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the Netty Project
Eric Hehner, Robert Will, Lev Naiman, David Kordalewski, Botond Ballo, Anya Tafliovich

Introduction

Netty is a proof tool named after Antonetta Johanna Maria van Gasteren 1952-2002, who was a pioneer 
of calculational proving.  It is based on the MSc thesis of Robert Will titled “Constructing Calculations 
from Consecutive Choices – a Tool to Make Proofs More Transparent”, completed at the University of 
Toronto in 2010 under the supervision of Eric Hehner.  Further design and implementation were by Lev 
Naiman, David Kordalewski, Botond Ballo, and Anya Tafliovich.  The syntax and semantics of the 
mathematical expressions and specifications and programs understood by Netty are those of the book a 
Practical Theory of Programming.  This document is an informal, and unfinished, specification.  [Note 
added 2018:  the Netty project is currently dormant.  Anyone wanting to wake it is welcome to do so.  It 
will have to be renamed because Netty now refers to a library of open source IO software for Java.]
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Overview

Netty is a prover's assistant.  It is not a prover.  It supports a calculational style of proof in which the 
lines may be of any type.  They may be of type binary, or number, or set, or string, or list, or function, or 
other types including types invented by the user, and the type can change as the user zooms in and out of 
subexpressions.  The type can be specification and program, supporting refinement from specification to 
program, or verification that all executions of a program satisfy a specification.

Netty keeps track of the proof direction, and enforces a consistent direction.  It keeps track of local 
context.  It makes suggestions for the next step of the proof, not by saying what laws are applicable, but 
by saying what are the results of those law applications.  It allows its users to experiment with different 
lists of laws.

Menu item New creates a new calculation window, which consists of three panes, all initially empty, 
arranged as follows. 

http://www.cs.utoronto.ca/~hehner
https://www.utsc.utoronto.ca/~atafliovich/
http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/aPToP
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As many calculation windows as desired can be open at the same time.  The division lines between the 
panes can be dragged.  Each pane is separately scrollable.  The proof pane will show the current state of 
the proof.  The context pane will show the laws due to the current proof context.  And the suggestions 
pane will show suggestions for the next step of the proof.

Proof

Here is an example short proof as it would appear in the proof pane.

⇐ a⇒(b⇒a)    portation
= a∧b ⇒ a     specialization
= ⊤

Without the boxed symbol and the vertical line hanging from it, we would have an ordinary calculational 
proof.  The boxed symbol and line serve a structural purpose.  The vertical line hanging from the box 
shows the extent of the proof.  It is unnecessary for the outermost proof, but it will be helpful for 
subproofs.  In the box we have a direction.  For any data type, there are three directions.  For numbers, 
they are  ≤  =  ≥ .  For sets, they are  ⊆  =  ⊇ .  For binary values, they are  ⇒  =  ⇐ .  For bunches, they 
are  :  =  :: .  For strings and lists they are the direction appropriate to the items in the strings and lists.  
For functions they are the directions appropriate to the result (body, range) of the function.

• If the direction is  = , then all connectives in the proof (at this level) must be  = .
• If the direction is  ≤ , then the connectives in the proof (at this level) can be  =  ≤  < .
• If the direction is  ≥ , then the connectives in the proof (at this level) can be  =  ≥  > .
And similarly for other data types.

The direction symbol limits what connectives can be used, and therefore what laws are applicable, but 
does not say what the proof proves.
• If the connectives are all  = , the proof proves  topline=bottomline .
• If the connectives include at least one  ≤  but no  < , then the proof proves  topline≤bottomline .
• If the connectives include at least one  < , then the proof proves  topline<bottomline .
• If the connectives include at least one  ≥  but no  > , then the proof proves  topline≥bottomline .
• If the connectives include at least one  > , then the proof proves  topline>bottomline .
And similarly for other data types.  In the special case that the proof proves  a=⊤  or proves  a⇐⊤ , we 
say that the proof proves  a .  So this example proof proves  a⇒(b⇒a) .  In the special case that the 
proof proves  a=⊥  or proves  a⇒⊥ , we say that the proof proves  ¬a .

       proof pane

calculation                                                  context
window                                                         pane

 suggestions pane
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In the phrase “line of a proof”, the word “line” is misleading.  Depending on the length of a formula and 
the width of the proof pane, a formula may require several lines.  When that is the case, the formula will 
be formatted nicely.  But we still say “line of a proof” for the formula.

