144

RESEARCH CONTRIBUTIONS

Lloyd Fosdick
Guest Editor

Part Il

ERIC C.R. HEHNER

ABSTRACT: Part I of this two-part paper presented a new
semantics of programs. Each program is considered to be a
predicate, in a restricted notation, that specifies the
observable behavior of a computer executing the program.
We considered a variety of notations, including assignment,
composition (semicolon), deterministic choice (if),
nondeterministic choice, definition (nonrecursive and
recursive), and variable declaration. We did not consider any
input or output notations, or concurrency; that is the subject
of Part 1. We assume the reader is familiar with Part I, so
that we can build on ideas presented there.

0. SEQUENCE NOTATIONS

We shall describe input and output as sequences of
messages communicated on named channels. To do so,
we find it convenient to introduce a few sequence nota-
tions.

A the empty sequence
#c the length of sequence ¢
c[i] the element of sequence ¢ with index i,

0=<i<#c (indices, of course, start at 0),
the subsequence of ¢ from index i on,

O=i=#c

cad catenation of sequences c and d

c=d sequence c is an extension of sequence 4,
i.e., d is an initial subsequence of ¢

c<=d sequence c is a tail of sequence 4,

i.e., ¢ is a final subsequence of d

This research was supported by the National Science and Engineering
Research Council of Canada.

© 1984 ACM 0001-0782/84/0200-0144 75C

Communications of the ACM

Predicative Programming

In this paper, we shall not be forming sequences of se-
quences; consequently, we can get away with neglecting
to write sequence brackets. For example, we write ¢ 1 to
mean the sequence formed by extending sequence ¢ with
element 1.

1. OBSERVABLES

In Part I, observation of computer activity consisted of
observing the values of variables at the start of the
activity, and if it terminates, at its end. We now wish to
extend our observations to include communications
between a computer and its environment during the
execution of a program. The environment can be a
combination of people and computers. It can even in-
clude the same computer that is executing the program
in question: a computer can consist of several proces-
sors, each capable of executing a program and commu-
nicating with the others; a single processor can execute
several programs in an interleaved fashion. For this
reason, we adopt the standard term “process” to mean
the particular computer activity being described.

Input is a communication to a process from its envi-
ronment along a named channel designated for that
purpose. Let ¢ be an input channel. Then ¢ denotes the
sequence of inputs offered by the environment on
channel ¢ during execution. And ¢ denotes the se-
quence of inputs that are offered on c to the process
but never consumed by it. The relationship between
¢and ¢ is

February 1984 Volume 27 Number 2

P

which says (inputs offered) = (inputs con-
sumed) ~ (inputs unconsumed). More compactly, we
write ¢=¢.

Output is a communication from a process to its envi-
ronment along a named channel designated for that
purpose. Let d be an output channel. Then d denotes
the sequence of outputs already produced on channel d
before the start of the process. And 4 denotes the se-
quence of outputs produced on d by the end of the
process if it terminates, forever if it does not. The rela-
tionship between d and d is

ddded=—1d
which says (outputs produced before) ™ (outputs pro-
duced during) = (outputs produced). More compacitly,
we write d = d.

The vector of values ? is now extended to include the
communication sequences ¢, d . . . for all channels, as
well as the initial values of variables. Similarly, the
vector of values 9 is now extended to include the se-
quences ¢, d, . .. as well as the final values of variables.
(We continue to pronounce ¢ and 4 as “v in” and “v
out” although the words “in” and “out” are no longer
entirely appropriate.) We postulate that © and % consti-
tute the possible observations that may be made of a
process. This choice can be criticized, but it is conveni-
ent and, we hope, reasonable.

Our choice of possible observations means that we
can prescribe the order of communications on a partic-
ular channel, but not their times; for that, a more elab-
orate theory would be needed. Our choice also means
that we cannot directly prescribe the relative order of
communications on different channels. But often, this
order will be indirectly constrained by data dependen-
cies. For example, an output that depends on an input
must follow it in time.

An input may, in the mind of the user, depend on an
output, and so the user will not provide the input until
the output is produced. This dependence is not part of
the semantics of the process, but part of the semantics
of the user. As we shall see, our semantics requires that
an output that can be produced without further input
must be produced. And so, a (sufficiently patient) inter-
active user (interactive environment) is accommodated.

