Theoretical Computer Science 26 (1983) 105-120 105
North-Holland

A MORE COMPLETE MODEL OF COMMUNICATING
PROCESSES

E.C.R. HEHNER
Computer Systems Research Group, University of Toronto, Toronto M5S 1A1, Canada

C.A.R. HOARE

Oxford University Computing Laboratory, Programming Research Group, Oxford OX2 6PE,
United Kingdom

Communicated by M. Nivat
Received January 1982
Revised October 1982

Abstract. A previous paper by Hoare gives axioms and proof rules for communicating processes
that provide a calculus of total correctness. This paper gives explicit definitions of communicating
processes as predicates. The former axioms and proof rules become theorems, proved using the
explicit definitions. The defining predicates are more powerful than the proof rules for reasoning
about processes, but less often useful for their construction. An implementation of the processes
using partial recursive functions is given.

Introduction

Axioms and proof rules for communicating processes have been given by Hoare
[1]. They serve three purposes:

(a) they implicitly define communicating processes;

(b) they can be used to reason about communicating processes;

(c) they can be used to construct communicating processes for a given purpose.

In this paper, processes are given explicit definitions as predicates. The axioms
and proof rules in [1] become theorems about processes, proved using the explicit
definitions in this paper. This proves the soundness of the calculus presented in [1].

The proof rules are incomplete as a means of reasoning about communicating
processes; an example of an expressible but not provable truth is given in [1]. The
‘honest toil’ of giving explicit predicate definitions has the advantage that it is
complete, relative to data types. Its disadvantage is that the explicit definitions are
less often useful for the construction of processes to fulfil a given purpose than the
former proof rules (now theorems).

An axiomatic definition requires a model to demonstrate the consistency of the
axioms. In [2], a set-theoretic model of communicating processes is given. From
that, we know that at least one mathematical object satisfies the axioms. We should

0304-3975/83/$3.00 © 1983, Elsevier Science Publishers B.V. (North-Holland)

106 E.C.R. Hehner, C.A.R. Hoare

like to know that at least one computable mathematical object satisfies the axioms.
To that end, an implementation using partial recursive functions is presented in
this paper.

1. Axiomatic basis

A message is a pair (channel, value) over an alphabet of channels and values. If
direction of communication is important, a message can be taken instead to be a
triple (channel, direction, value), or channels can be considered directed; however,
we shall not need to refer to the direction of communication. (This is entirely
realistic; if you tap a phone line, you can record ‘values’, but not direction.) To
denote a message, we shall use infix ‘!’ instead of angle brackets. For example c¢!1
is a message with channel ¢ and value 1.

A particular process at a particular moment has a past, which is the sequence
of messages it has communicated up to that moment. It also has a present, which
is the set of messages that it can communicate at the next step. Which message in
the set it actually does communicate next may be determined in part (or completely,
or not at all) by the environment of the process (those other processes connected
to it by channels). If the set is empty, the process cannot communicate further, and
is said to be deadlocked. ‘

Let past be a free variable representing a finite sequence of messages. Let present
be a free variable representing a finite set of messages. A predicate R in past and
present is said to describe a process P if, at all times (before and after each
communication) during any evolution (execution) of P, R is true of P’s past and
present. This is denoted

Psat R

meaning “P is described by R, or “P satisfies description R .

Hoare proposes four ‘healthiness conditions’ that are reasonably required of the
sat relation. For all processes P and all predicates R, S, R (n),

(H1) P sat true.

(H2) —(P sat false).

(H3) If R = S is a theorem, then (P sat R) = (P sat S) is a theorem.

(H4) (VheN.PsatR(n))=(PsatVneN.R(n)).

On this basis, an axiom or proof rule is introduced in [1] for each construct (an
axiom is just a proof rule with no premises).

For example, the process STOP can be defined by the axiom

(STOPsat R) = R[past: (); present: {}].

The right side denotes the predicate obtained from R by simultaneously substituting,
for all free occurrences of past, the empty sequence of messages, and for all free
occurrences of present, the empty set of messages.

A more complete model of communicating processes 107
2. Explicit basis

“P sat R” means that predicate R describes process P, but the description may
be a weak one. In the extreme, according to (H1), true is a (weak) description of
every process. By (H4), the conjunction of all descriptions of a process P is also a
description of P; it is the strongest, and therefore an exact, description of P. If that
description can be written explicitly, then it is an explicit definition of P.

Notationally, there is no reason to distinguish between a process and the predicate
that defines it. Therefore we shall define a process as a predicate in the free variables
past and present over a finite alphabet of messages. (The finiteness of the alphabet
will be required later for computability.) For example, STOP can be defined as

STOP: past ={) A present ={}.