Following the first formula we see the word “portation”.  That says that a law named “portation” was 
used to get from the first line to the middle line.  Similarly a law named “specialization” was used to get 
from the middle line to the last line.  Laws are not required to have names;  any law without a name is 
labelled “a X law” where X is the name of a law list.  Law names are not necessarily unique;  all the 
laws in the context pane are named “context”.

Law lists are plain text files that can be created, viewed, and deleted in the usual way that plain text files 
are created, viewed, and deleted, and they can be modified using any text editor.  A law in a law file 
consists of an optional name and a binary expression.  Standard law files include binary, generic, 
number, bunch, set, string, list, function, quantifier, limit, specification, and program laws.  Anyone may 
experiment by adding, deleting, or modifying law lists.

Using menu item Add to Law File, whatever is proven by the proof in the proof pane can be added to a 
selected law file and optionally given a name.  If the proof contains any logical gaps or warnings (see 
later), you will be warned against adding it to a law file, but you can still do so.

Using menu item Save, a proof in a proof pane can be saved as a file in a format that can be written and 
read only by the Netty tool.  Using menu items,
• the proof in the proof pane can be printed.
• the proof in the proof pane can be saved to a new proof file.
• the proof in the proof pane can be saved to an existing proof file, replacing what was there.
• the proof pane can be loaded from a proof file, and the context and suggestions will be recalculated.
• a proof file can be deleted.
These are the only ways proof files can be created, used, and deleted.

Getting Started

Clicking on the Laws menu item reveals the names of the lists of laws that can be used;  initially it is 
empty.  Under the Laws menu item there is also an Add menu item that allows you to select a file and 
add it to the list of law lists.  Under the Laws menu item there is also a Delete menu item.  If you select 
the names of one or more law lists, the Delete menu item turns from grey to black, and can be used to 
remove files from the list of law lists.  Adding and deleting law lists can be done at any time.

To get a proof started, the proof pane of a new calculation window has a dialog box

for entering (typing in) the proof direction and first line of the proof.  This dialog box is called the 
“focus”.  When a proof direction and first line are entered into the focus, they become a line of the proof, 
and a new focus (dialog box) appears below it.

Continuing

There is always at most one focus.  The focus can be created or changed by clicking on the connective in 
the left margin of a line of the proof;  the focus is then between the selected line and the following line.  
The focus can be filled in four ways.
• A suggestion can be selected from the displayed suggestions.

http://www.cs.utoronto.ca/~hehner/aPToP/laws.pdf
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• A main operand of the preceding line can be selected and we zoom in.
• If we have previously zoomed in more times than we have zoomed out, then we can zoom out.
• We can simply enter (key in) the next line we want directly.
We discuss these in turn.

Suggestions

The laws in the law lists and in the context pane are used to create the suggestions in the suggestions 
pane.  The order in which suggestions appear will initially be SOMETHING, after which it will be 
adjusted automatically by a NOT YET DETERMINED machine learning technique according to 
patterns of use.  To take one of the suggestions from the suggestions pane, just click on it.  The 
suggestion becomes the next line of the proof, and a new focus appears below it.

There are four ways that a law might create a suggestion.
• If the line before the focus is  ⊤ , then the law is a suggestion, with  =  in the left margin.
• If the line before the focus is an instance of the law, then  ⊤  is a suggestion, with  =  in the left margin.
• If the law has a main operator that is allowed by the current proof direction, and the line before the 

focus is an instance of the left side of the law, then the right side of the law, instantiated the same way 
as the left side, is a suggestion, with the law's main operator in the left margin.

• If the law has a main operator whose reverse is allowed by the current proof direction, and the line 
before the focus is an instance of the right side of the law, then the left side of the law, instantiated the 
same way as the right side, is a suggestion, with the reverse of the law's main operator in the left 
margin.

Sometimes the line before the focus is an instance of one side of a law, but some variables in the other 
side of the law remain unconstrained.  For example, if the line before the focus is  0 , the right side of the 
law  x–x = 0  matches, but leaves  x  unconstrained.  For another example, if the line before the focus is  
∃Q , the right side of the law  P x ⇒ ∃P  matches, but leaves  x  unconstrained.  In that way, applying a 
law can introduce new variables.

The law  a∧b ⇒ a  mentioned previously is actually
∀a, b: bin·  a∧b ⇒ a

and its application requires that the expressions unifying with  a  and  b  be binary.  The law  P x ⇒ ∃P  
mentioned previously is actually

∀P: A→bin· ∀x: A·  P x ⇒ ∃P
Its application requires that the expression unifying with  P  be a function with range  bin , and that the 
expression unifying with  x  be in the domain of the function unifying with  P .  If the type checker is 
unable to determine that the unifying expressions have the correct types, a warning is placed on the line 
to which the law is being applied.  The warning can be removed by supplying the proof that the 
expressions have the right types;  see the section titled Gaps.

