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ABSTRACT: Programs are given a new semantics with the
merit that a specification written as a first-order predicate
can be refined, step by step, to a program via the rules of
Predicate Calculus. The semantics allows a free mixture of
predicate and programming notations, and manipulation of
programs.

0. SPECIFICATIONS

A specification of a mechanism should be a full descrip-
tion of the intended observable behavior of the mecha-
nism. For any observation of its actual behavior, it
should be clear whether the observation satisfies (ac-
cords with) the specification. A mechanism is said to
achieve a specification if every possible observation of
its behavior satisfies the specification. It is quite possi-
ble and practical to observe a mechanism’s failure to
achieve a specification (incorrectness); that requires a
single, unsatisfactory observation. It is usually impracti-
cal or impossible to observe its success (correctness);
that usually requires an immense or infinite number of
satisfactory observations. The only practical method of
determining success is a proof.

In this paper, we consider a mechanism (computer)
for which the possible observations are the values of
certain variables before it is activated, and if its activity
terminates, the values of these same variables after its
activity has terminated. This is deliberately a very lim-
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ited view of computing that excludes the expense and
speed of computation, and any input or output during
the course of a computation. Execution time will be
considered in Section 3, and communication is the sub-
ject of Part II. For the present, we consider only an
initial input and a final output.

Let x be a variable. We denote the value of x before
activation by X (pronounced “x in”), and the value of x
after termination by ¥ (pronounced “x out”). For exam-
ple, if there are two variables x and y,

0) £=i+1 A j=j

specifies the behavior of a computer that increases the
value of x by 1, and leaves y unchanged. The assertion

(1) <%

also describes this same behavior, but it is a weaker,
incomplete description and therefore not a specification
of the same behavior.

Assertion (1) can, however, be offered as a specifica-
tion. As such, it says that the specifier is happy if the
computer increases x by any amount, and does not care
whether y is changed or left unchanged. Specification
(1) is achieved by any mechanism that achieves Specifi-
cation (0), and also by many mechanisms that do not.

The specification

@) x<0vi=0

is also achieved by a variety of mechanisms. If initially
x = 0, then a mechanism’s activity must terminate with
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x = 0 in order to satisfy the specification. However, if
initially x < 0, then the specification is already satisfied
no matter what the mechanism does: its activity may
terminate with x arbitrary, or it may not terminate.

We assume that a person who does not care about
the output, i.e., one who does not care about the final
value of any variable, also does not care whether the
variables have final values, i.e., whether the mecha-
nism’s activity terminates. One may object to this as-
sumption, saying that it is possible (although not rea-
sonable) to be interested only in termination but not in
any result. But termination is, in effect, a Boolean re-
sult; it can be expressed by the introduction of a Boo-
lean variable, say t (for termination). Then

(3) (x<O0vi=0)At

specifies a mechanism with the following behavior:

If, initially, x = 0, then its activity must terminate with
x = 0 and ¢ = true; if, initially, x <0, then its activity
must terminate with t = true (and x arbitrary). In either
case, the initial value of ¢ is not of interest and is there-
fore arbitrary. But the final value of ¢ is specified;
therefore, termination is required.

Let us use the letter v to mean all the variables of a
mechanism. In an assertion, ¢ is the vector of initial
values, and 9 is the vector of final values of the varia-
bles. We can specify that termination is required by
indicating interest in the final values of some variables.
“Interest” means that not all final values v are com-
pletely arbitrary. If S is a specification, then

@) —V5. S

is satisfied by just those initial values for which termi-
nation is required. We cannot specify that nontermina-
tion is required, nor can we ever observe that nonter-
mination has “occurred”. It would not be reasonable to
specify unobservable behavior.

Two specifications deserve special mention. One is
the weakest of all specifications

5) © true

It is achieved by every mechanism: those that never
terminate, those that terminate for some initial values
but not for others, and those that always terminate. In
case of termination, the final values of all variables are
completely arbitrary. The customer who offers (5) as a
specification agrees to accept any mechanism. At the
other extreme, the customer who offers

(6) false

has decided to reject any mechanism. No mechanism
achieves (6).

In order to be achievable by some mechanism, a
specification must be satisfiable by some observation, as
example (6) shows. As the next example shows, this is
not enough.