A batch environment is one that is willing to provide
all input without seeing any output. This environment
is also accommodated by our semantics.

2. SPECIFICATIONS
A specification is a predicate whose free variables are o
and ¢. To be achievable, a specification S must obey

(8) Vo. 39. S

and be computable (as in Part I); but, now it must also
allow the proper relationship between the initial and

final communication sequences. We call this relation-
ship K. For example, with input channel ¢ and output
channel 4,

K = é=t A d=d

February 1984 Volume 27 Number 2

Research Contributions

The generalization to any number of channels should
be obvious; in particular, if there are no channels, K is
true.

The specification

(16) d=d"0

is achieved by any process that outputs a 0 (and no
more) on channel d. The specification

17) di= 0@ d

satisfies formula (8), but requires a process to change
the past. This is obviously not reasonable, so we must
strengthen (8); to be achievable, a specification S must
obey

(18) V9. 35. S A K

Thus, (16) is achievable, but (17) is not.

The specification K requires nothing whatever of a
process except that it be a process, i.e., that it proceed
by consuming inputs and producing outputs, rather
than by changing the past. It is the least determined
(weakest) process specification, saying only that con-
sumed input cannot become unconsumed, and pro-
duced output cannot become unproduced. (The K
stands for “chaos.”)

3. PROGRAMS

A program is a process specification in a highly re-
stricted notation to ensure that it is automatically
achievable. Since every process achieves specification
K, every program P must satisfy

(19) V9, 9. P = K
Our programming notations for communicating pro-
cesses include all the notations of Part [, and a few
more. Some of the definitions from Part I must now be
extended.
3.0 Skip
Skip =40 =D
This definition remains the same except that the vec-
tors v and ¥ are now extended to include communica-
tion sequences.
3.1 Assignment
x = e =g (D¢’ A ¢ € type(x)) = 6=0f) A K

As in Part I, we henceforth neglect the types of varia-
bles and assume that expressions are always of the
right type for their contexts. Since (6=0f) = K, we can
write the assignment predicate in other forms that are
sometimes more convenient.

x := e = (D¢ = 5=0f)
A ((D? = K)
x:=¢ =D A =0}

v oD% A K

Communications of the ACM

145

Research Contributions

146

3.2 Input

The notation c?x specifies a process that receives an
input on channel ¢, and assigns it to variable x. To aid
our understanding of input, we can consider it equiva-
lent to

x:=c[0]; ci=¢[1...]

although c is not a sequence variable, but a channel.
c?x =gt (#0>0 = ¥ = 9o A K
Again, it may be clearer to separate this into two cases.
c?x = #c>0 A 15=z>§[1,,,1§[01
v #0=0 A K

If at least one input is offered on channel c, then one
input will be consumed and assigned to x, and all else
will be undisturbed. If not, then nothing is specified
except that c?x is a process. In an interactive environ-
ment, it can never be known that no input is forthcom-
ing, and so execution had better remain consistent with
the possibility that an input will eventually be offered.
In other words, execution must wait for input. In a
batch environment, an error message can be communi-
cated.

3.3 Output
The notation d!e specifies a process that evaluates
expression e, and outputs the result on channel 4. As an
aid, it can be considered equivalent to

d:=d e

dle =4 (D¢ = 9=0%~,) A K

3.4 Composition
In Part I, composition P;Q was defined as

(TV4. P) = (0. PI A Q)

The antecedent was true of just those initial values »
for which we have an interest in some final value. We
interpreted this to mean that any mechanism achieving
P terminates for those initial values.

