n′=6 , and the other half of the time we will see 
either  n′=6  or  n′=7 . 

Nondeterministic choice (P ∨ Q), probabilistic choice ( if  rand 2 then P else  Q), and 
deterministic choice ( i f  b  then  P  else Q) are not three different, competing ways of 
forming a choice.  Rather, they are three different degrees of information about a choice.  In 
fact, nondeterministic choice is equivalent to an unnormalized random choice.  In one 
variable  x ,

(x:= 0) ∨ (x:= 1)
= x′: 0,..2
= 2 × (x′: 0,..2)/2 introduce  rand  the same way we eliminate it
= 2 × (x′ = rand 2)
= 2 × (x:= rand 2)
≥ x:= rand 2
Thus we prove

(x:= 0) ∨ (x:= 1)   ≥   x:= rand 2
which is the generalization of refinement to probabilistic specifications.  Nondeterministic 
choice can be refined by probabilistic choice.

It is a well known boolean law that nondeterministic choice can be refined by 
deterministic choice.

P ∨ Q    ⇐    if b then P else Q
In fact, nondeterministic choice is equivalent to deterministic choice in which the 
determining expression is a variable of unknown value.

P ∨ Q   =   ∃b: bool· if b then P else Q
(The variable introduced is a mathematical variable, not a state variable; there is no  b′.)

This is what we will do:  we replace each nondeterministic choice with an equivalent 
existentially quantified deterministic choice, choosing a fresh variable each time.  Then we 
move the quantifier outward as far as possible.  If we move it outside a loop, we must then 
index the variable by iteration or by time, exactly as we did with the variable that replaces 
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occurrences of  rand .  All programming notations distribute over disjunction, so in any 
programming context, existential quantifiers (over a boolean domain) can be moved to the 
front.  Before we prove that specification  R   is refined by a program containing a 
nondeterministic choice, we make the following sequence of transformations.  (The dots are 
the context, or uninteresting parts, which remain unchanged from line to line.)

R    ⇐    ···········(P  ∨  Q)··············
R    ⇐    ···········(∃b· if b then P  else Q )··············
R    ⇐    (∃b· ···········(if b then P  else Q)··············)
∀b·   (R    ⇐    ···········(if b then P  else Q)··············)

A refinement is proved for all values of all variables anyway, even without explicit universal 
quantification, so effectively the quantifier disappears.

With this transformation, let us look again at the example  ok ∨  (n:= n+1) .  With 
input distribution  n=5  we get

Σn·  (if b then ok else n:= n+1) × (n=5)
= if b then n′=5 else n′=6
which is a distribution of  n′  because

Σn′·  if b then n′=5 else n′=6
= if b then (Σn′· n′=5) else (Σn′· n′=6)
= if b then 1 else 1
= 1
With input distribution  (n=5)/2 + (n=6)/2  we get

Σn·  (if b then ok else n:= n+1) × ((n=5)/2 + (n=6)/2)
= if b then (n′=5)/2 + (n′=6)/2 else (n′=6)/2 + (n′=7)/2
which is again a distribution of  n′ .  These answers retain the nondeterminism in the form 
of variable  b , which was not part of the question, and whose value is unknown.

11  Monty Hall's Problem

To illustrate the combination of nondeterminism and probability, we look at Monty Hall's 
problem, which was the subject of an internet discussion group;  various probabilities were 
hypothesized and argued.  We will not engage in any argument;  we just calculate.  The 
problem is also treated in [4].

Monty Hall is a game show host, and in this game there are three doors.  A prize is 
hidden behind one of the doors.  The contestant chooses a door.  Monty then opens one of 
the doors, but not the door with the prize behind it, and not the door the contestant has 
chosen.  Monty asks the contestant whether they (the contestant) would like to change their 
choice of door, or stay with their original choice.  What should the contestant do?

Let  p  be the door where the prize is.  Let  c  be the contestant's choice.  Let  m  be the 
door Monty opens.  If the contestant does not change their choice of door, the program is

(p:= 0) ∨ (p:= 1) ∨ (p:= 2);
c:= rand 3;
if c=p then (m:= c⊕1) ∨ (m:= c⊕2) else m:= 3–c–p;
ok

The first line  (p:= 0) ∨ (p:= 1) ∨ (p:= 2)  says that the prize is placed behind one of the 
doors;  the contestant knows nothing about the criteria used for placement of the prize, so 
from their point of view it is a nondeterministic choice.  The second line  c:= rand 3  is the 
contestant's random choice of door.  In the next line,  ⊕   is addition modulo  3 ;  if the 
contestant happened to choose the door with the prize, then Monty can choose either of the 
other two (nondeterministically);  otherwise Monty must choose the one door that differs 
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from both  c   and  p  .  This line can be written more briefly and more clearly as  
c′=c+m′+p=p′ .  The final line  ok  is the contestant's decision not to change door.

