
2014-12-23 0

Observations on the Halting Problem

Eric C.R. Hehner

Department of Computer Science, University of Toronto
hehner@cs.utoronto.ca

Abstract: The Halting Problem is ill-conceived and ill-defined.

Halting Problem

When Alan Turing laid the foundation for computation in 1936 [5], he wanted to show what
computation can do, and what it cannot do. For the latter, he invented a problem that we now call the
“Halting Problem”. In modern terms, it is as follows.

In a general-purpose programming language, write a program that reads a text (character string)
p representing a program in that same language, and reads another text i representing its input,
and outputs true if execution of p with input i terminates, and outputs false if execution of
p with input i does not terminate.

The choice of programming language does not matter; any general-purpose programming language
will do. The problem cannot be solved; there is no such program.

Is the problem well defined? It certainly sounds well defined. The input is clear: two texts. The first
text is supposed to represent a program; whether it does can presumably be determined the same way
a compiler determines whether its input text represents a program. The output is clear: either true or
false . The criterion for outputting true is “execution of p with input i terminates”, and the criterion
for outputting false is its negation. What could be clearer?

The problem talks about a “program” to compute halting, but for convenience, without loss of
generality, I will talk about a Pascal function to compute halting. The problem talks about whether
execution of a “program” terminates, but for convenience, without loss of generality, I will talk about
whether execution of a Pascal procedure terminates. The argument for incomputability begins with the
assumption, made for the sake of showing a contradiction, that the halting function can be
programmed, and has been programmed; let's call it halts . Then we can write a procedure like this:

procedure twist (s: string);
begin

if halts (s, s) then twist (s)
end

Does execution of twist ('twist') terminate? If it does, then halts ('twist', 'twist') should return true ,
and so we see from the body of procedure twist that its execution does not terminate. If it doesn't
terminate, then halts ('twist', 'twist') should return false , and so we see from the body of procedure
twist that its execution terminates. We have a contradiction (inconsistency), so we conclude that the
initial assumption was wrong: the halting function cannot be programmed; it is incomputable.

That argument, and its conclusion, are well accepted. But I have four complaints. My first complaint
is small and easily fixed. My next two complaints are more serious, and cast doubt on the conclusion.
My final complaint casts doubt on the whole problem.

Domain Problem

Execution of twist ('twist') includes function call halts ('twist', 'twist') . Function halts requires its
first argument 'twist' to be a text that represents a legal (syntactically correct and type correct)

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca

Eric Hehner 2014-12-231

procedure. Suppose twist is a legal procedure; then the arguments of halts are in their domains, and
so the call halts ('twist', 'twist') is legal, and therefore twist is a legal procedure, as supposed.
Suppose twist is not a legal procedure; then the first argument of halts is not in its domain, and so
the call halts ('twist', 'twist') is illegal, and therefore twist is not a legal procedure, as supposed. We
are unable to say whether twist is a legal procedure.

The solution to this domain problem is simple and surprising. Change the Halting Problem as follows.
In a general-purpose programming language, write a program that reads two texts (character
strings) p and i . If p represents a program in that same language whose execution with input
i terminates, then output true . If p does not represent a program in that same language, or
represents a program in that same language whose execution with input i does not terminate,
then output false .

Now the call halts ('twist', 'twist') is legal no matter whether twist is a legal procedure; therefore,
ironically, twist is a legal procedure.

Specification Problem

The next problem is more serious. When we reason about the execution of procedure twist , how do
we know what the function call halts ('twist', 'twist') will return? In general, there are two ways. The
way preferred by the semantics and verification communities is to examine the program for function
halts . The incomputability argument begins with the assumption that we have programmed function
halts , so that procedure twist can call it and it can be executed. But we do not actually have the
program for function halts for the purpose of examining it to determine what halts ('twist', 'twist')
returns. Under the present circumstance, this way doesn't work.