If P describes a communicating process, then (V4. P)
is true for all initial values ¢ due to (19). Even if we are
not interested in the result 9, we know P = K. Compo-
sition now becomes

P;Q =4t (CV0. P=K) = (30. P{ A Q%)) A K

Here are some examples using variables x and v, in-
put channel ¢, and output channel 4.

et cly

= #0622 A 3=([0] A y=¢[1] A é=¢[2 ...] A d=d
V#H#=1A (=1 ...] A d=d
v #:=0 A é=¢ A d=d

This can be written more compactly, but for the sake of
exposition, we have written it as three alternatives.
The first says that if at least two inputs are offered,

Communications of the ACM

then exactly two inputs will be consumed and assigned
to x and y, and no output will be produced. The second
disjunct says that if exactly one input is offered, it will
be consumed; nothing is said about the final value of x
or y or whether outputs are produced. The last disjunct
covers the case that no inputs are offered.

c?x; dl1l
= #0=1 A X=¢[0] A y=y A ¢=¢[1 ...] A d=d"1
VH#E=0 A (=) A d=d
dlil: el
= #c=1 A I=¢[0] A g=p A é=¢[1 ...] A d=d"1
V#E=0 A =)\ A d=d1
These two examples differ only in one detail: When no
input is offered, the first does not require an output but
the second does.
c?x; c?y; dlx+y
= #0=22 A 7=C[0] A y=C[1] A é=¢[2 ...] A d=d (E[0]+¢[1])
VHI<2 A (=) A d=d
In practice, programming and proving correctness

rarely require the calculation of semantics in complete
detail. For example, the specification

(#e=2 A #d=0) = (6=¢[2 ...] A d=¢[0]+¢[1])

begins with a typical hypothesis saying that enough
inputs will be offered, and no output has yet been pro-
duced. To prove that c?x; c?y; d!x+y is correct, only
part of its first disjunct is needed.

3.5 Deterministic Choice
if b then P else Q =4

(D6’ = (bAP v —bAQ)) A K

3.6 Nondeterministic Choice
PorQ=¢4PvQ

3.7 Input Choice
Let a and c be two input channels, let x and y be two
variables, and let P and Q be two specifications.

[a?x > PO c?y — Q]

specifies the following process: If no input is offered on
channel 4 or on channel ¢, then no result is promised
(execution must wait for input). If input is offered on
channel 2 but not on channel ¢, then one input is con-
sumed from channel a and assigned to x, and P de-
scribes the subsequent activity. Symmetrically, if input
is offered on channel ¢ but not on channel 4, then one
input is consumed from channel ¢ and assigned to y,
and Q describes the subsequent activity. If input is of-
fered on both channels @ and c, then one of them is
consumed and the other is not, with the subsequent
activity described by the corresponding specification.

February 1984 Volume 27 Number 2

The preferred implementation is the one that chooses
the first available input, but that can neither be speci-
fied nor observed.

[a?x — P 0 c?y — Q]
=af #a=#t=0 A K
v #2>0 A P, oo
v #c>0 A Qg[l,A.]tg[O]

Input choice can be generalized to any number of alter-
natives.
THEOREM 13.
(a) [4a?7x—>POc?y - Q] =[c?y —> QOa?x - P]
(b) [c?x—>POc?x—P]=[c?x— P]
(c) [e@—= Pli=(c?x P)
Input choice and nondeterministic choice have some
similarities, but also a difference. The two programs

[a?2x > PO c?y — Q]
[a?x — P] or [c?y — Q]

are identical if input is offered on neither channel, and
also if input is offered on both channels. But they differ
if input is offered on only one channel; in that case, the
input choice describes a process that must consume the
input, but the nondeterministic choice describes a pro-
cess that may consume it or may wait forever for the
other input.

3.8 Definition
The (possibly recursive) definition

P F(P)

was given meaning in Part I by forming a monotoni-
cally strengthening sequence of predicates

Po = true
P11 = F(P,)
whose limit was considered to define P.
P =4 Vn. P,

The first predicate of the sequence P, describes, as well
as possible, a completely unknown mechanism. With
successive members of the sequence, we know more
and more about the mechanism, and the sequence limit
is considered to be a complete description.

A completely unknown process is described by K, so
this is the first predicate Py. The definition

P: F(P)
gives P the meaning
P =y Vn. F(K)

For example, suppose there are no variables and one
output channel d.