The colon means ‘“‘is defined as”. (It is appropriate to use the same symbol for
_definition and substitution because definition is simply permission to substitute.)

For any process P, the possible initial communications are described exactly by
the predicate P[past: ()], and the sequences of communications that lead to dead-
lock are described exactly by the predicate P[present: {}]. If we wish to prove that
a process cannot deadlock, we must prove

Vpast. 7P| present: {}].
With this way of defining processes, ‘P sat R”’ means
Vpast, present. P = R.
The healthiness conditions degenerate nicely.
(H1) Vpast, present. P = true is a tautology.
(H2) —(Vpast, present. P = false) asserts that P is satisfiable.
(H3) If R =S is a theorem, then (Vpast, present. P = R)=> (Vpast, present.
P =) is a theorem. This is provable in the predicate calculus.

(H4) (Vn e N.Vpast, present. P = R (n))= (Vpast, present. P=>VYn eN.R(n)) is
a tautology, assuming P does not mention #.

The word ‘healthy’ has been reduced to the word ‘satisfiable’, and indeed a
predicate should be true of some past and present if it is to be a reasonable definition
of a process. That excludes

MIRACLE: false
but is not sufficient as a characterization of processes. Consider
NOWAY1: past ={c!1) A present = {}.

Although NOWAY1 is clearly satisfiable, execution cannot begin, because
NOWAY1[past: ()] is not satisfiable; there is no initial message. It is reasonable
to require of a process that when something cannot happen, it will not happen. A

108 E.C.R. Hehner, C.A.R. Hoare

different problem arises in
NOWAY?2: past = () A present ={c!1}.
Initially, the message ¢!1 can be communicated, but past remains forever empty.
It is reasonable to require that when something can happen, something will happen.
Definition. A process P is a predicate in the free variables past and present such that
(PO) 3Jpast, present. P,
(P1) Vpast, message. (Ipresent. P A message € present)
= (Ipresent. P[past: past”(message)])

where “ is catenation of message sequences.

Perhaps (P1) is best explained as two implications, slightly rearranged.
Vpast, present, message.
P A message € present =
Anewpresent. P[past: past™(message); present: newpresent |

says that past can be extended by any message in present, and P will still be
satisfiable (it still describes the process).

Vpast, present, message.
P[past: past™(message)] =
Joldpresent. P[present: oldpresent] A message € oldpresent

says that a nonempty past can be shortened by removing its final message, and P
must have been satisfied by that shorter past and a present containing that message.

According to the definition of a process, neither MIRACLE nor NOWAY1 nor
NOWAY?2 is a process. But STOP is, and so is

CHAOS: true.

The next section will show why this process merits the name “CHAOS”.

Having proposed a definition of a process which we named STOP, we must prove
that the definition of STOP is consistent with the axiom proposed for STOP in [1].
The axiom must become a theorem in the predicate calculus. To prove it, we need
the following.

Substitution fact. If P is a predicate, e is an expression, and x is a variable not
appearing in e, then
Rliv:ellf =WV w —ei— P

where the quantifier ranges over the type of x.

A more complete model of communicating processes 109

Proof. In [3], Shoenfield proves
Plxielf=3x. v =ecnP
from which we know both

S(Phel)li= 3x.x=ec AP

(—=P)[x:e] = Ax.x =e n—IP.
But

(mP)[x:e] = (P[x: e]).
Hence

Plx:e] = P[x:e]
—dx.x =e AP
Vx.x=e=>P. O

STOP Theorem. (STOP sat R)=R|[past: (); present: { }].

Proof. Using first the interpretation of “P sat R, then the definition of “STOP”,
then the substitution fact generalized to two variables, we have

STOP sat R = Vpast, present. STOP = R

Vpast, present. past ={) A present ={} =R

R[past: {); present: { }].

3. Implementation

An implementation of a process is a partial recursive function from sequences
of messages to sets of messages. For each past within its domain, the function
determines (computes) a present that contains the possible next messages. If all of
the processes connected by a channel are simultaneously willing to communicate
several different messages, i.e. the intersection of their presents contains more than
one message, then an arbitrary one of those messages will be communicated. In
that way, the system of processes (not the individual processes) is nondeterministic.

There is another kind of nondeterminism. A process predicate P can be satisfied
by a particular past and present, say s and M, and also by s and N ; the same past
can have more than one corresponding present. This process nondeterminism is
afreedom for the implementor. An implementation, being deterministic, will deliver
one of the corresponding presents for each past. In effect, for a function f to be
an implementation of process P, it must be an implementation of some deterministic
subprocess Q.