(7) x=0

Initial values are supplied to the mechanism as input. It
must then set the final values so that the specification

February 1984 Volume 27 Number 2

Research Contributions

is satisfied. If the initial value # is 0, then (7) is satisfied
by any final value %, but if ¥ is not 0, it is impossible to
choose 7 to satisfy (7). For a mechanism to achieve (7),
all observations of its behavior under all circumstances
must satisfy (7). To be achievable, a specification S
must obey

(8) V9. 35. S

This formula introduces an asymmetry into our treat-
ment of initial and final values, thus giving a direction
to computation. Even this formula is not enough to
ensure that S is achievable.

Specification Sy is said to be as determined as specifi-
cation S if

(9 V0,5. So = Si

(If this implication is not also equality, then Sy is more
determined than S;.) Determination is therefore just
the partial ordering by implication; (5) is the least de-
termined and (6) the most determined specification. A
specification that is so determined that (8) does not
hold is said to be overdetermined. A specification S is
called deterministic if

(10) Vo. 315, S

which says that for each vector of initial values, there is
exactly one vector of final values to satisfy S. A deter-
ministic specification is as determined as possible with-
out being overdetermined, and defines a function from
inputs to outputs.

It is not necessary for a specification to be deterministic
to be achievable. The necessary and sufficient condition
is the following: specification S is achievable if there is
a specification DS such that

(a) DS is as determined as S,
(b) DS is deterministic, and
(c) DS defines a computable function.

Although computability is not expressible in a neat for-
mula, it is nonetheless well-defined in standard texts.

1. PROGRAMS

A program in a high-level programming language can
be considered as something that controls the behavior
of a computer (perhaps indirectly, through a compiler
or interpreter). Equally well, a program can be consid-
ered as a complete description of the desired observable
behavior of a computer. According to the latter view,
which we adopt, a program is a specification.

In order to allow specifications to be stated conveni-
ently and in terms appropriate to the intended applica-
tion, we do not restrict the language of specifications
further than this: a specification is an assertion about
the initial and final values of some variables. A pro-
gram is a specification in a highly restricted notation
that we present in the next few subsections. The pur-
pose of the restriction is to ensure that a program is an
achievable specification, and (thanks to the compiler
writers) that a mechanism to achieve it can be built
automatically. We do not intend our programming no-
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tations to be taken as a complete or exemplary pro-
gramming language; they were chosen merely to lem-
onstrate our approach to semantics.

1.0 Skip
Our first programming notation is skip, defined as

skip =q4f 9=0
For example, if there are two variables x and y, then
skip = (¥=% A j=9)
The notation skip specifies that all variables have the
same final values as initial values. The fastest and

cheapest mechanism that achieves skip is the mecha-
nism that does nothing whatever.

1.1 Assignment

Our next programming notation is the familiar assign-
ment x := e where x is a variable and e is an expression.
To define it, some auxiliary notions are needed.

Let e and f be any two expressions, and let x be any
variable. Then f? is the expression formed from f by
replacing every free occurrence of x by e. (If this substi-
tution would place free variables of e in a bound con-
text, the offending bound variables of f must first be
renamed.)

Let e be any expression in the program variables v.
Then ¢ is e but with * over each program variable.
Similarly, ¢ is obtained from e by placing ~ over each
program variable.

e =t €}
€ =ar €3

Let e be any expression in some programming lan-
guage. Then D‘e’ asserts that expression é is defined,
i.e., that all variables have initial values, and that all
operands are within the domain of their operators. It is
defined according to the structure of &. We shall not be
more precise about the syntax or semantics of expres-
sions, but here are three examples:

DEE is true, and similarly for all constants.
Dix is irreducible, asserting that variable x
is initialized.
D‘x/y’ = D2’ A DY’ A §#0
Assignment can now be defined as
xi=e =g (D¢’ A e€Etype(r)) = (5=07)

The type of a variable is obtained from its declaration;
we henceforth ignore questions of type, always assum-
ing type-correctness. Here are two examples, each us-
ing the two variables x and y.