ONES: d!1; ONES

February 1984 Volume 27 Number 2

Research Contributions

The defining sequence is
ONES, = d=d
ONES,+; = ONES,i~,
By constructing a few members of this sequence
ONES, = d=d—1
ONES; = d=d—171
we are led to propose
ONES;=d=d— 1+ 1 3 =
h—_w——_J

1 ones
which can be written formally as
ONES, = d=d A #d=#d+n
A (Vi: #d<i<#d+n. d[i]=1)
This can be proven by induction on n. Now ONES is

ONES = Vn. ONES,
= d=d A #d=c0 A (Viz#d. d[i]=1)
As expected, ONES specifies a process that outputs an
infinite sequence of ones. Although we cannot observe
an infinite sequence of outputs, we can observe any
finite subsequence of it.
Manipulation of infinite sequences is a subject that

requires some attention. We do not pursue it here, but

we present one more example, in variables x and y and
input channels 4 and c.

GO-ON: [c?x — GO-ON O a?y — skip]
GO-ON
= (3i. #c>i A #0>0 A é=g[i+1 ...]
A ¥=c[i] A d=a[1 . ..] A y=4[0])
V #a>0 A (=C A X=X A d=q[1 ...]
A j=3]0]
v #0<oo A #4=0 A (=d=)\
Vv #e=00 A (Vi. (=([i ...]) A d4=a
If input is offered on both channels ¢ and 4, then an
arbitrary initial portion of ¢ may be consumed, leaving
the last consumed input as the value of ¥, and one
input from a will be consumed and assigned to y. Ac-
cording to the preferred implementation of input
choice, the amount of ¢ input consumed will depend on
the arrival times of the messages, the ¢ input being
“interrupted” at some time by an a input. The second
disjunct describes the possibility that the “interruption”
occurs before any ¢ input has been consumed. In the
third disjunct, a finite amount of input is offered on
channel ¢, and none on channel a; in that case, all the
input will be consumed, and execution will wait for
more (no final values of x and y are promised). And

finally, if an infinite sequence of inputs is offered on c,
these inputs may be consumed forever.

Communications of the ACM

147

Research Contributions

148

3.9 Independent Composition
The program

(20) x:=0y:=1

specifies a particular desired result: ¥=0 and j=1 and
all else unchanged. It can be achieved by a process that
first executes x := 0 and then executes y := 1. The same
result can be achieved by a process that first executes y
:=1 and then x := 0. Suppose we have three variables
x, ¥, and z, and two channels ¢ and d. Then

x=0y:=1

= %=0/A j=1'A 7= A ¢=C A d=d

A program is a specification relating final values to
initial values and describing all mechanisms that
achieve the specification. If two processors are avail-
able, then program (20) can even be achieved by a
mechanism that executes the two assignments concur-
rently. The same is true of the following three programs

X=z;y:=z

=0; d!1

c?x; dl1
but not of the programs

x=0;x:=1
x=0y:=x
x:=y;y:=0
x:=0; dlx
c?x; dlx

Composition (the semicolon connective) prescribes se-
quential execution only to the extent required by data
dependencies; beyond that, execution order is left as a
freedom for the implementer.

Two programs are called independent if

(@) neither contains an assignment or input to a vari-
able appearing in the other, and
(b) no channel appears in both.

The importance of independence is that it is easily rec-
ognized by an implementation, and according to the
next theorem, it allows P;Q to be executed by execut-
ing P and Q concurrently.

If P and Q are independent programs, the variables
and channels v can be partitioned into two disjoint and
exhaustive groups vp and vq as follows: vp includes all
variables assigned in P, all variables receiving input in
P, and all channels appearing in P; vq includes all vari-
ables assigned in Q, all variables receiving input in Q,
and all channels appearing in Q; a variable that is no-
where assigned or used for input may be placed in
either group, and similarly for a channel appearing in
neither P nor Q. Let P(vp) be P but restricted to the
variables and channels vp, and similarly Q(vq).

Communications of the ACM

THEOREM 14. If P and Q are independent programs,
P(vp) 4 Q(vg) = P;Q

If P and Q are independent, any mechanism that
achieves P(vp) and separately also Q(vg) achieves P:Q.
The implication is, in fact, equality, except only when
one of P or Q is completely undetermined.

We introduce a connective for independent pro-
grams, called independent composition. P || Q can be
achieved by a process achieving P and Q separately.