110 E.C.R. Hehner, C.A.R. Hoare

Definition. The pasts of a process P are defined as
pasts(P): {past | Ipresent. P}.

Definition. Q is a subprocess of P if Q is a process ((PO) and (P1) are true of Q)
and Q = P.

Definition. Process P is deterministic if Vpast € pasts(P). 31present. P.

Definition. An implementation of process P is a partial recursive function f from
sequences to sets of messages, such that for some deterministic subprocess Q,

Vs € pasts(Q). Q[past: s; present: f(s)].

We shall use ¢P# as the name of an implementation of process P. For example,
#STOP#(s): if s =() then {}

is a partial recursive function defined only for the one sequence (). It is a correct
implementation of STOP because

(a) pasts(STOP) ={()},
(b) STOP[past: (); present: ¢ STOP#(())]
o=l =0

= true.

All other correct implementations of STOP must agree with this one for the
sequence ().

CHAOS is the most nondeterministic process. Every deterministic process is a
subprocess of CHAOS, so that an implementation of any process is also an
implementation of CHAOS. The name “CHAOS” is deserved because it is not at
all determined what CHAOS will do.

4. Process construction

Processes can be constructed from other processes in prescribed ways. Suppose
that F is a one-place process constructor, i.e. from process P we construct process
F(P), from Q, F(Q), etc. We require F to obey these laws.

(PCO) If P is a process, then F(P) is a process.

(PC1) (monotonicity): YP, Q. If P= Q is a theorem, then F(P)=F(Q) is a
theorem.

(PC2) (continuity): If PoP1P, ... is a strengthening chain of processes, i.e. if
Vi. P;.1 = P; is a theorem, then (Vi. F(P;))=F (Vi. P;) is a theorem.

A more complete model of communicating processes 111

By the usual trick known as ‘Currying’, a multi-place constructor can be regarded
as the composition of several one-place constructors.

Each of Sections 5 to 14 presents one way of constructing processes from other
processes. Each constructor is defined, a theorem (formerly axiom) is stated, and
an implementation of it is displayed. For each constructor, it should be proved that
(PCO)—(PC2) are satisfied, the theorem should be proved, and the correctness of
the implementation should be proved. Most of these proofs are either tedious or
obvious, and are omitted; only three of the more interesting proofs of theorems
are included.

In addition to the standard notations of sets, predicates, and functions, the
following notations will be used:

value(m) is the value component of message m,

channel(m) is the channel component of message m,

#S is the length of message sequence s,

TS is the catenation of message sequences 7 and s,

first(s) is the first message in nonempty message sequence s,

rest(s) is the subsequence of nonempty message sequence s that excludes
the first message,

s.c is the subsequence of message sequence s that includes those messages
having channel component c,

s\c is the subsequence of message sequence s that excludes those
messages having channel component c,

M.c is the subset of message set M that includes those messages having
channel component c,

M\c is the subset of message set M that excludes those messages having

channel component c.

5. Output

A process that communicates the value of expression e on channel c¢ (i.e. it
communicates the message c!e) and then behaves like process P can be defined as

cle > P:past =() Apresent ={c!e}
v past # () afirst(past) =c!e A P[past: rest(past)].
The output theorem, which will now be proved, is
(cle>P)sat R = R[past: (); present: {c'e}]
A P sat R[past: (c!e) ~ past].
The proof has three parts.

(a) (Vpast, present. past = () A present ={c!e} =>R)
= R[past:{); present:{c!e}]
by the substitution fact of Section 2.

1§15 E.C.R. Hehner, C.A.R. Hoare

(b) The predicate
Vpast, present. past #) A first(past) = c!e A P[past: rest(past)] = R

can be simplified by considering the two cases past =({c!e)r for some sequence
r, and past # (c!e)’r for any sequence r. In the latter case, the antecedent is clearly
false, so the implication is clearly true. The implication must hold for all values of
past, so it reduces to the former case,

Vr, present. P[past: r]=> R[past: (c'e)"r].
This, by a change of bound variable, is just

Vpast, present. P = R[past: (c!e) past]
which proves

(Vpast, present. past #{) Afirst(past) = c!e A P[past: rest(past)] = R)
= (Vpast, present. P = R[past: (c!e) past]).
(c) Part (a) has proved something of the form

(Vp. A=>R) = B.

Part (b) has proved something of the form
(Vp.C=>R) = D.

From these two, follows
(V/p.AvC =>R) = BaD

which is the desired result.
An implementation of output is

fcle>P¥(s):if s =()
then {c!e}
else if first(s) =cle

then ¢P# (rest(s)).