Zoom

If the line has a main operator with one or more operands, click on one of these main operands to zoom 
in to it.  Zooming is one level at a time;  to zoom in to something smaller, zoom in several times.  If the 
main operator is associative, for example,  a+b+c , then any one of the operands can be selected.  (See 
Associativity, later.)

An operand selected for zooming in is in a positive, neutral, or negative position.  Here are some 
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examples.

¬ negative – negative
positive + positive positive – negative
positive ↑ positive positive ↓ positive
negative ≤ positive negative < positive
positive ≥ negative positive > negative
positive ∧ positive positive ∨ positive
negative ⇒ positive positive ⇐ negative
neutral = neutral neutral ⧧ neutral
negative : positive positive :: negative
positive , positive positive ‘ positive
positive ∪ positive positive ∩ positive
positive ; positive [ positive ]
positive ;; positive if neutral then positive else positive fi
〈v: negative · positive 〉

Zooming in creates the first line of a subproof.  Its direction is created from the direction of the previous 
line and the selected operand position as follows.
• positive position and any old direction makes the same new direction
• negative position and old direction ≤ makes new direction ≥
• negative position and old direction ≥ makes new direction ≤
• any position and old direction = makes new direction =
• neutral position and any old direction makes new direction =
In these five rules, the old direction is written as  ≤  or  ≥  or  = , which is appropriate if the line we are 
zooming in from is of number type (or string of numbers, or list of numbers, or function with number 
range);  if it is of another type, the old direction symbols are those appropriate for that other type.  
Similarly the new direction symbols should be those appropriate for the type of the subexpression we are 
zooming in to, which may not be the same as the type of the expression we are zooming in from.  For 
example, if the expression we zoom in from is binary, and the expression we zoom in to is a set, the first 
rule becomes the three rules
• positive position and old direction  ⇒  makes new direction  ⊆
• positive position and old direction  ⇐  makes new direction  ⊇
• positive position and old direction  =  makes new direction  =

What the subproof proves is not determined by the subproof direction.  It is determined solely by the 
connectives appearing in the subproof in exactly the same way as a main proof.

Zooming out is caused by the Zoom Out menu item or by pressing the up-arrow key.  Here are some 
scenarios in which  a ,  b , and  c  are of number type.  Note the corner brackets.

scenario 0 scenario 1 scenario 2 scenario 3
≤ a+b ≤ a+b ≤ a+b ≤ a–b
 ≤ b  ≤ b  ≤ b  ≥ b
 < c  ≤ c  = c  > c
< a+c ≤ a+c = a+c < a–c
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scenario 4 scenario 5 scenario 6 scenario 7
⇐ a≥b ⇐ a>b ⇐ a≥b ⇐ a>b
 ≤ b  ≤ b  ≤ b  ≤ b
 ≤ c  ≤ c  < c  < c
⇐ a≥c ⇐ a>c ⇐ a≥c ⇐ a≥c

scenario 8
⇐ a=b
 = b
 = c
= a=c

The leading connective of the new zoom-out line is determined as follows:
• If the zoom position is neutral, the new leading connective is  = .
• If the subproof proves equality, the new leading connective is  = .
• Otherwise the new leading connective is the direction of the line we zoomed in from.
These rules are not optimal;  they do not do justice to scenarios 0 and 3.

The new zoom-out line is the same as the old zoom-in line except that the subexpression we zoomed in 
to, which became the top line of the subproof, is replaced by the bottom line of the subproof.  This is not 
optimal;  it does not do justice to scenario 7.

Zooming out immediately after zooming in is the same as undo (see later):  the zoom-in line is deleted.  
Whenever two zoom-ins in a row are matched by the corresponding two zoom-outs in a row, they are 
combined to a single zoom-in and a single zoom-out.  The corner brackets indicate the innermost zoom.  
For example, the proof on the left below becomes the proof in the middle.  Furthermore, if the subproof 
consists of only a single law application, as in this example, the subproof disappears, and the law name 
moves up, giving us the proof on the right.