For independent programs P and Q,

P Q =as P(vp) » Qvq)

TuEOREM 15. If P and Q are independent programs,

(@) (V3. P=K) A (MV3. Q=K)) = (P||Q = P;Q)
(b) (V3. P=K) A (V5. Q=K)) = (P|Q = P;Q)

For example, with variable x and output channel d,
ONES || x := 2

= d=d A #d=c0 A (Viz#d. d[i]=1) A =2

ONES:; x := 2

= (7V3. ONES = K) = (9. ONES? A (x := 2)2)

true = (3%, d. ¥=x A d=d A #d=c0
A (Viz#d. di]=1) A ¥=2 A d=d)
= d=d A #d=o0 A (Viz#d. d[i]=1) » i=2

The antecedent (mV43. P=K) in the formula for (semi-
colon) composition still indicates “interest” in some “fi-
nal” value, but it can no longer be interpreted as re-
quiring termination. The program (ONES; x := 2) does
indeed assign 2 to x.

When one of P or Q is undetermined, (P;Q) is unde-
termined but (P || Q) is not. Informally speaking, when
something goes wrong in P, the composition (P;Q) does
not permit us to trust any variable, but the composition
(P |l Q) permits us to trust vg. Similarly, when some-
thing goes wrong in Q, (P;Q) does not permit us to trust
any variable, but (P || Q) permits us to trust vp. Inde-
pendent composition acts as a firewall, limiting damage
in case of trouble.

Independent composition is our only connective that
is not defined for all predicates. P || Q is defined only
when predicates P and Q are independent, and then its
meaning depends on the partitioning of v into vp and vq
whenever a variable is not assigned or a channel is not
used, and one of P or Q is undetermined. In this re-
spect, independent composition is not entirely satisfac-
tory from a mathematical point of view. And, it is the
only connective that does not have the property of
bounded nondeterminism (Part I, Theorem 6, general-
ized to include channels). But the engineering concern
for partial safety in the face of partial disaster makes it
an important connective. It is the connective of distrib-
uted computing.

February 1984 Volume 27 Number 2

3.10 Variable Declaration
The formula for variable declaration

var x. P =¢; 3%. PY

remains unchanged, but its importance is now in-
creased. In Part I, the only observables were the initial
and final values of the global variables, so a program
having only local variables is of no interest (it is com-
pletely undetermined, equivalent to true). But a com-
municating process can be observed through communi-
cation, and it is quite reasonable for all variables to be
local.

Consider a buffer with input channel ¢ and output
channel d. We do not intend it to come after any pro-
cess producing output on channel 4, so we intend to
use it when d = \. We want it to reproduce all that is
offered to it on channel ¢ as its output on channel 4.
Here is a one-place buffer B that introduces a local
variable x.

B: (var x. c?x; d!x); B

Buffer B is correct for the specification
(#e=00 A d=\ = d=()

A (#i<oo A d=)\ = d=0)

If the amount of input is infinite, it will be reproduced
as output. If the amount of input is finite, B promises to
reproduce it as output, but not necessarily to stop there,
since it is always possible that more input will come. If
we want to stop the buffer after a finite amount of
input, we must invent a special “STOP” message.

B1: var x.
Gl
e ="STOP
then skip
else (d! x; B1)

3.11 Buffered Channel Declaration
Just as variables can be introduced locally within a part
of a program, so can channels. Our notation introduces
a pair of channels, one for input and one for output,
connected so that the output of one is the input of the
other.

chan c<—d. P

A program with channel declarations describes a sys-
tem of communicating parts.

As with variables, we allow a local channel name to
be the same as an existing, global variable or channel
name, in which case the local channel obscures the
global variable or channel. To express a program with
local channels as an assertion about the initial and final
values of global variables and channels, the local chan-
nels must be renamed if necessary to avoid obscuring
anything global.

chan cd. P =4 3¢, d. P;’;

For d, we substitute the empty sequence because there
can be no previous output on a newly created output

February 1984 Volume 27 Number 2

Research Contributions

channel. For ¢, we substitute d because the input of-
fered on channel c is exactly the output produced on
channel d.

