('&1\ m
Acta Informatica 23, 487-505 (1986) ||| L_{B._

© Springer-Verlag 1986

Predicative Methodology

Eric C.R. Hehner, Lorene E. Gupta and Andrew J. Malton

University of Toronto, Computer Systems Research Institute, Standford Fleming Building,
10 King’s College Road, Toronto, Canada M5S 1A4

Summary. We introduce a predicative semantics of programs and show its
use in programming. With it, logic errors can be detected and reported
when they are made, just like syntax errors. Programming paradigms are
stated precisely as theorems. The use of paradigms in larger programs is
shown to be the same as the mathematician’s use of theorems in the proof
of larger theorems.

Introduction

To specify a mechanism, we must first decide what quantities are of concern.
Whether we are specifying a watch or a waterwheel, there will be aspects that
we care to be specific about and other aspects that are not directly of interest.
Overspecification is a common error. For example, a specification of an auto
body may say that it is to be made of aluminum, when instead the specifi-
cation should state only the desired strength, weight, shape, and cost. Even if
aluminum is the only material currently known to have the desired properties,
it is not a desired property itself, so the decision to use aluminum belongs to
the implementer.

We shall be specifying desired computer behavior, or computations. A
reasonable choice of concerns might be: the result of a computation, its speed,
and its expense. In this paper (as in so many others), we confine our interest to
results, ignoring speed and expense. One way to express the result of a
computation is as the values of some variables; these values may be thought of
as the computer’s memory state, or part of it, at some instant. Another way is
as a sequence of values; this sequence may be thought of as communications
from the computer over a period of time. Either way, the result will, in general,
depend on supplied input data. We may express the input in ways that are
similar to the expression of output: either as the values of some variables (the
computer’s memory state at an earlier time), or as a sequence of values
(communications to the computer).

488 : E.C.R. Hehner et al.

When the desired result is finite (the values of a finite number of variables
or a finite sequence of communications) and the result has been achieved, then
the computer may as well terminate its activity. But it is not really our
business whether it does so; perhaps it does some unobservable housekeeping
afterward. If the desired result includes an unending sequence of communi-
cations, then obviously the computer’s activity cannot end. We may sometimes
infer something about termination or nontermination from a specification, but
to speak of it directly would be overspecification. Indeed, neither termination
nor nontermination is observable.

In this paper, we consider only the style that leads to standard, so-called
“imperative” programs, with variables and assignments. Elsewhere, we consider
the style of communicating processes. In any case, our purpose is to show the
programming process using the predicative formalism.

Specifications

An informal specification of any mechanism is a natural language description
that distinguishes satisfactory behavior from unsatisfactory behavior. To make
a specification formal, we state the description as a predicate, whose free
variables are the quantities of interest. Any values for the variables that satisfy
the predicate represent behavior that satisfies the specification; any values that
do not satisfy the predicate represent behavior that does not satisfy the specifi-
cation.

Let the variables of a computation be x, y, We use X,), ... to stand for
their initial values, which we provide as input, and X, y, ... to stand for their
final values, which the computer provides as output. Altogether, we refer to the
variables as v, to their initial values as ¥, and to their final values as 0. (We
pronounce them “v in” and “v out”™. As a memory aid, we intimate that
originally we used a pre-prime v for the initial values, and a post-prime v " for
the final values) A specification is a predicate having v and v as its free
variables. Here is an example.

x20 = y=2°)

If initially x>0, then the final value of y is 2 to the initial value of x.

Determination

Let S be a specification. We can classify S for each possible input state ¢ by
the number of corresponding satisfactory output states 0.

S is overdetermined for v it TS Do
S is deterministic for v 1 0SS
S is un(der)determined for v if V.S

AT L e ST —

Predicative Methodology 489

The word “overdetermined” is synonymous with “unsatisfiable”, and means that
the number of satisfactory output states is zero.

S is satisfiable for v if 30.S

The word “deterministic” means that the number of satisfactory output states
is exactly one. (The word “nondeterministic” is sometimes used to mean that
more than one output state is satisfactory, allowing a choice of final state.) The
words “underdetermined” and “undetermined” are synonymous and mean that
all output states are satisfactory; the former word seems appropriate as the
opposite of “overdetermined”, but the latter seems appropriate as the negation
of “determined”.

S is determined for © if =V0.S

We shall find it convenient later to use the symbol F to mean “de-
termined”. So we define

VS =41 V0.8
Using example (0),

In general, V' tells us what initial values are of interest.
As a comparative, the word “determined” just means the partial ordering
of predicates by implication.