= a+b–c     zoom in = a+b–c     zoom in = a+b–c     identity
 = a+b zoom in  = b     identity = a + b×1 – c
  = b     identity  = b×1     zoom out
  = b×1     zoom out = a + b×1 – c
 = a + b×1     zoom out
= a + b×1 – c

Zooming in adds laws to the context, and zooming out removes them.
• From  a∧b , if we zoom in on  a , we gain context  b .
• From  a∧b , if we zoom in on  b , we gain context  a .
• From  a∨b , if we zoom in on  a , we gain context  ¬b .
• From  a∨b , if we zoom in on  b , we gain context  ¬a .
• From  a⇒b , if we zoom in on  a , we gain context  ¬b .
• From  a⇒b , if we zoom in on  b , we gain context  a .
• From  a⇐b , if we zoom in on  a , we gain context  b .
• From  a⇐b , if we zoom in on  b , we gain context  ¬a .
• From  if a then b else c fi , if we zoom in on  a , we gain context  b⧧c .
• From  if a then b else c fi , if we zoom in on  b , we gain context  a .
• From  if a then b else c fi , if we zoom in on  c , we gain context  ¬a .
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If the context added is a conjunction, we gain each of the conjuncts as a separate law.  If the context 
added is a negation, the negation is pushed inwards.  In detail,

a∧b becomes a   and   b
¬¬a becomes a
¬(a∧b) becomes ¬a ∨ ¬b
¬(a∨b) becomes ¬a   and   ¬b
¬(a=b) becomes a⧧b
¬(a⧧b) becomes a=b
¬(a⇒b) becomes a   and   ¬b
¬(a⇐b) becomes ¬a   and   b

For example:  from  a∧b ⇒ c , if we zoom in on  c , we gain both  a  and  b ;  from  a ∨ ¬b , if we zoom 
in on  a , we gain  b ;  from  a ∨ b⧧c , if we zoom in on  a , we gain  b=c .

Example

⇐ (¬a ⇒ ¬b) ∧ a⧧b  ∨  (a∧c ⇒ b∧c)     zoom in
 ⇐ (¬a ⇒ ¬b) ∧ a⧧b     exclusion
 = (¬a ⇒ ¬b)  ∧  a = ¬b     zoom in
  ⇐ ¬a ⇒ ¬b     context
  = ¬a ⇒ a     indirect proof
  = a     zoom out
 = a  ∧  a = ¬b     zoom in
  ⇐ a = ¬b     context
  = ⊤ = ¬b     identity
  = ¬b     zoom out
 =  a ∧ ¬b     duality
 = ¬(¬a ∨ ¬¬b)     zoom in
  ⇒ ¬a ∨ ¬¬b     double negation
  = ¬a ∨ b     inclusion
  = a⇒b     zoom out
 = ¬(a⇒b)     zoom out
= ¬(a⇒b)∨(a∧c ⇒ b∧c)     zoom in
 ⇐ a∧c ⇒ b∧c     context
 ⇐ b∧c ⇒ b∧c     reflexive
 = ⊤     zoom out
⇐ ¬(a⇒b)∨⊤     symmetry
= ⊤∨¬(a⇒b)     base
= ⊤

Associativity

If the main operator of the line before the focus is associative, for example,  a+b+c , then clicking on 
any one of the operands zooms in on that operand.  There is no need for associative laws for the 
following associative operators.

∧  ∨  +  ×  ↑  ↓  ,  ‘  ∪  ∩  ;  ;;  |  .  ||  
To parenthesize some of the operands in an association of operators, shift-click-sweep through the 
operands to be parenthesized.  If the gesture is applied to all the operands in an unnecessarily 
parenthesized expression, the parentheses disappear. 
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The operators  =  and  ⧧  with binary operands are associative, but shift-click-sweep does not apply to 
them.  They are continuing operators, like  ≤  and  <  and all other ordering operators.  For example,  
a=b=c  means  (a=b)∧(b=c) , and  a≤b=c  means  (a≤b)∧(b=c) .  Associative laws are needed for binary  
=  and  ⧧ .  Associative laws are also needed for any new associative operators.

Direct Entry

The focus can be filled by directly typing in your choice of next line.  The leading connective must be 
allowed by the current direction.  You might do this with the intention to come back later and fill in the 
missing proof steps, or apply a law that you will add but haven't yet added to a law list.  Direct entry 
should not be frequent.

Direct entry can also be used as a means of narrowing the choice of suggestions.  With each character 
typed, the list of suggestions decreases to just those that still match.