THEOREM 16.
(@) (chan a<b. chan c<d. P)
= (chan c<—d. chan a<b. P)
(b) (chan a<b. var x. P) = (var x. chan a<b. P)

For our examples, we suppose there are two global
variables x and y, and no global channels.

(chan ce—d. c?x[/d!0) = (¥=0 A j=7)

In the second example, two inputs are required but
only one is produced.

(chan ced. (c?x; c?y) | d'0) = true
Y

The result is an undetermined process. (A simpler ex-
ample is (chan c<d. ¢?x) = true.) In the third example,

(chan ce—d. c?x|[|(d!0; d!1)) = (¥=0 A j=y)

two outputs are produced and only one is consumed.
(Similarly (chan ced. d!0) = (x=x A y=y).)
The next example is a deadlocked process.

chan a<b. chan c—d. (a?x; d'0) || (c?y; b'1)
= true

Each side requires an input before producing the out-
put required by the other side. Consequently, nothing
can be said about any final values. If the two sides are
willing to produce their outputs before consuming their
inputs, no deadlock arises.

chan a<b. chan cd. (d!0; a?x) || (b!1; c?y)

This, like the third example, illustrates the fact that the
channels we are introducing in this section are auto-
matically buffered.

The notation for channel declaration is easily gener-
alized to introduce one output channel connected to
any number (zero or more) of input channels. For ex-
ample,

chan a, c—d. P =4 34, ¢, d. P&
introduces three channels 4, ¢, and d such that the
output on 4 is the input on both 4 and ¢. Using exam-
ples from earlier sections, we have

(chan 4, c<—d. GO-ON | ONES) = true

Connecting the output from ONES to both inputs of
GO-ON allows it to engage in infinite internal chatter
(livelock), thus nothing can be said about the final val-
ues of x and y. It also allows, but does not require, an
input on channel 4 to interrupt the chatter, so that
x=y=1. But proofs are based on what is assured, not
what is possible.

Communications of the ACM

149

Research Contributions

150

3.12 Synchronous Channel Declaration

In execution terms, a buffered channel from an output
to an input means that, although an input command
may have to wait until an output is produced, an out-
put command never has to wait. A synchronous chan-
nel means that an output command also has to wait
until the corresponding input command(s) is(are) ready
to be executed.

If we are given only the ability to create buffered
channels, as in Section 3.11, we can nonetheless create
synchrony as follows. Declare an output-to-input pair
d-to-c for message communication, and another pair cc-
to-dd for a return acknowledgment, and a variable to
receive the acknowledgment.

(21) chan c<d. chan dd<—cc. var ack. P
Within P, output on d should be coded as

(22) dle; dd?ack
and input on ¢ should be coded as

(23) c?x; cc!0

The particular acknowledgment message is irrelevant;
only the fact of sending it is significant.

Our notation for declaring a pair of connected chan-
nels to provide synchronous communication is

chan c<d. P

Semantically, it is equivalent to (21), except that the
acknowledgment channels and variable are anony-
mous, and outputs and inputs within P are to be taken
as equivalent to (22) and (23), with the irrelevant ac-
knowledgment message left unspecified.

4. THE FUTURE

We have been careful to incorporate into our semantic
formalism the principle that the past cannot be
changed. Another principle, which also deserves to be
incorporated, is that the future cannot be predicted.
Consider the following specification, using variable x,
input channel ¢, and output channel d.

U: #8>0 A %=¢[0] A ¢=¢[1 ...] A d=d
v #:=0 A ¥=1 A é=¢ A d=d

U says to consume an input if there is one and assign it
to x, and to assign 1 to x if there is no input; in either
case, termination is required. Although U obeys (18), it
should be regarded as unachievable: A mechanism can
know that there has not yet been any input, but it
cannot predict that there will be none and complete its
task. No program is correct for specification U.

In addition to the implementation difficulty, there is
a logical difficulty when channels are connected. Con-
sider

chan cd. U; if x=1 then 4!0 else skip

Communications of the ACM

which has an internal communication if and only if it
does not have an internal communication. Our formal-
ism quite properly makes this equivalent to false.

We do not yet know the criterion to eliminate predic-
tion. Certainly, for any program P and any input chan-
nel c,

(3é. Pi~) = (36 P)

must be a tautology. This eliminates U, but it is not
sufficient to eliminate all dependence on the existence
or value of unconsumed input. We leave that to the
future.