X =x/y

— (D% A DY A J#0) = (E=i/j A =)
=0

= Da—x’ = (£ = x—X A =)

= D'¥’ = (#=0 A j=i)
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In the last example, x must be initialized in order to
conclude anything about the final values, even though
the final values do not depend on the initial value of x.
When Dfe’ is false, the specification x := e is satisfied,
and every mechanism achieves it. The preferred mech-
anism is one that gives a helpful error indication, but
unfortunately we cannot insist on that mechanism.
If we were to define assignment so that an error in-
dication is required when e is undefined, the “halting
problem” tells us that some programs would be
unachievable.

1.2 Composition

Let P and Q be specifications. Then P;Q is a specifica-
tion that can be achieved by a mechanism behaving as
follows: it first satisfies P; if it terminates, it then satis-
fies Q with the final values from P serving as initial
values for Q. The phrase “if it terminates” becomes,
according to formula (4), “(—V3.P)=...”. Let 0 be
fresh names (i.e., %, , .. .) denoting the intermediate
values of the variables between P and Q. Then

P;Q =4 39. P% A (V4. P) = Q)
or equivalently

P;Q =4t (—V4. P) = (39.'P5 A Q)

@,

We have introduced “;” as a new logical connective,
like “A” and “v” that joins any two specifications. If the
two specifications P and Q happen to be programs (they
use only programming notations), then “P;Q” is also a
program.

Composition is most easily used via the following
theorem.

THEOREM 0.

(@)  skip;P = P;skip =P
(b) (x:=e;P)= (D¢ = P})

Proor. predicate calculus.

In part (b), it should be stressed that substitutions are
not made in the programming notation, but in the as-
sertions which we have given as the meaning of pro-
grams.

The next theorem gives further properties of compo-
sition that will be useful later, and points out a techni-
cal difficulty: semicolon is not associative for all predi-
cates.

THEOREM 1.
(a) true ; P
(b)  (39. P) = (P;true)
() P(QR) = (P;Q):R
(d  ((Vo.P)v(319. P)) = (P;(QR) = (P;Q):R)

Proor. predicate calculus.

The hypothesis of Theorem 1(b) says that, for a given
input, P is not overdetermined; all our programming
notations satisfy that hypothesis. The hypothesis of part
(d) says that for a given input, P is either undetermined
or deterministic; all but one (nondeterministic choice,
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Yism b=/
=y =y=1; (D'¥ A DY & j+0) = (i=§./y » j=))
= DY—1' = (D'¥ A DY A §#0) = (F=1/§ A j=))i_;
= DY = ((D'¥ A DY-1" A j—1#0) = (@F=x/(j=1) A j=y-1))
= D% AD'Y A y#1) = (i=x/(j—1) A j=j-1)
y=2y=y-Lx=x/y
D2’ = (D%’ A DY A j#1) = (i=x/(J—1) » j=y—1))}
true = (D'’ A D2’ A 2#1) = (¥=x/(2—1) A j=2—1))

FIGURE 1.

]

= D% = (i=k A j=1)

Section 1.4) of our programming notations satisfy that
hypothesis. On the rare occasions when it matters, we
consider that “;” associates to the right, i.e., (P;Q;R)
means (P;(Q;R)).

The difficulty with semicolon is theoretically annoy-
ing, but not really an impediment, as the next theorem

shows.

THEOREM 2.
(@ Let P, Q and R be programs over an infinite
state space. Then
P;(Q;R) = (P;Q);R.
(b)  LetP, Q, and R be programs, and let there be at
least one variable that does not appear in P or
Q. Then P;(Q;R) = (P;Q);R.

Proor. structural induction.
According to Theorem 2(a), one integer variable is
enough to ensure associativity. According to Theorem

2(b), one unused variable is enough.
Figure 1 shows some examples in two variables.