When the focus is filled entirely by direct entry, it gets a warning.  For example, if the current proof is

⇐ ¬(a⇒b)⇒a     material implication
 = (a⇒b)∨a

and we directly enter “=    a ⇒ a∨b ”, then we see

⇐ ¬(a⇒b)⇒a     material implication
 = (a⇒b)∨a     warning
 = a ⇒ a∨b

A  warning  indicates a logical gap in the proof.  The gap can be filled, and the  warning  removed, as 
described later in the section on Gaps.

Law Query

In a proof, if a law is applied, and you click-and-hold on the law name, you will be shown the law that 
created the next line, and how it applies.  Suppose, somewhere in a proof, we have the two lines

x∧y ⇒ (y∨z ⇒ (z⇒x))     portation
= x∧y∧(y∨z) ⇒ (z⇒x)

If you click-and-hold on the word “portation”, you will see the lines replaced by

  a   ⇒ (   b  ⇒     c    )     portation
=   a  ∧   b    ⇒     c

The portation law is actually
∀a, b, c: bin·  (a∧b ⇒ c) = (a⇒(b⇒c))

but it is displayed with the two sides of  =  reversed, and its variables replace the subexpressions they 
unified with, and they are spaced out so that the other symbols (in the top line  ⇒(⇒)  and in the bottom 
line  ∧⇒ ) do not move.  Releasing the click returns the lines as they were.  It rarely happens that an 
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identifier in a law takes more space than the subexpression it unifies with.  When it does happen, there is 
a jumble of overprinting.

Deleting

A region (consecutive sequence of lines) of a proof can be selected for deletion by a shift-click-sweep 
action.  If the first or last line of a subproof is selected, then the entire subproof is selected.  When a 
region is selected, the delete button causes it to disappear, and causes a warning to appear on the line 
before the region that disappeared, indicating a logical gap in the proof.  (The warning may have been 
there already, perhaps due to a previous deletion or direct entry.)  If the first line of the deleted region 
was created by a law application, the law name also disappears.  If the first line of the deleted region was 
created by zooming in, the low corner brackets on the line before the deleted region also disappear.  If 
the last line of the deleted region was followed by zooming out, the high corner brackets on the 
following line also disappear.

Hiding

A region of a proof can be selected for hiding in the same way as for deletion.  When a region is 
selected, SOME ACTION causes it to disappear, and causes a note to appear on the line before the 
region that disappeared.  If the hidden region included a warning indicating a logical gap, or there was 
already a warning on the previous line, then that note is  warning .  But if there was no warning just 
before or within the selected region, then the note is  hidden .  For example, selecting the subproof (the 
inner proof) on the left, or any part of it that includes either its top line or its bottom line, and then 
SOME ACTION, results in the proof on the right.

= a+b–c     zoom in = a+b–c     hidden
 = a+b     identity = b×1 + a – c
 = a + b×1     symmetry
 = b×1 + a     zoom out
= b×1 + a – c

Clicking on  hidden  or  warning  causes it to disappear and causes the hidden region to reappear.

Scope

If the line before the focus is a function  〈v: d· b〉 , we can zoom in on the domain  d  or the body  b .  To 
create the new subproof direction, the domain is in a negative position and the body is in a positive 
position.  For the body, we gain the context  v:d  and  ¢v = 1 .

The new variable, whose visible name is  v , is given a fresh new name internally that cannot be written 
by a user, so that the variable will be distinguished from any already existing variable of the same name.  
For the purpose of applying a law, the internal name is used, so there is never a problem of “variable 
capture” or “variable hiding”.  If variable  v  occurs in any already existing context, it is greyed out.  The 
domain  d  cannot mention  v .

Internally, there is a stack of variable names.  When a scope is entered, the scope entry symbol  〈   is 
pushed onto the stack.  When a variable is declared, a check is made to ensure that the visible name has 
not been declared since the most recent scope entry, and then it is pushed onto the stack along with its 
unique internal name.  When a name is used, it is searched for from the top downwards, and then 



2011-3-23 Netty 9

replaced by its internal name.  When a scope is exited, the stack is popped down to and including the 
topmost  〈 .

If we enter the following as the first line of a proof

⇐ (¬a ⇒ ¬b)∧(a⧧b) ∨ (a∧c ⇒ b∧c)

then  a ,  b , and  c  are not variables.  To create variables, enter

⇐ 〈a, b, c: bin·  (¬a ⇒ ¬b)∧(a⧧b) ∨ (a∧c ⇒ b∧c)〉

and then zoom in on the body, gaining the context  a: bin ,  ¢a = 1 ,  b: bin ,  ¢b = 1 ,  c: bin ,  ¢c = 1 .