The other way is to examine the specification of function halts as stated in the Halting Problem. As a
programmer, I consider that the meaning of a call is always given by its specification, even if the
program is available. Under the present circumstance, this is the only possible option, and this is how
the incomputability proof proceeds. But we don't need to assume that halting is computable, or that it
has been programmed, to use the specification in our reasoning. Without assuming computability, we
ask what the specification of halts says the result of halts ('twist', 'twist') should be. If it should be
true , then the semantics of twist ('twist') is nontermination, so halts ('twist', 'twist') should be false .
If it should be false , then the semantics of twist ('twist') is termination, so it should be true . This is
inconsistent. Therefore halts cannot be programmed according to its inconsistent specification.

It is difficult to see how the halts specification could be inconsistent, but the twist example shows us
that it is. We arrive at the conclusion that halts cannot be programmed, but the reason is not
incomputability of a well-defined mathematical function. The reason is that the specification of the
halts function is inconsistent. The question of computability of a well-defined mathematical function
has not been addressed.

We could also define

procedure straight (s: string);
begin

if not halts (s, s) then straight (s)
end

and then ask what the specification of halts says the result of halts ('straight', 'straight') should be. If
it should be true , then the semantics of straight ('straight') is termination, so
halts ('straight', 'straight') should be true , as assumed. If it should be false , then the semantics of
straight ('straight') is nontermination, so it should be false , as assumed. Both answers are acceptable.
Even though the informal specification of halts seemed clear, it is overdetermined when applied to
twist , and underdetermined when applied to straight .

2014-12-23 Observations on the Halting Problem 2

Applicability Problem

A model (in the sense of the word as used by scientists and architects and engineers, but not in the
sense of logicians and the fashion industry) is a simplified representation of some aspects of the world.
For example, an architect's model of a proposed building, made of wood and sitting on a table-top,
shows the shape of the proposed building, but not its size or weight. A mathematical theory of motion
describes the path of a cannonball, but not its color. Even within its purpose, to describe motion, the
theory may make unrealistic, simplifying assumptions; it may assume there is no air, and so no
friction. Such an assumption is justified when the gain in simplicity (and therefore understandability
and usability) of the theory is much greater than the loss of accuracy. The true path of a cannonball in
the real world is not too different from the path in an airless world, and the latter is very much easier to
calculate.

Turing's machines are a model of computation. They help us to reason about some aspects of
computation, such as the computational complexity of computing tasks. The Turing Machine model
makes one unrealistic, simplifying assumption: that memory size is infinite. I consider that
assumption to be fully justified, and I make exactly the same assumption in my book a Practical
Theory of Programming. Quoting from that book:

Our ... state space ... is infinite, and this is unrealistic; any physical memory is finite. We allow
this deviation from reality as a simplification; the theory of integers is simpler than the theory
of integers modulo 232 , and the theory of rational numbers is much simpler than the theory of
32-bit floating-point numbers. In the design of any theory we must decide which aspects of the
world to consider and which to leave to other theories. We are free to develop and use more
complicated theories when necessary, but we will have difficulties enough without considering
the finite limitations of a physical memory.

Having made that assumption, I am careful not to use my theory beyond its domain of applicability.
All real computers have finite memory. The theory (with infinite memory) applies perfectly to all
computations that do not require more memory than the computer has. The theory does not address
the question of what happens when the computer does not have enough memory to perform the
computation.

The Halting Problem is solvable for programs running on computers with finite memory. The simplest
solution is to wait long enough for the computation to go through every possible state (memory state
plus registers states). If the computation has not terminated by then, it is in an infinite loop. There are
much quicker ways to detect nontermination, and there are program analysis algorithms that work
well. There is an almost annual International Workshop on Termination in which researchers can
compare their methods for termination and nontermination detection.

Since halting is solvable for finite memory, Turing's Halting Problem conclusion, that halting is
unsolvable, must require the assumption that memory is infinite. The assumption does not give us an
almost correct but easier-to-calculate result. It gives the opposite result from the reality that memory is
finite. The model is being used beyond its domain of applicability. Furthermore, Turing's argument
does not use the assumption that memory is infinite, so it cannot be a correct argument.