R is as determined as S if Vo.Vo. R=S

In other words, any behavior satisfying R also satisfies S.

Implementations

It is commonly agreed that any computer behavior producing output ¢ from
input v can be represented by a recursive function f such that o= f ().
Function f represents an implementation of specification S if f* always repre-
sents behavior that satisfies S.

Vo.V6, =f@) =S 1)

Some computations never produce output. They are represented by partial
functions. According to (1), such unproductive behavior is satisfactory just
when S is undetermined. To see this, suppose, for some v, that f(d) is unde-
fined. Then, for that ¢ and any o, = f(v) is undefined — neither true nor false.
In order for (1) to be true, the implication must hold for that © and any ¢ by
virtue of the consequent being true. So when f is undefined, S must be
undetermined. (Note: Our connectives are fully conditional. An implication is
true when its consequent is true, even if its antecedent is undefined. Also, an
implication is true when its antecedent is false, even if its consequent is
undefined.)

490 E.C.R. Hehner et al.

In our earlier example, specification 0)
x=0= y=2"

is undetermined for negative x. In other words, when the input X is negative,
the specification is already satisfied, and an output is not required. But an
output is still allowed; in fact, an arbitrary output is satisfactory. As it stands,
the specification answers what should happen if nonnegative input is supplied,
but leaves the question open when the input is negative. If we care what
happens when the input is negative, then we must write a more determined
specification.

From (1), we see that an overdetermined specification cannot be imple-
mented. To be implementable, a specification must be universally satisfiable.

S is implementable if vo.30.8

The main concern of this paper is the question: Given a specification, how
do we obtain an implementation? But for a moment, let us consider the reverse
question. Let f be a (possibly partial) function representing some computer

behavior. There may be many specifications implemented by f. The most
determined (strongest) specification implemented by f is

o {3=f @) if f(v) is defined

~ | true if f(v)is undefined

This one specifies f exactly, in the sense that f can be reconstructed from S.
But S is also implemented by any function that agrees with f wherever fis
defined.

Let g be another function with strongest specification T. The sequential
composition of the these behaviors (first f then g) is represented by the func-
tion fog, formed as the functional composition of f and g. Its strongest
specification 1s :

b=g(f®) if f(V) and g(f(©)) are defined

true if f(v) is defined but g(f(v)) is not
true if f(v) is undefined
= VS = ST

In the same sense as before, this i the exact specification of fog. Similarly, we
can obtain the exact specification of any behavior.

Programs

We are interested in the specification of computations, not of programs. If we
were to specify programs, perhaps we would be concerned with their length,
the relative frequencies of keywords, the choice of identifiers, and the inden-
tation policy; but this is not our concern.

Predicative Methodology 491

A program is a specification of computer behavior. A computer may not
behave as specified by a program for a variety of reasons: a disk head may
crash, a compiler may have a bug, or a resource may become exhausted (stack
overflow, number overflow), to mention a few. Let us lay to rest all questions
that confuse programs with computer behavior. If asked “What does this
program do?”, we answer “It just sits there on the page (or screen).”. If asked
“Does this program terminate?”, we answer “Yes, all programs terminate.”. It
is the specified computer behavior that may not terminate.

The language of programs is the implemented subset of the language of
specifications. It may be a changing subset, as we find new or better implemen-
tation techniques, but it will always be a subset. The language of specifications
is not limited. We encourage specifiers to use whatever notations help to make
their specifications clear; these may be programming notations, notations from
logic, notations from the application area, or notations invented on the spot.

We now present an assortment of programming notations, drawn from
various places. Each is defined by an equivalent predicate using standard
predicate logic notations. The reader is directed to the paragraphs following
these notations, which should be read along with the notations.

ok =4 U=10

x:=e =4 0k[X:¢é]

PoQ =4 0. P[B:0] A Q[1:7]
122(0) =4 VP = PoQ

if b then P else Q =, DAP v 1bAQ

if b then P =, if b then P else ok
ifb—>P

Oc—0

fi — o bici— bINRVEe NO)
PorQ = 12V 0)

var x: T.P — R ANEE TE I

loop P: S(P) =, Vi.S(true)

while b do P =4 loop Q: if b then (P;Q)

repeat P until b =, loop Q: (P;if b then Q)

The first notation, ok, is sometimes called “the empty program”; it is the
identity relation, in which the final values equal the corresponding initial
values (everything is ok the way it is). If there are two variables x and y, then
ok = (X=x A y=)).