1.3 Deterministic Choice

Let P and Q be specifications, and let b be a Boolean
expression in the program variables. Then the
programming notation

if b then P else Q

specifies behavior that satisfies either P or Q depending
on whether b is initially true or false.

if b then P else Q =4 D'D’ = (bAP v —bAQ)

Here is an example in two variables.

if x<y then x:=y else skip

= D'%<y)’ = (¥<y A x:=y v x>7 A skip)

= (D A DY) = (isy & F=j=i v 3> & =k 4 =)

= 0% A DY) = (i=max(g, §) A =)
THEOREM 3. -

(a) D‘b’ = ((if b then P else P) = P)

(b) (if b then P else Q) = (if —b then Q else P)

() ((if b then P else Q); R)
= (if b then (P; R) else (Q;R))
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1.4 Nondeterministic Choice
Let P and Q be specifications. Then the programming
notation

PorQ
specifies behavior that satisfies either P or Q.
PorQ=4PvQ

No criterion for making the choice is offered, so an
implementer has complete freedom to choose either.
This freedom can be used to choose the faster, or
cheaper, of the two. The choice may be made before
execution, or during execution, according to the values
of some variables or whether one mechanism is broken
and the other working,

THEOREM 4.
(a) (Por QQor R=Por (QorR)
(b) PorQ=QorP
(c) PorP=P
d) true or P
)  PiQorR)=(P;Q) or (P;R)
) (V9.P)v (V4. QV (V3. PvQ)
= ((P or Q)R = (P;R) or (Q;R))
(8 (if b then (P or Q) else (P or R))
= P or (if b then Q else R)

Proor. predicate calculus.

Without nondeterministic choice, our other program-
ming notations allow us to express deterministic speci-
fications and completely undetermined specifications
(e.g., x := 1/0), but nothing between. With or, our pro-
gramming notations allow us to express bounded non-
determinism, the property of Theorem 6.

THEOREM 5.
If P is a program without or, then
(@ (Vo.P)v(319. P)
(b) Pi(QR) = (P;Q;R

Proor. for (a), induction on the structure of P; for (b),
Theorems 1(d) and 5(a).
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THEOREM 6.
If P is a program, then

(V3. P) v (34. P)

where “J9. P” means “there is at least one, and at most
a finite number of 7 satisfying P”.

PrOOF. structural induction.

CoroLLARY. formula (8).

1.5 Definition

If a program is larger than a few lines, it is helpful to
give descriptive names to parts of the program, and
then use the names in place of the parts. A well-chosen
name reminds us of the purpose, or meaning, of the
part being named. And when a lengthy part occurs
repeatedly, a short (but descriptive) name is also an
abbreviation. The ability to name a program and to use
a name in place of a program (in a larger program)
provides a structure for large programs that aids our
understanding of them and our ability to compose
them. Our naming, or definition, notation is

name: program

A definition is not a program, but sits near a program to
give meaning to the name, which may then be used in
the program. (A programming language must say where
definitions are allowable and what their scope is, but in
this paper we do not care to be more explicit.)

The following example does not illustrate the
importance of definitions in large programs, but it
illustrates two points in their use. The definitions

negx: x i= —x
absx: if x<0 then negx else skip
allow us to write
X :=y; absx
= D’ = absx }
= D’ = (if ¥<0 then negx else skip);
=D = (D'A<0’ = ((¥<0 A negx) v (¥=0 A skip)));
= D'y = (D% = (<0 A x:=—)
v (120 A 2=k A j=p))j
= DY = (D% = (x<0 A (D't = X=—% A y=y))
v ((20 A ¥=% A j=3))]
= DY = (DY = (§<0 A t==§ A j=1)
v (520 A £=y A y=))
= DY = (¥=—i>0 v i=y=0) A y=y
First, notice that program names may be used in defini-

tions. Second, notice that the order in which names are
replaced by programs, and programs by traditional
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predicate notations, does not matter. However, variable
substitutions are made after these replacements in the
traditional predicate notations.

If a name is used in its own definition, either directly
or indirectly via other definitions, the definition is said
to be recursive. No finite sequence of replacements can
rid a program of a recursively defined name; nonethe-
less, it is the infinite sequence of replacements that
gives meaning to a recursively defined name. Let F(P)
be a program in which P occurs zero or more times.
Then the definition

P: F(P)
gives P the meaning
P =4 Vi. Fi(true)
where

Fop) =as p

F*'(p) =4t F(F'(p))
The justification for this formula is based on the follow-
ing theorem.

THEOREM 7.