Meaning Problem

Suppose you buy some software, and it comes with a guarantee: all executions of this software
terminate, or one million times your money back. Sounds good. Under what circumstances can you
complain that the guarantee has been violated, and demand the promised money? No matter how long
the execution has taken, the vendor can say “wait longer”. There is never a time when you can say that
the computation has taken forever. The guarantee of termination is perfectly safe for the vendor, and
worthless for the buyer.

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/aPToP
https://termination-portal.org/wiki/WST

Eric Hehner 2014-12-233

Suppose you are commissioned to write some software, and the client has specified that all executions
of the software must terminate. You can safely ignore this specification for the reason stated in the
previous paragraph: the client can never complain that the specification has not been met. If the
guarantee, or the specification, had stated a time bound within which the termination must occur, then
it cannot be ignored because a violation is observed when the time bound is exceeded. But the
guarantee and specification said only “termination”, without stating a time bound, making them
worthless.

Karl Popper [2] is associated with a philosophy of science called “falsifiability”. It says (my wording):
A scientific statement is meaningful if and only if
• it makes sense to say that it is true (it is not self-contradictory), and
• it makes sense to say that it is false (it is not a tautology), and
• if it is false, there is a way to show that it is false (its falsity can be observed).
The fact that nontermination is unobservable makes termination with no time bound meaningless,
according to this philosophy.

In the same vein, according to Shannon's Information Theory [4], a test that cannot fail conveys no
information. Similarly, according to Bayesian probability, we cannot confirm something (increase its
probability) without a test that can potentially disconfirm it (decrease its probability).

I am hesitant to declare what is meaningful and what is meaningless. But I am prepared to say that if
there is no possibility to collect on a guarantee, then the guarantee is worthless. Similarly, if there is
no possibility to violate a specification, then the specification is worthless. The halting specification is
certainly worthless, possibly meaningless. In fact, it is doubly worthless/meaningless. First, what we
are to compute (whether execution of any program terminates, with no time bound) is worthless/
meaningless. Second, computing it means that the execution of the program to decide termination
must eventually terminate and give an answer, but there is no time bound on its termination, making it
worthless/meaningless also.

In some computing models, termination is observable: it is an event that cannot happen before the end
of a computation, and must happen at its end. In these models, nontermination is a worthwhile claim
or guarantee or specification. For many applications, such as the control of a nuclear power plant, or a
heart pacemaker, it is essential that execution of the software not terminate.

In other models of computation, termination is not a computation event, but the end of or cessation of
computation events. In these models, termination is unobservable because you can never be sure that
the computation events have ceased. Promising or specifying nontermination, in these models, is as
worthless as promising or specifying termination.

I have been discussing the worthlessness of specifying termination based on our inability to observe
nontermination when executing a program. It may seem there is another way to approach the problem:
analyze, rather than execute, the program. This is particularly relevant for the Halting Problem;
function halts is given the text of a program for analysis. If you want to prove termination, or prove
nontermination, the proof is conducted within a theory, which provides the axioms and proof rules
used in the proof. So we need a theory of programming, and four spring to mind:
• Hoare Logic [1], the original 1969 theory of programming: preconditions, postconditions,

invariants, and variants.
• Unroll loops and recursions, form a sequence of finite approximations to the behavior, and then take

the limit.
• Write recursive equations, then find the least fixed-point solution (the least deterministic solution).
• My own theory of programming (aPToP) [0]. The meaning of a function or procedure call is the

function or procedure specification, not the function or procedure body. A loop is syntactic sugar for
a recursive call, and the meaning of that call is the loop specification, not the loop body. You don't

http://www.cs.utoronto.ca/~hehner/aPToP

2014-12-23 Observations on the Halting Problem 4

need to find an invariant; you don't need to form a sequence of approximations; you don't need to
calculate a fixed-point.