The second notation is the familiar “assignment”. We use ok[x: €] to
mean: in the standard predicate notation for ok, replace all free occurrences of
% by é (the usual predicate logic substitution rule), where ¢ is e but with an in-
accent over each variable. For example, in variables x and y,

492 E.C.R. Hehner et al.

ok[x:x+Y]
(i=x A y=p)[Xx: x+)]

xX:=x+Yy

= (¥=X+y A y=))

A more complete treatment than we have room for here would have to be
concerned with whether the expression has a value. In this paper, we shall
simply assume it has, and refer the interested reader to [3] for a complete
definition of “meaning predicates”, and to [4] for their use in predicative
semantics.

The notation P Q is “relational product”; it is formed by binding the final
values of P to the initial values of Q. Its implementation is ordinarily sequen-
tial execution: first behave according to P, and then according to Q. But when
P is undetermined, the implementation is a little trickier: it must be “lazy”, or
“output driven”.

The “composition” notation P;Q is weaker than relational product, so it
has more implementations. In particular, composition can always be imple-
mented as sequential execution, even when P is undetermined. To use a
programming notation correctly, it is not necessary to know its implementa-
tion. (If we were considering the speed of a computation, we would need to
know.) It is not necessary that its operands be implementable. This connective,
like the previous one, is defined for all specifications, whether implementable
or not. It is an ordinary logical connective, like A and V.

In the if notations, b and ¢ are boolean expressions, and P and Q are
arbitrary specifications. Again, we are assuming that b and c have values,
Jeaving the problem of undefined expressions to other papers. The if-then-else
notation is equivalent, by simple boolean algebra, to

b=P) A (b=0)
Dijkstra’s if looks particularly nice with one guarded command:
if b>P fi = (b=P)

The or connective is called “nondeterministic choice”; it is simply logical
disjunction. Why should we have two symbols with the same meaning? Indeed,
why should we have programming notations at all? We might just have
patterns of predicates that we know how to implement, and our task is to
express the specification using only these patterns. But pattern matching is
hard; a compiler cannot easily decide whether a disjunction is part of the if
pattern, or part of the or pattern. Still, we needn’t have provided or as a
programming notation; we could have insisted that the programmer choose
between the disjuncts.

The var notation introduces a local variable x of type T into specification
P. In standard predicate notation, it is just implementability in x.

The loop notation is general recursion (the symbol p is often used instead of
loop). Tt introduces a local (bound) predicate variable P into specification S.
If P=S(P) has a least determined solution, then loop P: S(P) is that solution.

Predicative Methodology 493

Here is an example.
loop P: if x=0 then y:=1 else (x:=x—1; P; y:=2XY).)

Let the part of (2) to the right of the colon be S(P). We form a sequence of
specifications, starting with the completely undetermined specification, and
becoming more determined.

S°(true) = true
Si(true) = (x=0 = X=0 A y=2%
Siftrue) = (0=x<i = x=0 A y=2*

Program (2) is the limit, or conjunction, of all these specifications.
Vi.Sitrue) = (O0=x = x=0 A y=2*

Since (2) is more determined than our earlier example specification (0), any
implementation of (2) is also an implementation of (0).

The loop construct is easily generalized to indirect recursion. It can also be
specialized. The while and repeat notations are familiar specializations.

It is essential that each of our programming notations be monotonic in all
predicate variables. This property gives us composability: an implementation
of the whole can be constructed from implementations of the parts. Our
connectives must also be continuous so that recursion (loops) can be imple-
mented. For further details, we refer the reader to [3] or [4].

Theorems

Our new connectives have nice properties, and when we become familiar with
them, they are as helpful in our reasoning as the old, standard logical con-
nectives. Here is a small sample of theorems about programs that can easily be
proven.

oks: I PaN — P glte — = 1

true; P

Reftruel = S8ls RVt VB

if b then P else P = P

if b then P else Q = if —1b then Q else P

(if b then P else Q); R = if b then (P;R) else (Q;R)
P;(QorR) = (P;Q)or (P;R)

P or if b then Q else R
=if b then (P or Q) else (P or R)

var x: T.var y: U.P = vary: U.var x: T.P
loop P:S(P) = S(loop P:S(P)) if S is continuous in P

494 E.C.R. Hehner et al.

We stress that these are theorems in predicate logic, true of arbitrary specifi-
cations P, Q, and R, not just of programs or implementable specifications.