If F(P) is a program and Py, P1, Ps, ... is a monotoni-
cally strengthening sequence of programs, i.e., Vi. Piy;
= P;, then

@ Vi F(Pui) = FP)
()  (Vi. F(P)) = F(Vi. P;)

Proor. Induction on the structure of F.

This theorem says that programs are (a) monotonic and
(b) continuous functions of any names occurring in
them.

The recursive definition P: F(P) defines P in terms of
itself; thus it may seem that we need to know what P
means before we can determine what P means. Know-
ing only that P is a program, and nothing about the
mechanism it specifies, we can say only this: the mech-
anism is described by the assertion true (as all mecha-
nisms are). Let Py be this initial, least-determined de-
scription.

Py = true
Now that we have a description, we can obtain another

by using Py in place of P in F(P). Our second description
of the mechanism is

P; = F(Py)
Continuing, we form a sequence of descriptions
Piyy = F(P,]

The following theorem tells us that this sequence is
monotonically strengthening, and therefore the succes-
sive descriptions are more and more determined.

THEOREM 8.
If F(P) is a program, then F/(true) is a monotonically
strengthening sequence, i.e., Vi. F"*!(true) = Fi(true).

Proor. induction on i, and Theorem 7(a).
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We take the limit of the sequence P; to be an exact
description, or specification, of the mechanism. The
limit of a strengthening sequence is the conjunction of
its members. Each P; is a description; we consider that
all P; together constitute a complete description.

P =4 Vi. P;

Our confidence that this is the appropriate meaning for
P comes from the following two theorems.

THEOREM 9.
If P: F(P) is a program definition, then P = F(P).

Proor: Knaster and Tarski, and Theorem 7(b).
So a name can be replaced by the program it stands for

without changing the meaning, for recursively defined
names as well as nonrecursively defined names.

THEOREM 10.
If P: F(P) is a program definition and Q = F(Q), then
Q=P.

Proor: induction on P;.
Our meaning for P makes it as general as possible: P is
achieved by all and only those mechanisms with the

replacement property (Theorem 9).
Here is an example.

xyz: if x=0 then y:= 0
else (x:= x—1; xyz)
The successive descriptions are
xXyzo = true
XYzisy = (D% = =i=y=0 v (x#0 A xyz; ;_;))

By finding the first few predicates of this sequence we
are led to propose

xyz; = (D'’ A 0=<x<i) = x=y=0
and to prove it by induction. Thus we know
xyz = Vi. xyz;
= (D%’ A 0<¥) = ¥=y=0
If initially ¥<<0, then final values are not of interest and
termination is not required; if initially 0=x, then termi-
nation is required with final values ¥=9=0.

Indirect recursion is an easy generalization of direct
recursion. For example, the definitions

P: F(P, Q)
Q: G(P, Q)
mean
P =4 Vi P;
Q =4 Vi. Q
where

Po = Qo = true
Py = F(Pi, Qi)
Qi+1 = G(Pi, Qi)
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Iterative constructs are easily defined as special cases
of recursive definition. For example

W: while b do P

means
W: if b then P;W else skip
and
R: repeat P until b
means

R: P; if b then skip else R

1.6 Declaration

Declaration is a means of introducing new variables to
local parts of a program, so that not all parts need be
concerned with all variables. Our notation for introduc-
ing variable x locally within P is

var x. P

(We continue to avoid the issue of types. Type informa-
tion provided in a declaration is used in assignments to
the declared variable, not in the assertion that declares
a variable to be local.)

The variable introduced by a declaration is a new
one, distinct from all existing variables. It is usual, and
useful in programming, to allow the newly introduced
(local) variable to have the same name as an existing
(global) variable, in which case the local variable tem-
porarily obscures the global one. To express the pro-
gram var x. P as an assertion about the initial and final
values ¥ and 7 of all the global variables v, the local
variable must be renamed if necessary to avoid obscur-
ing a global variable.