We replace  rand 3  with variable  r .  We introduce variable  P  of type  0, 1, 2  in order 
to replace the nondeterministic assignment to  p  with

if P=0 then p:= 0 else if P=1 then p:= 1 else p:= 2
or more simply  p:= P .  And since we never reassign  p , we really don't need it as a 
variable at all.  We introduce variable  M  to express the nondeterminism in Monty's choice.  
Our program is now deterministic (in terms of unknown  P  and  M ) and so we can append 
to it the condition for winning, which is  c=P .  We have

c:= r;
m:= if c=P then if M  then c⊕1 else c⊕2 else 3–c–P;
c = P substitution law twice

= r = P
Not surprisingly, the condition for winning is that the random choice made by the contestant 
is the door where the prize is.  Also not surprisingly, its probability is

Σr· (r=P) × 1/3
= 1/3

If the contestant takes the opportunity offered by Monty of switching their choice of 
door, then the program, followed by the condition for winning, becomes

c:= r;
m:= if c=P then if M  then c⊕1 else c⊕2 else 3–c–P;
c:= 3–c–m;
c = P

In the first line, the contestant chooses door  c  at random.  In the second line, Monty opens 
door  m , which differs from both  c  and  P .  In the next line, the contestant changes the 
value of  c  but not to  m ;  thanks to the second line, this is deterministic;  this could be 
written more briefly and more clearly as  c+c′+m=m′ .  The final line is the condition for 
winning.  After a small calculation ( c  starts at  r  and then changes;  the rest is irrelevant), 
the above four lines simplify to

r + P
which says that the contestant wins if the random choice they made originally was not the 
door where the prize is.  Its probability is

Σr· (r+P) × 1/3
= 2/3
Perhaps surprisingly, the probability of winning is now  2/3 , so the contestant should 
switch.

12  Mr.Bean's Socks

Our next example originates in [4];  unlike Monty Hall's problem, it includes a loop.  
Mr.Bean is trying to get a matching pair of socks from a drawer containing an inexhaustible 
supply of red and blue socks (in the original problem the supply of socks is finite).  He 
begins by withdrawing two socks from the drawer.  If they match, he is done.  Otherwise, he 
throws away one of them at random, withdraws another sock, and repeats.  The choice of 
sock to throw away is probabilistic, with probability  1/2  for each color.  As for the choice 
of sock to withdraw from the drawer, we are not told anything about how this choice is 
made, so it is nondeterministic.  How long will it take him to get a matching pair?
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Here is Mr.Bean's program (omitting the initialization).  Variables  L  and  R  represent 
the color of socks held in Mr.Bean's left and right hands.

L′=R′   ⇐
if L=R then ok
else ( if rand 2 then (L:= red) ∨ (L:= blue) else (R:= blue) ∨ (R:= red);

t:= t+1;  L′=R′)
As always, we begin by replacing the use of  rand  by a variable  h  (for hand), and we 

introduce variable  d  to express the nondeterministic choices.  Due to the loop we index 
these variables with time.  The refinement

L′=R′   ⇐ if L=R then ok
else ( if h t then if d t then L:= red else L:= blue

else if d t then R:= blue else R:= red;
t:= t+1;  L′=R′)

is easily proven.  Now we need a hypothesis concerning the probability of execution times.
Suppose the nondeterministic choices are made such that Mr.Bean always gets from the 

drawer a sock of the same color as he throws away.  This means that the nondeterministic 
choices become

if d t then L:= red else L:= blue   =   ok
if d t then R:= blue else R:= red   =   ok