6. Input

Let ¢ be a channel, M a finite set of messages for channel ¢, and P(x) a process
with parameter x. Then ¢ ?x: M - P(x) is a process that can initially communicate
any message in M, say c!x, and then behave like P(x). It is defined as

c?x:M - P(x): past ={) A present = M
v past # () A first(past) e M
A P(value(first(past)))[past: rest(past)].

A more complete model of communicating processes 113

The input theorem
(c?x:M - P(x)) sat R
=R [past: (); present: M]
AVm e M. P(value(m)) sat R[past: (m) past]

can be proved in a manner similar to the proof of the output theorem. In fact,
according to their semantics, output is just the special case of input in which M is
a unitset.

An implementation of input is

fc?x:M->P(x)#(s):if s =()
then M
else if first(s)e M
then #P(value(first(s)))# (rest(s)).

7. Recursion

If F is a one-place process constructor, then the recursive process definition

P:F(P)
means

P: Vi. F'(CHAOS)
where

F°(P)=P, F"'(P)=F(F'(P)).

Starting with CHAOS, we create an ordered sequence of processes F'(CHAOS).
The ordering is reverse implication (‘is implied by’). The sequence is one of ever
more deterministic subproceses, and P is its limit. In other words, P is the least
fixed point of F, where ‘least’ means ‘weakest’ or ‘least deterministic’.

The theorem for recursively defined P is

(Vi. (F'(CHAOS) sat R1i) = (F'*'(CHAOS) sat R1i + 1)) = P sat R

where R7i=(#past<i=R). To prove it, notice first that R70=true, hence
F°(CHAOS) sat R10. With that basis, the major antecedent, by induction, implies

Vi. F'(CHAOS) sat R1i

Vi. Vpast, present. F'(CHAOS) = R i
Vpast, present. Vi. F'(CHAOS) => R }i
Vpast, present. (Vi. F'(CHAOS)) = (Vi. R1)
Vpast, present. P = R

P sat R

114 E.C.R. Hehner, C.A.R. Hoare

By choosing # CHAOS#(s) to be the universe of messages for the channels of
the construction, P can be implemented as

£P3(s): fjo €F (CHAOS)#(s)

assuming we know how to implement F(P) in terms of an implementation of P.
By choosing # CHAOS#(s) to be the empty set, P can be implemented as

P4 (s): L) ¢F' (CHAOS)$(s).

i=0

8. Channel renaming

If process P does not mention channel d, then
Plic:dil

denotes a process like P except that all occurrences of channel ¢ are replaced by
channel d. Its theorem,

Plc:d]satR[c:d] = PsatR
where R does not mention ¢, is obvious. So is its implementation

€P[c: d1#(s): €P#[c: d](s).

9. Disjoint parallelism

Let P be a process that communicates on the set of channels C, and let Q be a
process that communicates on the set of channels D, where C nD ={}. Then P||Q
is a process that behaves like P and Q in parallel, not communicating with each
other. It is defined as

P||Q: P[past: past.C; present: present.C]

A Q[past: past.D; present: present.D]

where the dot notation has been extended in an obvious way.
From this definition, the theorem
(PsatS)A(Qsat T)=>P||Qsat(SAT)

is easily proved.
Disjoint parallelism can be implemented as

¢P|[|Q#(s): €P#(s.C) L £Q#(s.D).

A more complete model of communicating processes 115
10. Channel connection

The process formed from process P by connecting its channels ¢ and d and
naming the connected channel b (a new channel name) is denoted

b=c<dinP.

The new process can communicate a message on the new channel 6 iff P can
communicate a similar message on both channels ¢ and d. For message b!x to
occur in the past of the new process, there must be a corresponding past of P in
which ¢! x and d! x occur together. In fact, there must be two corresponding possible
pasts of P, one in which c!x and d!x occur together in that order, and one in
which they occur together in the other order. Without loss of generality, we can
restrict our attention to one of the two orders. The definition can be stated as
b=c<dinP: 3s, M. P[past: s; present: M |

At Vi x. (t;=blx)=(si=clx)=(sir1=d!x)

AE\b =s\c Apast =t\d

Apresent ={b!x |3N. P[past: s™(c!x)(d'x); present: N}

uM\c\d

where #; and s; are the /th messages in message sequences ¢ and s.
Its theorem is

(PsatR)=>(b=c<dinP)sat3x,y. Rlc:x;d:y]
A present.b = present.x n present.y
A past.b = past.x = past.y.
An implementation is
¢b =cod inP}(s): €PF(g(s, ()
where
g(s, t):if s =()
then ¢
else if first (s)=b'x
then g(rest(s), t(c!x)(d!x))
else g(rest(s), t"(first(s)))

reconstructs the past with c¢!x and d!x replacing each occurrence of 5! x.