Our declaration introduces a variable with no initial
value. We express this fact by a standard technical
trick: let L (called “the undefined value”) have the one
and only property

—Dl’
Declaration can now be defined as
var x. P =4 3%. P}

In the following examples, the global variables are x
and y.

varz. z:= 1, y:=z
= 3z. (D1’ = (D2’ = (¥=x A Y=z A Z=2))})i
3z, (true = (D'’ = (=% A j=1 A i=1)))i

37, i=k A j=1 A 5=1

x=x A y=1

VAL Z 5 =Ry

= 37. (D22 = F=2—2 A j=y A =2)}%
= 37. (D2 = =0 A y=j A i=2)]
=32 DL =>5=0Ay=yAi=1

= 3z false = =0 A y=y A z=1

= 37Z. true

true
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A program can be rewritten as an assertion in the
initial and final values of individual variables only
when its context is given. For example, in

skip; var z. z=1; skip; y:=z

the first occurrence of skip means X¥=x A =y but the
second occurrence means ¥=x A =i A z=z. The same is
true for defined names. The definition

P: skip

gives P the meaning 9=0, but to be more specific we
must look at the contexts in which P is used. In

P; var z. z=1; P; y:=z

the first occurrence of P means ¥=x A jj=y and the
second occurrence means ¥=x A j=y A z=Z.

According to the following theorem, the order of dec-
larations does not matter.

THEOREM 11.
var x. (var y. P) = var y. (var x. P)

Proor: predicate calculus.

2. PROOFS AND PROGRAMMING
Program P is said to be correct for specification S if

V0,5. D'’ AP = §

This means that when input is supplied, P is as deter-
mined as S, and every mechanism achieving P also
achieves S. Section 1 provides us with a calculus for
proving whether a given program is correct for a given
specification.

The programmer’s task is different; only a specifica-
tion is given, and the task is to construct a program that
is correct, if one exists. The calculus required is a kind
of inverse of the calculus presented in Section 1.

Since a program is a specification, its notations can
be mixed with nonprogram notations via the usual con-
nectives of predicate calculus. For example, if P is a
program and S is a specification (which may or may not
be a program), then P A S is a specification of computer
behavior that satisfies both P and S. It may not be
achievable, and it is not a program (since “A” is not one
of our programming notations), but it is a specification.
The ability to mix program and nonprogram notations
in one specification allows us to begin with a specifica-
tion in a form that is convenient to the specifier, and
convert it little by little to a program, using the rules of
predicate calculus. After each step in this conversion,
the specification should be as determined (strong) as it
was before (but not overdetermined), in order that the
final program will be correct for the original specifica-
tion. Judicious strengthening can be used to resolve
nondeterminacy and narrow the choice of mechanisms.

A specification is sometimes given by a precondition
G on the initial values and postcondition R on the final
values (“G” for “Given”, “R” for “Result”). As a single
predicate, the specification is

(12) G=R
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One way to refine this specification is to use the next
theorem.

THEOREM 12.
Let G, I, and R be any predicates in the program varia-
bles.

(— Yov.I) o (3v. ) = (G=R) = (G=I) ; (=R))

Proor: predicate calculus.

We can choose any predicate I (for “Intermediate” or
“Invariant”) that is neither identically true (undeter-
mined) nor identically false (overdetermined), and re-
place (11) by the equivalent, but more refined,
(G=]) ; (=R)

giving us two new problems of the same form. Choosing
a good I can be difficult: the essence of creative pro-
gramming.

Definitions can be made freely, provided that for

each loop (recursion), there is an integer expression e
(the variant) such that

V9,5. L A 0<é = 0=é<e

where L consists of the statements in the path of the
loop.

3. SEQUENTIAL EXECUTION TIME

Suppose that we know the sequential execution time
required for each expression evaluation and assignment
in a program P. (This information can be supplied by an
implementation, or an assumption can be made.) From
this information, using the calculus we have presented,
sequential execution time bounds can be proven.
Choose a fresh variable, one not occurring in P, say ¢, to
stand for the sequential execution time. Create a new
program Pt as follows. For each assignment, include
another assignment ¢ := ¢ + 2 where 4 is its execution
time, either just before or just after it. For each deter-
ministic choice, include the assignment ¢ := t+c where
c is the time to evaluate the Boolean expression, either
before or after the choice statement. To prove that f(?)
is an upper bound for the sequential execution time,
we must prove

(12) (Pt A i=0) = (f=f(d))

If initially the time is 0, and it is increased as described
by Pt, then finally it will be at most f(?). To prove that
f(@) is a lower bound, we must prove