5. PREVIOUS AND RELATED WORK

This work is a continuation of the effort to express
interprocess communication begun by Hoare [2], and
further refined in [3] and [1]. The latter work expressed
the semantics of communication formally as the strong-
est describing predicates as does this paper, but the
choice of observable variables was different, and it used
a single history of communications for all channels.
Another paper by Hoare offering a predicate semantics
of communicating processes is [4].

A related formalization of communicating processes
can be found in the work of Kahn and MacQueen [5].
The ideas concerning the concurrency allowed by
semicolon were developed with C. Lengauer [6], who
has observed that the lazy-evaluation semantics makes
independent composition unnecessary.

Brock and Ackerman [0] have shown that communi-
cation histories are inadequate to describe all possible
process behaviors. As stated in Part I, it is not our pur-
pose to describe arbitrary mechanisms, but to prescribe
desired ones. We believe that communication histories
are adequate for the specification of any desired logical
behavior of processes. The change from the descriptive
to the prescriptive viewpoint is a difficult one, but nec-
essary for an understanding of our choices.

6. CONCLUSION

We have integrated, in one useful semantics, communi-
cating processes (including local channel declaration)
and variables with assignment (both local and global,
both private and shared). Communication is described
by considering channels as sequence variables (queues);
output and input are the “join” and “leave” operations.
But, unlike ordinary variables, the initial and final val-
ues of channel variables must always satisfy a process
predicate (K); this means that consumed input cannot
become unconsumed, nor produced output become un-
produced.

The constructs that we introduced, and their seman-
tics, were not dictated by the formalism. We made a
choice, and we invite the reader to experiment with
other choices. Finding the best constructs, those that
make programming easiest, requires further experi-
ence.

Acknowledgments. 1thank C. A. R. Hoare, the mem-
bers of IFIP Working Group 2.3 (Programming Method-

February 1984 Volume 27 Number 2

ology). Christian Lengauer, and Hugh Redelmeier for
their comments. Redelmeier provided the paradoxical
example in Section 4.

REFERENCES

0. Brock, J.D., and Ackerman, W.B. Scenarios: A model of nondetermi-
nate computation. In: Formalization of Programming Concepts, Lecture
Notes in Computer Science 107, Springer-Verlag, New York, NY,
1981.

1. Hehner, E.C.R., and Hoare, C.A.R. A more complete model of com-
municating processes. Theor. Comput. Sci. 26 (1983), 105-120.

2. Hoare, C.A.R. Communicating sequential processes. Commun. ACM
21, 8 (1978), 666-677.

3. Hoare, C.A.R. A calculus of total correctness for communicating
processes. Sci. Comput. Program. 1 (1981), 49-72.

4. Hoare, C.A.R. Specifications, programs, and implementations. Tech-
nical Monograph PRG-29, Oxford University Computing Laboratory
(Programming Research Group), June 1982.

5. Kahn, G., MacQueen, D.B. Coroutines and networks of parallel pro-
cesses In: Information Processing 77. Proceedings of IFIP Congress 77,
Elsevier North-Holland, Inc., New York, 1977, 993-998.

6. Lengauer, C. and Hehner, E.C.R. A methodology for programming
with concurrency: An informal presentation. Sci. Comput. Program. 2
(1982) 1-18.

February 1984 Volume 27 Number 2

Research Contributions

CR Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.1 [Software Engineering]: Re-
quirements/Specifications—methodologies; D.2.4 [Software Engineer-
ing): Program Verification—correctness proofs; D.3.1 [Programming Lan-
guages): Formal Definitions and Theory—semantics; D.3.3 [Programming
Languages]: Language Constructs—concurrent programming structures, in-
put/output; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Iogics of programs

General Terms: Design, Theory, Verification

Additional Key Words and Phrases: predicative programming

Received 11/82; accepted 8/83

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and /or specific permission.

Author’s Present Address: Eric C. R. Hehner, Computer Systems Research
Group, Sandford Fleming Building, University of Toronto,
Toronto, Ontario M5S 1A4, Canada.

Communications of the ACM

151