The preceding theorems relate programming notations to each other; in the
literature, some are called “optimizations”, some “transformations”. There are
many more such theorems, and many theorems that relate programming no-
tations to other logical connectives. Arbitrary theorem generation is easy. The
theorems we want are those that help us to program. Here are some, with a
short discussion following.

P = (VP=P) 3)
x:=e; P = P[x:é] (4)
P — if b then (b= P) else (b= P) (5)
(P;0)AR = P;(QAR) 6)
GA(P;0) = (GAP); Q (7
G=(P;Q) = (G=P);0) (8)
P,(IrnQ) <« (PAD);Q ©)
P;Q < (PAl;(I=0) (10)
(I =loop P:S(P)) = (loop P: I =S(I AP) (11)

According to (3), we may always assume that a specification is determined.
According to (4), an assignment composed with a specification is the same as a
substitution in the specification. According to (5), any specification P can be
transformed to an equivalent specification that is at least partly in the pro-
gramming notation; the remaining pieces, (b= P) and (—b = P), are less de-
termined than P, and in that sense they should be easier to implement.

In (6), R is any predicate that depends only on the final values of the
variables. (R stands for “Result”) Similarly in (7) and (8), G is any predicate
that depends only on the initial values. (G stands for “Given”.) In 9), (10), and
(11), I, like G, has only in-accented variables, and [is the same as I but with all
accents flipped. (I stands for “Intermediate”).

In (9) and (10), the connective < (pronounced “is implied by”, “is solved
by”, or just “if”) is reverse implication. We could equally well have written
these theorems the other way round, using the usual implication symbol. Our
choice arises from the use of these theorems in programming, where we can
always replace a specification by a more determined (but not overdetermined)
specification. For example, if a specification is of the form (P;Q), we can
replace it by ((PAf); (I = Q)), because according to (10), any implementation
of the latter is also an implementation of the former.

Programming

Given a problem in the form of a specification S, we solve the problem by
writing a few theorems that convert S to an equivalent or stronger specification

Predicative Methodology 495

in programming notations. These theorems constitute a constructive proof that
S is implementable. As a by-product, we obtain an implementation automati-
cally.
Let us begin again with our example specification (0). From Theorem (5)
we know
(x20 = y=2% < if x=0 then (x=0 = y=2%)
else (x>0 = y=2%

We consider the original problem (0) to be solved, but now we have two new
problems. The first of these can be solved easily without raising any more

problems. =
x=0=y=2%) < y:=1; x:=3

From the left side, we know we need y=1 on the right. The assignment to x is
superfluous; since the problem says nothing about the final value of x, we have
perversely assigned x the arbitrary value 3 simply to exercise our freedom. The
remaining problem, and those raised subsequently, can be solved as follows.

(x>0 =)=2% < (¥>0=j=2""7); (j=2x))
x>0=y=2""") « (i=x—1); (x20 = y=2%
(J=2x}) < y:=2xy; x:=5

(¥=x—1) = x:=x—1; y:=7

Our solution is now complete: every problem raised has been solved.

What we have written are theorems (universally quantified over all vari-
ables). A theorem prover (automated, or human, or a combination) should
check that they are; if they are not, it should report any error, preferably with
a counterexample.

There are many other solutions; the one we have written is neither the
simplest nor the most efficient. In the last two lines, we have again made
superfluous assignments. Our reason for doing so is didactic; we want to show
that our confidence in the correctness of our solution rests on the proofs of
these six simple theorems (plus one more that we will see later).

Compilation

Current compilers check programs for syntax errors, but not for logic errors.
Future compilers, with built-in theorem provers, will also be able to check for
logic errors, pointing out the location of a logic error the same way as they do
now with a syntax error.

The other task of a compiler is to translate programs into machine in-
structions. Translation begins by treating all non-programming notations as
identifiers. We illustrate by replacing all the non-programming notations in the
previous section with arbitrary single letters. Replacing (x=0= y=2%) by A,
and so on, we obtain

y::2)<y; x:=35

496 E.C.R. Hehner et al.
A < if x=0 then B else C
B < y:=1;x:=3
€ ="1D% 1g
D < E; A
E <
F <

x:i=x—1; y:=T7

We have six parameterless, scopeless procedure definitions, which call each
other. Thanks to the monotonicity of all programming connectives, we can
always replace an identifier on the right with something stronger, so we can
always replace a procedure call with its body.
A < if x=0 then (y:=1; x:=3)
else (x:=x—1;y:=7; A; y:=2xy; x:=5)

A programmer will not usually want to see this stage, or any stage, of the
translation to machine instructions; information needed for understanding has
been removed.