(13) (Pt A i=0) = (t=f(0))

Here is a simple example. The program is P, defined
as

P: if n=0 then skip else (n := n—1; P)

Let the time to evaluate (n = 0) be ¢, and the time for
the assignment (1 := n—1) be a. Then

Pt: t := t+c; if n=0 then skip
else (t := t+a; n := n—1; Pt)
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We want to prove that
f(n) = (cta)n+c

is an upper bound for execution time. Thus we want

(14) (Pt A i=0) = (t=(c+a)i+c)
For this simple example, we can find

(15) Pt = (71=0 = (1=0 A { = i+(c+a)i+c))
from which (14) can be simplified to

=0

This says that (i) is an upper bound for the execution
time of P provided 71=0. (Nothing whatever is said of
the exccution time when 71<0.)

In general, it is very difficult, perhaps impossible, to
express Pt as a simple, traditional predicate. Fortu-
nately, it is not necessary to do so. What must be
proven is an implication (12); its antecedent can be
weakened without harm. In particular, conjuncts of Pt
that do not refer to time (in (15) conjunct 7=0) can be
dropped. No contribution to complexity theory is being
made here; we only wish to show that the problem can

be stated, and in principle solved, in the calculus we
have presented.

4. SEMANTIC DISTINCTIONS

It is not our purpose to describe arbitrary mechanisms,
but to prescribe desired ones. Accordingly, our seman-
tic formalism is just powerful enough to distinguish the
desirable mechanisms:

(a) must terminate with a desired result,
from the undesirable ones:
(b) might not terminate with a desired result.

(In Part II, we introduce communication so that results
can be obtained during a computation. There, a nonter-
minating computation may be desired. But here in Part
I, results are obtained only upon termination.)

A more discriminating formalism, e.g., Dijkstra’s wp,
is required if we wish to distinguish the following two
subclasses of class (b):

(b.a) must terminate, but result might not be a de-
sired one,
(b.b) might not terminate.

A still more discriminating formalism, e.g., one that
introduces the poststate L, is required if we wish to
distinguish

(b.b.a) might not terminate, but also might terminate,
(b.b.b) must not terminate.

From the prescriptive viewpoint, it is no demerit of
Dijkstra’s wp that it cannot distinguish (b.b.a) from
(b.b.b). Similarly, we consider it no demerit of our se-
mantics that it cannot distinguish (b.a) from (b.b).

We introduced the notation D‘x’ to mean that varia-
ble x has an initial value. We could have introduced
the similar notation D‘4’ to mean that x has a final
value. For example, assignment could be defined as

xr=e = (D¢’ = (DX’ A 15=z‘)§))
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In Section 2, D‘9’ was used to mean “all variables have
initial values”. The appropriate meaning for D‘6’ would
be “some variable has a final value.”

D9 =D% ADY A ---
D =DFVDPV -

We could then distinguish between completely unde-
termined behavior (true) and terminating behavior
(D'9’), without saying anything more specific about fi-
nal values. But we chose a less elaborate, less powerful
formalism.

5. PREVIOUS AND RELATED WORK

The present work is a direct descendant of the seminal
papers by Floyd [5] and Hoare [6] which introduced the
idea of describing programs and algorithms with predi-
cate assertions, and proving things about programs.

The understanding of recursive definitions comes
from Scott [11]. In that work, programs are ordered by
“definedness”, a concept introduced for the purpose;
our ordering is standard predicate implication. For the
source of Theorem 9, see [9].

A semantics for a similar programming language frag-
ment is presented in work by Dijkstra [2, 3]. According
to the semantics presented there, a program is, in es-
sence, a function from predicates to predicates. Our
semantics is of lower order: a program is a predicate.
The relationship between them is

P = —wp(P, v+#9)

except in the rare circumstances when our semicolon is
not associative.

It has been the goal of at least three distinct research
efforts to be able to reason directly, mathematically, in
the programming notation: the functional programming
of Backus [1], the LUCID project of Ashcroft and Wadge
[0], and the PROLOG project of van Emden and Kowal-
ski [4]. In spirit, the PROLOG project is closest to the
present work, choosing the language of predicates for
reasoning. They have designed their programming no-
tations to be a subset of the standard notation for predi-
cates. We have interpreted standard programming nota-
tions as predicates.