Function Application

If the line before the focus is a function application  〈v: d·  b〉a , the suggestion pane shows the result of 
application.  If that suggestion is selected, the suggestion fills the focus, as usual.  But there is a gap in 
the proof;  what's missing is to prove

⇐ ¢a = 1  ∧  a: d

with all the same context as the function application line.  If the missing proof cannot be done by the 
type-checker,  warning  is placed beside the line before the old focus.  To fill in the gap and remove  
warning , see Gaps, below.

Gaps

There are four ways in which a logical gap in the proof can be created.  As we saw earlier, one is by 
direct entry of the next line of the proof.  Another is by selecting and deleting a region of the proof.  
Another is by applying a law for which the type checker cannot determine that the unifying expressions 
have the right types.  And as we have just seen, a gap is created by applying a function to an operand for 
which the type checker cannot determine that it has the right type.  Any logical gap in the proof is 
marked by  warning  on the line just before the gap.

To fill in a gap, select (click on)  warning .  If the warning belongs to a hidden region, the hidden region 
will reappear with  warning  in it somewhere;  click on that  warning .  The focus is then after the  
warning  line.  For example, if you click  warning  in the top line on the left side below, you get the right 
side below.

= (a⇒b)∨a     warning = (a⇒b)∨a     warning
= a ⇒ a∨b

= a ⇒ a∨b

The focus can be filled in any of the usual four ways, causing the  warning  to be deleted or replaced, 
and the focus then follows the new line as usual, and the  warning  is now beside the newly created line.  
If the newly created line is the same as the line after the focus, the focus and  warning  beside it 
disappear, and the gap is closed.

For another example, if you click the  warning  on the left side below, you get the right side below.
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= 〈n: nat·  n–1〉(i×i)     warning = 〈n: nat·  n–1〉(i×i)
= i×i – 1  ⇐ i×i: nat     warning

 ⇐ ⊤
= i×i – 1

Program Example

⇐ s:= ΣL     frame
 = frame s·  sʹ = ΣL     var
 = frame s·  var n·  sʹ = ΣL     zoom in
 ⇐ sʹ = ΣL     identity
 = sʹ = 0 + ΣL     substitution
 = s:= 0.  sʹ = s + ΣL     a list law
 = s:= 0.  sʹ = s + ΣL[0,..#L]     substitution
 = s:= 0.  n:= 0.  sʹ = s + ΣL[n;..#L]     zoom out
= frame s·  var n·  s:= 0.  n:= 0.  sʹ = s + ΣL[n;..#L]    

At this point in the proof, we are tempted to zoom in on  sʹ = s + ΣL[n;..#L]  because that is what we 
want to refine now.  But its refinement will be recursive, so for that reason, we do not zoom in.  Instead, 
we start a new proof.

⇐ sʹ = s + ΣL[n;..#L]     case creation
  = if n=#L then n=#L  ⇒  sʹ = s + ΣL[n;..#L] else n⧧#L  ⇒  sʹ = s + ΣL[n;..#L] fi     zoom in
  ⇐ n=#L  ⇒  sʹ = s + ΣL[n;..#L]     context
  = #L=#L  ⇒  sʹ = s + ΣL[#L;..#L]     reflexive
  = ⊤  ⇒  sʹ = s + ΣL[#L;..#L]     identity
  = sʹ = s + ΣL[#L;..#L]     a string law
  = sʹ = s + ΣL[nil]     a list law
  = sʹ = s + Σ[nil]     a quantifier law
  = sʹ = s + 0    identity
  = sʹ = s    specialization
  ⇐ sʹ=s ∧ nʹ=n     definition
  = ok     zoom out
 ⇐ if n=#L then ok else n⧧#L  ⇒  sʹ = s + ΣL[n;..#L] fi     zoom in
  ⇐ n⧧#L  ⇒  sʹ = s + ΣL[n;..#L]     context
  = ⊤  ⇒  sʹ = s + ΣL[n;..#L]     identity
  = sʹ = s + ΣL[n;..#L]     warning
  = sʹ = s + L n + ΣL[n+1;..#L]     substitution
  = s:= s + L n.  sʹ = s + ΣL[n+1;..#L]     substitution
  = s:= s + L n.  n:= n+1.  sʹ = s + ΣL[n;..#L]     zoom out
 ⇐ if n=#L then ok else s:= s + L n.  n:= n+1.  sʹ = s + ΣL[n;..#L] fi

Execution

When the focus follows a program expression with no nonlocal variables and no input and no output, 
one of the suggestions is to execute it to obtain a value.  WHAT IF IT HAS NO VALUE? 
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Undo

An undo key backs up one line in the proof pane.  Further uses of undo back up further.  DO WE WANT 
UNDO AS WELL AS DELETE?  DO WE WANT REDO? REDO PREVIOUS?