We hope that our solution now looks sufficiently familiar that the remain-
ing stages of the translation can be taken for granted.

Nondeterminism

Sometimes we may see two or more solutions to a problem. For example,
x>0= y=2") <
if 0dd(x) then (x:=x—1; (x=0 = y=2%); y:=2x)
else (x:=x/2; (x>0=y=2%;y:=yx})
provides a second solution to a problem (x>0=y=2% solved previously.
From a logical point of view, both this and the previous solution are theorems;
they coexist peacefully. From an execution point of view, we have two pro-

cedure bodies for one procedure name. Any call (occurrence of (x>0 = =—2%)
on the right) can use either solution. Having two solutions to one problem

P<=Q
P<R

is the same, both logically and operationally, as having one solution
P<Q or R

which uses the nondeterministic choice operator. For the sake of efficiency, if
one solution is better than another, it is advisable to delete the worse solution.

Predicative Methodology 497
Variant
Consider the following “solution” to our example problem.

(x20= y=2% < if x=0then y:=1else (x=0 = y=2%

Although this is a theorem, it is not a proof that (x=0 = y=2%) is implement-
able, and an implementation cannot be extracted automatically. Two rules of
programming must be followed, and the preceding “solution” violates the
second. Here are the rules.

Theorem Rule. A problem § is solved by a theorem of the form S < P where P
uses only programming notations and solved problems. (Whether they are
solved previously, at the same time, or subsequently, is irrelevant; there is no
ordering to a collection of theorems.)

Variant Rule. In any collection of theorems, whenever a problem is solved
(directly or indirectly) in terms of itself, a variant is required.

We define “variant” in a moment, but first we notice that the variant rule
can be followed simply by not solving a problem in terms of itself. This can be
accomplished by means of the loop notation. If we naively attempt to translate
our latest “solution” into loop notation, we find that

(Xx=0 = y=2% < loop P:if x=0 then y:=1 else P

is not a theorem: the right side is equivalent to (Xx=0=>Xx=0Ay=1). So the
programming error is seen as a violation of the theorem rule. In general,
proofs involving the loop notation (or its specializations) are difficult, and we
prefer not to use it.

When a problem is solved in terms of itself, an execution loop is created.
The path (or body) of the loop is readily seen by inspection. In fact, it is an
easy job for a compiler, not involving a theorem prover, to point out all loop
paths. Let S be a problem solved in terms of itself. Let P be a loop path for S.
Let f be an integer expression (not necessarily occurring in the program, nor
necessarily using programming notations). Then f is called a variant for P if

ZSEANMSOA P = 0=[f<f

is a theorem. This means that for problem S, if f is positive before execution of
P, then after execution of P, f will be smaller but not less than zero.

A loop path may go through any programming construct. When it goes
through one branch of an if-then-else construct, we can replace the other
branch with anything we like. To make our proof easiest, we may as well
replace the other branch with false. Similarly, when a path goes through one
side of an or construct, we replace the other side with false. The reference (call)
to the original problem should be replaced with ok.

|
s
f

498 E.C.R. Hehner et al.

To illustrate, let us look at our example solution.

(x20 = §=2%) < if x=0 then (x=0 = y=2%
else (x>0=y=2%
(x=0=y=2% <« y:=1
G0 —=—2 =
if odd (x) then (x:=x—1; (x=0 = y=2%); y:=2x)
else (x:=x/2; (x>0= y=2%; y:=yxy)

These three theorems contain two basic loop paths. A compiler requests a
variant f such that

x20 A f>0 A if x=0 then false
else if odd(x) then (x:=x—1; ok)
else false
=0<f<f
x>0 A f>0 A if odd(x) then false
else (x:=x/2;0k)
— 0=

are theorems. The programmer supplies one; in this case, the expression x
serves the purpose. For further details concerning loop paths, see [3].

Invariant

Traditionally, the notion of “invariant” has been associated with loops, and it
is most useful in that connection. But it can be defined quite independently of
loops. Using the positional notation I(v, ¥), here is the general form

invI.P =4 Vvl d)AVP=PAl7)

Roughly speaking, any state related to the initial state by I must also be
related to the final state by I.
To aid our intuition, let us look at some special cases. The two simplest are

iny true.P = P

inv false.P = true
Using true as invariant leaves a specification unchanged. Using false as in-
variant yields an undetermined specification.