(which means that  d t  just happens to have the same value as  L=red ∧ R=blue  each time).  
If I were watching Mr.Bean repeatedly retrieving the same color sock that he has just thrown 
away, I would soon suspect him of doing so on purpose, or perhaps a malicious mechanism 
that puts the wrong sock in his hand.  But the mathematics says nothing about purpose or 
mechanism;  it may be just a fantastic coincidence.  In any case, we can prove that execution 
takes either no time or forever

if L=R then t′=t else t′=∞   ⇐
if L=R then ok else (t:= t+1;  if L=R then t′=t else t′=∞)

but we cannot prove anything about the probability of those two possibilities.
At the other extreme, suppose Mr.Bean gets from the drawer a sock of the opposite 

color as he throws away.  Then the nondeterministic choices become
if d t then L:= red else L:= blue   =   L:= R
if d t then R:= blue else R:= red   =   R:= L

(which means that  d t  just happens to have the same value as  L=blue ∧ R=red  each time).  
Again, if I observed Mr.Bean doing that each time the experiment is rerun, I would suspect a 
mechanism or purpose, but the mathematics is silent about that.  Now we can prove

if L=R then t′=t else t′=t+1   ⇐
if L=R then ok
else ( if h t then L:= R  else R:= L;

t:= t+1;  if L=R then t′=t else t′=t+1)
which says that execution takes time  0  or  1 , but we cannot attach probabilities to those 
two possibilities.  If we make no assumption at all about  dt , leaving the nondeterministic 
choices unrefined, then the most we can prove about the execution time is

if L=R  then t′=t else t′>t
Another way to refine the nondeterministic choice is with a probabilistic choice.  If we 

attach probability  1/2  to each of the values of  dt , then the distribution of execution times 
is  if L=R  then t′=t else (t′>t) × 2t–t′ .  To prove it, we start with the right side of the 
refinement, weakening  ok  to  t′=t .
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Σht, dt· ( if L=R then t′=t
else ( if ht then if dt then L:= red else L:= blue

else if dt then R:= blue else R:= red ;
t:= t+1;  if L=R then t′=t else (t′>t) × 2t–t′ ) )

× 1/2 × 1/2 factor and sum
= if L=R then t′=t

e l se (  (L:= red;  t:= t+1;  if L=R then t′=t else (t′>t) × 2t–t′)
+ (L:= blue;  t:= t+1;  if L=R then t′=t else (t′>t) × 2t–t′)
+ (R:= blue;  t:= t+1;  if L=R then t′=t else (t′>t) × 2t–t′)
+ (R:= red;  t:= t+1;  if L=R then t′=t else (t′>t) × 2t–t′) ) / 4

Substitution Law
= if L=R then t′=t

e l se (  (if red=R then t′=t+1 else (t′>t+1) × 2t+1–t′)
+ (if blue=R then t′=t+1 else (t′>t+1) × 2t+1–t′)
+ (if L=blue then t′=t+1 else (t′>t+1) × 2t+1–t′)
+ (if L=red then t′=t+1 else (t′>t+1) × 2t+1–t′) ) / 4

R  is either  red  or  blue , and similarly  L
= if L=R then t′=t else (t′=t+1) / 2  +  (t′>t+1) × 2t+1–t′ / 2
= if L=R then t′=t else (t′>t) × 2t–t′

which is the probability specification.  That concludes the proof.  The average value of  t′  is
Σt′· t′ × if L=R then t′=t else (t′>t) × 2t–t′

= if L=R then t else Σt′· t′ × (t′>t) × 2t–t′

= t + if L=R then 0 else Σn: nat+1· n / 2n

= t + if L=R  then 0 else 2
so, if the initial socks don't match, Mr.Bean draws an average of two more socks from the 
drawer.

In the previous paragraph, we chose to leave the initial drawing nondeterministic, and to 
assign probabilities to the drawing of subsequent socks.  Clearly we could attach 
probabilities to the initial state too.  Or we could attach probabilities to the initial state and 
leave the subsequent drawings nondeterministic.  The theory is quite general.  But in this 
problem, if we leave both the initial and subsequent drawings nondeterministic, attaching 
probabilities only to the choice of hand, we can say nothing about the probability of 
execution times or average execution time.

13  Partial Probabilistic Specifications

Suppose we want  x  to be  0  one-third of the time.  We don't care how often  x  is  1  or  2  
or anything else, as long as  x  is  0  one-third of the time.  To express the distribution of  x  
would be overspecification.  The first two lines below specify just what we want, and the 
last two lines are one way to refine the specification as a distribution.

if 1/3 then x=0 else x+0
= (x=0)/3 + (x+0)×2/3
≥ (x=0)/3 + (x=1)×2/3
= if 1/3 then x=0 else x=1
In general, a superdistribution is a partial probabilistic specification, which can be refined to 
a distribution.  In general, a subdistribution is unimplementable.