6. CONCLUSION

Descriptions of a mechanism are assertions about the
mechanism; so that we can reason effectively about the
mechanism, an appropriate language in which to ex-
press our assertions is the language of predicate logic. A
specification is a description that is complete in the
sense that it describes everything of interest about the
mechanism. A program is a specification of computer
behavior. Thus we are led to consider programs as as-
sertions in predicate logic.

The biggest disappointment of the approach is that
composition (semicolon) is not associative for all predi-
cates (see the appendix). The problem does not exist for
semantics of higher order, in which a program is a
function from predicates to predicates, and semicolon is
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functional composition. But higher-order semantics are
considerably more complicated: intuitively, a program
cannot so directly be considered as a description of a
mechanism; formally, a program must be monotonic
and continuous not only in predicate variables, but also
in predicate function variables.

The real test of this (or any) semantics is the help it
provides a programmer who cares to be rigorous. The
higher-order semantics has already proved itself in this
respect. Our semantics looks very promising because it
allows a free mixture of programming and logical con-
nectives; programs and specifications are on the same
level. But it has yet to be proved by experience.

Our semantic formalism is particularly helpful when
comparing alternative semantics. For example, we
could have made the definitions

Y= =df(D‘é’=>f=é) Ay’:gl\
P;Q =qr 30. P{ A Q3

These definitions require an implementation technique
known as “lazy evaluation” or “output-driven data
flow”. Since these definitions are stronger than the ones
we have chosen, any implementation of these defini-
tions is also an implementation of our chosen defini-
tions. Some new theorems can be proven, while some
old ones, such as Theorem 6, become false.

Another advantage of our semantics, and a motiva-
tion for its development, is that it allows us to integrate
communicating processes with variables and assign-
ments. That is the subject of Part II

APPENDIX

By assuming the existence of a variable that does not
appear in any program, Theorem 2(b) tells us that com-
position is associative for all programs. By adding a
variable to our semantic formalism, we can obtain a
predicate semantics in which composition is associative
for all predicates, not just those that are, or are equiva-
lent to, programs. We now present that alternative.

As an aid to physical intuition, consider that a com-
puter is operated as follows. We first assign the varia-
bles ¥, ¥, . . . their initial values %, ¥, ... . Then we push
the start button. We wait until the stop light is lit (this
may be an infinite wait). After the stop light is lit, we
can observe the final values %, ¢, . .. .

Let s be a Boolean variable, but not one of the varia-
bles x, y, . . . that can appear in programs. Let v be the
vector of variables s, %, , ... . Let 9 be the vector of
initial values 3, , , . .. , and let 3 be the vector of final
values §, %, ¥, . . . (5 corresponds to the proposition “the
start button is pushed”, and § corresponds to the propo-
sition “the stop light is lit”). We now redefine three of
our programming notations.

Skip =df $ = =0
xi=e =g; D'¢’ A § = =0}

P:Q =4 0. Pi A Q)
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For example, in variables x and y,
skip = (§ = $=$5 A Xx=x A j=})

We leave the definitions of our other programming no-
tations unchanged.
Every achievable specification can be put in the form

DAs=S§AR

where D is a predicate in only the initial values #, ¥, . . .
and R is a predicate relating initial values ¥, 3, . .. to
final values %, 1, . .. such that
Vi, i), .. 3%y, ... DR

D is the “domain of proper termination”, and R is the
desired input-output relation on that domain. This pair
of predicates is used for specifications by Jones [8] and
by Parnas [10].

Theorems 1(c, d) and 4(f) can now be strengthened to

P;(Q;R) = (P;Q)R
(P or Q);R = (P;R) or (Q;R)

Against these gains, there are some small losses. Theo-
rems 0(a), 0(b) and 1(a) need to be weakened by stipu-
lating that P must be a program; or for a general predi-
cate P they must be weakened to

s = (skip;P = P;skip = P)
x:=¢;P = (D¢’ A 5 = P}
(30. P) = (true;P)

And there is a larger, practical loss: all specifications
are burdened with occurrences of $ and §.
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