A common special case occurs when the invariant happens to have only in-
accents, so that it is really a predicate on a single state. Then

invlLP = (IAVP=PAl)

Predicative Methodology 499

This says that if, in addition to the precondition for P, the invariant is also
true initially, then P describes the desired behavior with the additional con-
straint that the invariant must be true finally. For this common case, we adopt
the following convention: we allow the invariant to be written without accents.
Thus

iny x>0. even(x) = X<x

= x>0 A even(x) = Xx<x A x>0
Another useful special case is the invariant é=¢ where e is any expression

of any type.
invé=e.P = (VP = P A é=¢)

In this case, we refer to e as being constant, and we introduce the notation
cone.P =, invé=e.P

The invariant construct is not always implementable. Here are two such
examples.
invx=0. x:=1

conx, x:=1
The first is equivalent to x=+0 and the second to x=x=1; in both cases for x
=0 there is no satisfactory x.

In general, the theorem
invI.P <= P Aok

is not helpful; since P usually requires some variable to change its value, the
right side is too strong. One strategy that sometimes helps when P is com-
pound is to distribute the invariant responsibility across the parts of P. Some
of the following theorems indicate how this works.

inv I. true = true

iny I. ok <= ok

invI. P;Q < (inv I.P); (inv [.0)

inv I. if b then P else Q = if b then inv I.P else inv I.Q

inv I. if b then P < if b then inv [.P

invI. Por Q = (inv I.P) or (inv [.Q)

inv I. var x.P=var x. inv I.P if x does not appear in [

inv 1. while b do P < while b do inv I.P

inv I. repeat P until b < repeat inv /. P until b

inv I.invJ.P = invIAJ.P

Since con is a special case of inv, these theorems (except the last) also hold for
con.

500 E.C.R. Hehner et al.
Fibonacci

The problem of finding the nth Fibonacci number in logn time shows con to
advantage. We define the Fibonacci numbers as

f0=0
sl
j;1+2:f;1+.fn+l

The problem is (conn, Xx=f,); without changing n, set x to f,. Let n, x, and y
be natural variables. The first two steps in the solution are as follows.
(conn.x=f, < (conn.x=f, A y=1,)

(conn.X=f, A y=f,. 1) =
if n=0
then (x:=0; y:=1)
else if odd (n)
then (conn.n>0 A odd(n) = X=f, A y=f,)
else (conn.n>0 A even(n) = x=f, A y=1,.,)

The next step uses the lemmas

f2k+1 =f;c2+fk+ 12
f2k+2=2ﬁcﬁ<+1 +fk+12

In this step, we point out that con does not mean that n should not change at
all, but only that it must end where it began.

(conn.n>0 A 0dd(M) = X=f, A y=Ffo,1) <
n:=m—1)/2; (conn.x=f, A y=f,,1); n:=2n+1;
(conn.x=x>+3* A y=2%y+3?)

In the even case, we lower n from 2k+2 to k, finding f, and f,,, as x and y.
We then calculate the new x as f5, , and the new y as f,, ., + f,, .

(conn.n>0 A even(n) = X=f, A y=f,,,) <
n:=n2—1;(conn.x=f, A y=1f,.,); n:=2(n+1);
conn.X=2xy+3> A y=x2+3>+x)

The remaining two problems are trivial.
(conn.Xx=x>+j% A y=2xy+)?) <«
var oldx: natural. oldx:=x; x:=x*+y*; y:=2oldx y+ y*

(conn.Xx=2xy+y* A y=xX2+y?+x) <«

var oldx: natural. oldx:=x; x:=2xy+y?; y:=oldx*+y*+x

B dmmia oo S e oo

Predicative Methodology 501

A variant for each of the loops is n, as the following two theorems show.

O<n A ifn=0
then false
else if odd (n)
then (n:=(n—1)/2; ok)
else false = 0=Zn<n

O<n A ifn=0
then false
else if odd (n)
then false
else (n:=n/2—1; ok) = 0=n<n

This solution should be judged against any other logn solution for its
clarity, and it should be noted again that each of the above fragments is a
theorem of predicate logic.

Paradigms

Mathematicians do not always prove a theorem from axioms; more often they
prove a theorem from other theorems. That way, they build on each other’s
work. Programming is practical mathematics, and if we want to get very far
with it, we must do the same.