Now suppose we want  x  to be  0  or  1  one-third of the time, and to be  1  or  2  one-
third of the time.  Two distributions that satisfy this informally stated specification are
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(x=0)/3 + (x=2)/3 + (x=3)/3
(x=1)/3 + (x=3)×2/3

The smallest expression that is greater than or equal to both these expressions (the most 
refined expression that is refined by both these expressions) is

(x=0)/3 + (x=1)/3 + (x=2)/3 + (x=3)×2/3
Unfortunately, this new expression is also refined by

(x=2)/3 + (x=3)×2/3
which does not satisfy the informally stated specification.  The problem is known as convex 
closure, and it prevents us from formalizing the specification as a superdistribution.  We 
must return to the standard form of specification, a boolean expression, this time about the 
partially known distribution.  Let  p x  be the probability distribution of  x .  Then what we 
want to say is

(∀x· 0≤px≤1)  ∧  (Σx· px)=1  ∧  p0+p1 = p1+p2 = 1/3
This specification can be refined in the normal way:  by reverse implication.  For example,

(∀x· 0≤px≤1)  ∧  (Σx· px)=1  ∧  p0+p1 = p1+p2 = 1/3
⇐ p0 = p2 = p3 = 1/3  ∧  ∀x: x+0 ∧ x+2 ∧ x+3· px=0
= ∀x· px = ((x=0)/3 + (x=2)/3 + (x=3)/3)

14  Conclusion

Our first approach to probabilistic programming was to reinterpret the types of variables as 
probability distributions expressed as functions.  In that approach, if  x  was a variable of 
type  T , it becomes a variable of type  T→prob  such that  Σx = Σx′ = 1 .  All operators 
then need to be extended to distributions expressed as functions.  Although this approach 
works, it was too low-level;  a distribution expressed as a function tells us about the 
probability of its variables by their positions in an argument list, rather than by their names.  
So we opened the probability expressions, leaving free the variables whose probabilities are 
being described.

By considering specifications and programs to be boolean expressions, and by 
considering boolean to be a subtype of numbers, we can make probabilistic calculations 
directly on programs and specifications.  Without any new mechanism, we include 
probabilistic timing.  From the distribution of execution times we can calculate the average 
execution time;  this is often of more interest than the worst case execution time, which is 
the usual concern in computational complexity.

We include an if then else notation (as is standard), and we have generalized booleans 
to probabilities (as in [4]), so we already have a probabilistic choice notation (for example, 
if 1/3 then  P  else Q  );  there is no need to invent another.  We have used the  rand  
“function”, not because we advocate it (we don't), but because it is found in many 
programming languages;  we cope with it by replacing it with something that obeys the 
usual laws of mathematical calculation.

Informal reasoning to arrive at a probability distribution, as is standard in studies of 
probability, is essential to forming a reasonable hypothesis.  But probability problems are 
notorious for misleading even professional mathematicians;  hypotheses are sometimes 
wrong.  Sometimes the misunderstanding can be traced to a different understanding of the 
problem.  Our first step, formalization as a program, makes one's understanding clear.  After 
that step, we offer a way to prove a hypothesis about probability distributions.

Nondeterministic choice is handled by introducing a variable to represent the 
nondeterminacy.  In [4], instead of calculating probabilities, they calculate a lower bound on 
probabilities:  they find the precondition that ensures that the probability of outcome  σ′  is 
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at least  p .  In contrast to that, from the distribution of prestates we calculate the entire 
range of possible distributions of poststates.  With less mechanism we obtain more 
information.  We did not treat nondeterministic choice and probabilistic choice as different 
kinds of choice;  nondeterminism can be refined, and one way to refine it, is 
probabilistically;  the “at least” inequality is the generalization of refinement.

The convex closure problem, which prevents partial probabilistic specification, is a 
serious disappointment.  It limits not only the work described in this paper, but any attempt 
to generalize specifications to probabilities, such as [4] where it is discussed at length.  The 
only way around it seems to be to abandon probabilistic specification, and to write boolean 
specifications about distribution-valued variables.

Probabilistic specifications can also be interpreted as “fuzzy” specifications.  For 
example,  (x′=0)/3 + (x′=1)×2/3  could mean that we will be one-third satisfied if the result  
x′  is  0 , two-thirds satisfied if it is  1 , and completely unsatisfied if it is anything else.
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