Comments

PERHAPS a user should be permitted to add comments into the proof SOMEHOW.

Grammar

There is always a tension between the desire to make the notations as traditional as possible, so that they 
will be familiar, and the desire to make the notations as good as possible.  For some notations, the 
answer is clear.  For example, equality is denoted  =  by a 500 year-old tradition that's worldwide.  Since 
equality is not self-dual, it would be better to use a symbol that is not vertically symmetric.  But the 
tradition greatly outweighs the duality consideration.  For another example, there is a tradition to use 
quantifiers such as  Σ  with a variable and starting value beneath it and ending value above it.  That 
tradition is intolerable, so a better notation is used.  For many other notations, it is not so clear whether 
to be traditional or good.  In these unclear cases, aPToP leans toward the traditional, and Unified Algebra 
leans toward being good.  The grammars offered below are exactly aPToP, except:
• The large versions of  =  ⇒  ⇐  have been left out.  When an operator appears in the left margin of a 

proof, it has lowest precedence.
• The abbreviated function and quantifier notations that leave out the domain have not been included.
• A let construct has been added to Netty.
• Subscripting (string indexing) is denoted  _  and superscripting (exponentiation) is denoted  ^ .

Two grammars are offered in this section;  the first is easier to read, and the second gives a more 
efficient parser.  The first grammar is LR(1/2), meaning it has shift-shift choices, but no reduce-reduce 
choices and no shift-reduce choices, so follow sets are not needed.  In the literature, it is called LR(0), 
but it shouldn't be called that because we do need to look at 1 symbol of input to choose among shift 
actions.  The second grammar is LL(1/2).  For each nonterminal, either: every production begins with a 
different terminal, or: every production except the last begins with a different terminal and the last either 
begins with a nonterminal or is empty;  so director sets are not needed.  For efficient parsing, the 
productions (except possibly the last) for each nonterminal should be put in order of decreasing 
frequency, but that hasn't been done.

In these grammars, “identifier” means something that appears in a declaration.  Each identifier should be 
made internally distinct.  If declared by 〈  : · 〉  it becomes an “elementvariable”.  If declared by var it 
becomes a “boundaryvariable”.  If declared by ivar it becomes an “interactivevariable”.  If declared by 
chan it becomes a “channel”.  If declared by let it becomes a synonym.  And “empty” means the empty 
alternative.

LR(1/2) Grammar

expression let identifier = expression · expression raised dot
var identifiers : expression · expression raised dot
ivar identifiers : expression · expression raised dot
chan identifiers : expression · expression raised dot
frame names · expression raised dot

http://www.cs.utoronto.ca/~hehner/aPToP
http://www.cs.utoronto.ca/~hehner/UA.pdf


2011-3-23 Netty 12

quantifier identifiers : expression · expression raised dot
exp13

exp13 exp13 . exp12 low dot
exp13 || exp12
exp12

exp12 boundaryvariable := exp11
interactivevariable := exp11
channel ! exp11
channel !
channel ?
exp11

exp11 exp11 ⇒ exp10
exp11 ⇐ exp10
exp10

exp10 exp10 ∨ exp9
exp9

exp9 exp9 ∧ exp8
exp8

exp8 ¬ exp8
exp7

exp7 exp7 = exp6
exp7 ⧧ exp6
exp7 < exp6
exp7 > exp6
exp7 ≤ exp6
exp7 ≥ exp6
exp7 : exp6
exp7 :: exp6
exp7 ∈ exp6
exp7 ⊆ exp6
exp7 ⊇ exp6
exp6

exp6 exp6 , exp5
exp5 ,.. exp5
exp6 | exp5
exp6 ⊲ expression ⊳ exp5
exp5

exp5 exp5 ; exp4
exp4 ;.. exp4
exp5 ;; exp4
exp5 ‘ exp4
exp4

exp4 exp4 + exp3
exp4 – exp3
exp4 ∪ exp3
exp3

exp3 exp3 × exp2
exp3 / exp2
exp3 ∩ exp2
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exp3 ↑ exp2
exp3 ↓ exp2
exp2