An experienced programmer has a mental stock of solutions, or solution
patterns. These are sometimes called “program paradigms”. Some typical ex-
amples are linear search, merge, accumulation, use of a sentinel, and buffering.
We shall show that paradigms are just useful theorems, upon which other
theorems can be based.

Our first paradigm is even more basic than the examples just cited. Having
eschewed the loop notation, and finding the loop paths to be still a little
complicated, we present a loop paradigm that helps considerably.

Goal

Let f be an integer expression (the variant). Let g be a boolean expression (the
goal). Define
Goal(f, g) =g inv f20.¢

Goal can be used to solve many problems. In turn, it is solved by the following

theorem. -
Goal(f, g) = while mg do (inv f=0.7g = f</[)

After proving this theorem once, we need never write a loop like it again, nor
prove a theorem like it again.

Suppose the problem pot (or job jar) contains the exponentiation problem
(y=0 = Z=Xx"). We select this problem and solve it by writing

(y=0 = 7=%¥) < z:=1; con z x x*.Goal(y, y=0)

502 E.C.R. Hehner et al.

We first want z=1, then keeping z x x* constant, we want to decrease y until y
=0. This is not just a strategy, but a theorem that solves the problem. This
theorem, which we or a compiler must prove, is a simple one. Expanding the
definitions of con, Goal, and inv, it is

(=20=2=x)) <= z:=1;[=0 =y=0r =02 Zx XV =2xx).
Using Theorem 4, the right side can be simplified,
(20=7=%) < (=0 = y=0 A z=%X)

and our problem is solved without any loops. Of course, a compiler will supply
a loop, extracted from the Goal theorem.

The compiler also puts a new problem into the pot for us to find and solve
at another time. Distributing con into the loop body, it is

conzxx¥.inv y=0.y+0= y<y
It can be solved, for example, by

if odd(y) then (y:=y—1; z: =2z X x)
else (y:=y/2; x:=xxx)

Another simple example is the factorial problem. Its solution, and the
solution to the new problem raised, are as follows:

(n=0= x=n!) < x:=1; con x xn!. Goal(n, n=0)

(conxxn!.invn=0.n+0=1n<n) < x:=xxn;n:=n—1

The problem of reducing a variable modulo 5 gives us a chance to use the
invariant construct in its full generality. Here it is, with its solution (all
variables are integers).

(F20 = 0=F<5 A Jq.F=F—=5x%q)
< inviq.7=r—5xq.Goal(r,r<5).

In fact, the reverse implication is also equality. As usual, Goal solves a
problem by raising another.

(inv3q.r=r—5xq.invr=20.725=r<r) < r:=r—>5.

The generality of inv is not needed in this example, however, if we allow
ourselves the mod operator in our predicates. Then we can write

(#=0 = F=rmod5) < conrmod5.Goal(r,r<5)

(conrmod 5.invr>0.725 = F<F) <« r:=r—>5

Predicative Methodology 503
Linear Search

Let P be a predicate on the natural numbers. Let n be a natural variable.
Define
LinStch(Pin) =4 (Vi: 0<i<n. =1 P() A P(1)

LinSrch specifies that the final value of n is the first natural number having
property P. For LinSrch to be implementable, P must be satisfiable. And when
it s,

LinSrch (P, n) = n:=0; while 7 P(n) do n:=n+1
Or, if you prefer,

LinSrch (P, n) = n:=0; Goal(N —n, P(n))

where N is the first solution of P.

We can now solve problems using LinSrch. As an obvious example, sup-
pose A is an array indexed from O to N—1. Then the problem of finding the
first occurrence of x in A can be specified and solved as

(O=<H=N A (Vi: 0=Zi<n.A[i]%x) A (A[rn]=x v #=N))
< LinSrch(n=N cor A[n]=x,n)

where cor is semi-conditional or. In this example, the problem (as specified in
the first line) and solution (as specified in the second) are, in fact, equal. If the
second of these two lines is more understandable than the first, then there is no
point at all in writing the first line. We should use the second as problem
specification, and be done.

Search

Here is a general search paradigm that accommodates linear search, binary
search, tree search, and all other searches. Let S be a search space variable. Let
P be a predicate over S. Let present be a boolean variable. Let x be a variable
of the same type as the elements of the search space. Define

Has(S,P) =4 3JyeS.P®y)
Search (S, P, present, X) =
(présent=Has(S,P)) A (Has(S,P) = xeS A P(X)

Variable present should have final value true if there is an element of the initial
search space with property P, and false if there is not. And if there is, x should
finally be such an element.