These theories have different strengths, roughly increasing in the order listed. If ever two theories
disagree about what happens when a program is executed, we would arbitrate by executing the
program, observe what happens, and throw away the theory that's wrong. The correctness (soundness,
validity) of a theory is decided by observation of execution, so proof does not dispense with the need
for observation. Fortunately, whenever these theories say something that can be observed about a
computation, they agree.

Unfortunately, these four theories disagree about questions of nontermination. The sequence of
approximations even gives different answers when different index sets are used for the sequence. Yet
all these theories are sound because they differ about things that are not observable. Furthermore, all
sound theories are incomplete concerning questions of termination: for each theory, there are
programs whose termination status cannot be decided by the theory. If halting is to be determined by
proof (rather than observation of execution), then the Halting Problem, which asks for a program (in
some programming language) to determine the halting status of all programs (in that same language),
is ill-defined by failing to say according to which theory, and is inconsistent by asking for both
soundness and completeness.

I have questioned the meaningfulness or worth of specifying termination without a time bound, but I
expect many people will cling to the feeling that it is meaningful and worthwhile. I now introduce you
to calumation, a word that is not in any dictionary, and is absolutely meaningless. The Calumation
Problem is:

In a general-purpose programming language, write a program that reads two texts (character
strings) p and i . If p represents a program in that same language whose execution with input
i calumates, then output true . If p does not represent a program in that same language, or
represents a program in that same language whose execution with input i does not calumate,
then output false .

To “prove” that calumation is incomputable, all we need is one positive example, and one negative
example. So let's say that C is a procedure whose execution calumates, and N is a procedure whose
execution does not calumate. Assume, for the sake of showing a contradiction, that the calumation
function can be programmed, and has been programmed; let's call it cal . Then we can write a
procedure like this:

procedure caltwist (s: string);
begin

if cal (s, s) then N else C
end

Does execution of caltwist ('caltwist') calumate? If it does, then cal ('caltwist', 'caltwist') should
return true , and so we see from the body of procedure caltwist that its execution does not calumate.
If it doesn't calumate, then cal ('caltwist', 'caltwist') should return false , and so we see from the body
of procedure caltwist that its execution calumates. We have a contradiction (inconsistency). If we
accept the standard argument for the incomputability of halting, we must now conclude that the
calumation function cannot be programmed; it is incomputable.

We thus “prove” that the meaningless calumation function is incomputable exactly the same way we
“prove” that halting is incomputable [3]. In my opinion, a “proof” that proves a completely undefined
function to be incomputable is suspicious.

Eric Hehner 2014-12-235

Conclusion

Termination without a time bound is a worthless property, whether as a guarantee or as a specification
(some would even say meaningless) because nontermination cannot be observed. The Halting
Problem, which asks for a program (in some programming language) to determine the halting status of
all programs (in that same programming language), is ill-defined by failing to say according to which
theory the halting status should be determined. But the meaning of “halting” doesn't matter, because
the “proof” that halting is incomputable has nothing to do with halting; it works just as well (or badly)
“proving” that a meaningless property is incomputable. That is because the “proof” actually shows an
inconsistency in the specification that is independent of the property.

References

[0] E.C.R.Hehner: a Practical Theory of Programming, first edition Springer 1993, current edition
hehner.ca/aPToP

[1] C.A.R.Hoare: “an Axiomatic Basis for Computer Programming”, Communications ACM v.12
n.10 p.576-580, 583, 1969

[2] K.Popper: Logik der Forschung. Zur Erkenntnistheorie der modernen Naturwissenschaft, Mohr
Siebeck, 1934; translated as the Logic of Scientific Discovery, Routledge, 1959

[3] H.G.Rice: “Classes of Recursively Enumerable Sets and their Decision Problems”, Transactions
of the American Mathematical Society v.74 p.358-366, 1953

[4] C.E.Shannon, W.Weaver: the Mathematical Theory of Communication, University of Illinois
Press, 1949

[5] A.M.Turing: on Computable Numbers with an Application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society s.2 v.42 p.230-265, 1936; correction s.2 v.43
p.544-546, 1937

other papers on halting

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/halting.html