exp2 – exp2
¢ exp2
$ exp2
↔ exp2
# exp2
exp1 * exp2
* exp2
~ exp2
 exp2
☐ exp2
exp1 → exp2 function space
√ channel
exp1 ^ exp2 exponentiation
exp1 _ exp2 subscripting
quantifier exp1
exp1

exp1 exp1 @ exp0
exp1 exp0 list indexing, function application
exp0

exp0 ( expression )
{ expression }
[ expression ]
〈 identifiers : expression · expression 〉 function
if expression then expression else expression fi
⊤
⊥
number
text
name

identifiers identifiers , identifier
identifier

names names , name
name

name elementvariable
boundaryvariable
interactivevariable
channel
synonym

quantifier Σ
Π
∃
∀
§
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LL(1/2) Grammar

expression let identifier = expression · expression
var identifier maybemoreidentifiers : expression · expression
ivar identifier maybemoreidentifiers : expression · expression
chan identifier maybemoreidentifiers : expression · expression
frame name maybemorenames · expression
Σ afterquantifier
Π afterquantifier
∃ afterquantifier
∀ afterquantifier
§ afterquantifier
exp13

maybemoreidentifiers , identifier maybemoreidentifiers
empty

name elementvariable
boundaryvariable
interactivevariable
channel
synonym

maybemorenames , name maybemorenames
empty

afterquantifier identifier maybemoreidentifiers : expression · expression
exp11

exp13 exp12 maybemoreexp13
maybemoreexp13 . exp13

|| exp13
empty

exp12 boundaryvariable := exp11
interactivevariable := exp11
channel afterchannel
exp11

afterchannel ! exp11
?

exp11 exp10 maybemoreexp11
maybemoreexp11 ⇒ exp10 maybemoreexp11

⇐ exp10 maybemoreexp11
empty

exp10 exp9 maybemoreexp10
maybemoreexp10 ∨ exp9 maybemoreexp10

empty
exp9 exp8 maybemoreexp9
maybemoreexp9 ∧ exp8 maybemoreexp9

empty
exp8 ¬ exp8

exp6 maybemoreexp7
maybemoreexp7 = exp6 maybemoreexp7

⧧ exp6 maybemoreexp7
< exp6 maybemoreexp7
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> exp6 maybemoreexp7
≤ exp6 maybemoreexp7
≥ exp6 maybemoreexp7
: exp6 maybemoreexp7
:: exp6 maybemoreexp7
∈ exp6 maybemoreexp7
⊆ exp6 maybemoreexp7
⊇ exp6 maybemoreexp7
empty

exp6 exp5 maybemoreexp6
maybemoreexp6 , exp5 maybemoreexp6

,.. exp5
| exp5 maybemoreexp6
⊲ expression ⊳ exp5 maybemoreexp6
empty

exp5 exp4 maybemoreexp5
maybemoreexp5 ; exp4 maybemoreexp5

;.. exp4
;; exp4 maybemoreexp5
‘ exp4 maybemoreexp5
empty

exp4 exp3 maybemoreexp4
maybemoreexp4 + exp3 maybemoreexp4

– exp3 maybemoreexp4
∪ exp3 maybemoreexp4
empty

exp3 exp2 maybemoreexp3
maybemoreexp3 × exp2 maybemoreexp3

/ exp2 maybemoreexp3
∩ exp2 maybemoreexp3
↑ exp2 maybemoreexp3
↓ exp2 maybemoreexp3
empty

exp2 – exp2
¢ exp2
$ exp2
↔ exp2
# exp2
* exp2
~ exp2
 exp2
☐ exp2
√ channel
exp1 maybemoreexp2

maybemoreexp2 * exp2
→ exp2
^ exp2 exponentiation
_ exp2 subscripting
empty
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exp1 exp0 maybemoreexp1
maybemoreexp1 @ exp0 maybemoreexp1

( expression ) maybemoreexp1
{ expression } maybemoreexp1
[ expression ] maybemoreexp1
〈 identifier maybemoreidentifiers : expression · expression 〉 maybemoreexp1
if expression then expression else expression fi maybemoreexp1
⊤ maybemoreexp1
⊥ maybemoreexp1
number maybemoreexp1
text maybemoreexp1
elementvariable maybemoreexp1
boundaryvariable maybemoreexp1
interactivevariable maybemoreexp1
channel maybemoreexp1
empty

exp0 ( expression )
{ expression }
[ expression ]
〈 identifier maybemoreidentifiers : expression · expression 〉
if expression then expression else expression fi
⊤
⊥
number
text
elementvariable
boundaryvariable
interactivevariable
channel