In our solution, Has(S, P) is a constant: if initially true, it remains true, and
if initially false, it remains false.

504 E.C.R. Hehner et al.

Search(S, P, present, x) <

if S={)

then present:=false

else ((con S. S+{ } = Xef);
if P(x)
then present:=true
else ((con Has(S, P).xeS A 11P(X) = Sc<8);

Search (S, P, present, x)))

The theorem rule has been followed. The variant rule is satisfied if the initial
search space S is finite.

The solution gives us two new problems to be solved: one is to select an
element from a non-empty space, and the other is to reduce a non-empty space
without losing the last element having property P. Depending on the represen-
tation of the search space and the implemented (programming) expressions, we
may also have to refine the expression S={ }.

Any helpful properties of the search space can be used to advantage when
selecting an element or reducing its size, if these properties are preserved by
the reduction. We could state the property as an invariant, or we can consider
such properties to be part of the type of variable S.

To illustrate the use of the general search paradigm, we decided to solve
the linear search problem. But to our surprise, the implication went the wrong

way. .
LinSrch (P, n) = var present: boolean.

n:=0;
Search({n, ...}, P, present, n)

The problem is that LinSrch specifies that n should be the first solution of P,
but Search does not specify which solution. To solve LinSrch using Search, we
need an invariant. Given 3n. P(n),

LinSrch (P, n)=var present: boolean.
n:=0;
inv Vm<n,—1P(m).
Search ({n, ...}, P, present, n)

The first of the two new problems raised by Search, after simplification, is 7
=1, whose solution is obviously ok. The other new problem, after simplifi-
cation, is

inv(Vm<n,—1P(m)). con(Fy=n. P(y). T P(n)=rn>n

whose solution is n:=n-+1.
This example and others, together with proofs of theorems, appear in [2].
What Remains

In some respects, a paradigm is like a procedure, with procedure parameters.
In our formalism, it is a predicate with predicate parameters. We need to

Predicative Methodology 505

decide whether the parameters are syntactic (textual) or semantic (respecting
scope), and formalize them properly. As an example, consider a paradigm
giving a for loop.

For(a, b, P) =4 P(a); P(a+1);...; P(b)

For (a, b, P) < var n: integer.
n:=a;
while n<b do ((con n. P(n)); n:=n+1)

What is meant when arguments supplied for a, b, and P refer to n?
Eventually we would like a library of helpful paradigms. How should it be
organized?

Conclusion

We have defined programming notations in terms of standard logic. This is
reasonable if we assume that standard logic is already understood. It may be
more reasonable to assume that algorithmic understanding comes before an
understanding of logic, or any other mathematics. If so, we should invert our
semantics; we should define the logic connectives as programs.

Our programming style bears some similarity to Prolog, particularly in the
use of reverse implication. But the resemblance is superficial; the difference is
profound. Prolog’s theorem-proving is its execution, its “run-time” activity;
our theorem-proving is a “compile-time” activity. Our programming is a
constructive proof of implementability, much more like Constable’s PRL [1].

The search for good programming paradigms is a search for good theo-
rems. They must be general enough to be useful often, and so be worth
memorizing. They must not be so general that they hardly help. Finding good
paradigms requires experience and good judgement. We have just begun.

Acknowledgements. We thank Tony Hoare, David Gries, Philip Matthews, the members of IFIP
Working Group 2.3, and an anonymous referee for helpful comments. This work was supported by
The Natural Sciences and Engineering Research Council of Canada.

References

1. Constable, R.L., Bates, J.L.: The Nearly Ultimate PEARL. Cornell TR-83-551, 1983

2. Gupta, L.E.: Predicative Programs and Paradigms. M.Sc. Thesis. University of Toronto 1985
3. Hehner, E.C.R.: The Logic of Programming. London: Prentice-Hall 1984

4, Hehner, E.C.R.: Predicative Programming. CACM 27, 134-151 (1984)

Received December 3, 1985 /April 10, 1986

Acta Informatica 26, 285 (1988) iﬂ@:@_

© Springer-Verlag 1988

Erratum

Acta Informatica 23, 487505 (1986)
Predicative Methodology

Eric CR. Hehner, Lorene E. Gupta, and Andrew J. Malton

University of Toronto, Computer Systems Research Institute, Standford Fleming Building,
10 King’s College Road, Toronto, Canada M5S 1A 4

On page 491, variable declaration should be
var o R = 806 A TP

On page 497, f is called a variant for P if
VSAP=0<f<f

We regret the errors.