116 E.C.R. Hehner, C.A.R. Hoare
11. Hiding

If P is a process that communicates on channel b (and possibly others) then
chan 6 in P

is a process like P, except that channel 4 is local, and not visible to (available for
communication with) its environment. Channel 4 is used for internal communication
in the new process. Hiding is quite a delicate subject, as the discussion will show,
and we do not yet have an entirely satisfactory definition. A first attempt is

chan b in P:
ds, M. P past: s; present: M] A past = s\b A present = M\b.
A variation is obtained by adding the conjunct
Vr,t,N.s =r"t AP[past:r;present: N]AN.b #{}
=t #{) A channel(first(¢)) = b

within the scope of Js. Without this conjunct, a process is interruptible, i.e. there
is the possibility of external communication as an alternative to internal communica-
tion. But with this conjunct, a process is uninterruptible while engaged in internal
communication; when, in process P, communication is possible on either channel
b or another channel, then, in process chan b in P, channel » will be chosen. The
interruptible version includes the presents of unstable states, excluding the internal
communications (hidden messages) that make the states unstable. It does so in
order to include the possibility of external communications (interrupts) at those
states. Unfortunately, this means that an implementation can deliver the present
of an unstable state, ignoring forever the internal communication, waiting forever
for an interrupt. The uninterruptible version includes only the presents of stable
states. It is unsatisfactory because it excludes the possibility of external communica-
tion at an unstable state.

The hiding theorem is

(P sat (R A 3f. #past.b <f(past\b)))
= ((chan b in P) sat (3s. R past: s] a past = s\b A present.b ={}))

and can be proved from the uninterruptible version without using the theorem’s
antecedent. The purpose of the antecedent is to allow a definition of channel hiding
that is weaker than the one we have given in the following way. In our uninterruptible
version, a process which can engage in an infinite sequence of communications on
the hidden channel does not communicate further with its environment; livelock
(infinite internal chatter) is equivalent to deadlock. The hiding theorem, as an
axiom in [1], allows livelock to be considered differently, in any way desired, even
as equivalent to CHAOS; it does not allow anything to be proven about a livelocked
process.

A more complete model of communicating processes 18157

Hiding can be implemented, uninterruptibly, as follows.
#chan b in P#(s): ¢P#(h(s,()))
where
h(s, t):if ¢P#(t).b ={}
thenifs = ()
then ¢
else /i (rest(s), t " (first(s)))
else 4 (s, t°(choose(£P#(t).b))).

The function A constructs a new sequence ¢ from the given sequence s such that
s =t\b by inserting messages on channel & whenever possible. When there is a
choice of messages that can be inserted, the choose function chooses an arbitrary
one of them. Because present is always a finite set of messages, this choice will be
from a finite set, and choose is therefore implementable. The function /4 is not
necessarily terminating; this is an accord with the possibility of livelock.

The two kinds of nondeterminism mentioned in Section 3 can be called ‘external’
and ‘internal’. External nondeterminism, having more than one message in a
present, is resolved by the availability of external communication, and if that does
not fully resolve it, then by other external forces. Internal nondeterminism, having
more than one present, is resolved internally according to the implementation. But
the two become mixed during channel hiding, when things external become internal.
Separating them again properly is a delicate operation.

12. Nondeterministic union

The process that can behave either like process P or like process Q is defined as

PorQ:PvO.
Its theorem
(PorQ)satR = (Psat R)A(Q satR)

is easily proven.
One implementation is

€P or Q#(s): €P#(s).

13. Conditional

The conditional process is defined as

ifethenPelse Q:¢e =>PAr—1e=>Q

118 E.C.R. Hehner, C.A.R. Hoare

where e is a boolean expression, and P and Q are processes. Its theorem is

(if e then P else Q) sat R

Il

e=>(PsatR)r1e = (QsatR).

It can be implemented as

¢if e then P else Q#(s): if e then £P#(s)
else £Q#(s).

14. Alternation

Let I and J be input processes, as in Section 6. Then I1J is a process that
behaves either like I or like J, depending on the availability of input for I and J.
If, in its environment, an initial communication for 7 is possible but for J impossible,
then it behaves like . Conversely, if an initial communication for J is possible and
for I impossible, it behaves like J. If both are possible, it behaves like either I or
J. If neither is possible, it is deadlocked.

c?x:M->P(x)ld?y:N > Q(y):
past =) Apresent = M UN
v past #) A first(past) e M
A P(value(first(past)))[past: rest(past)]
v past # () A first(past) e N
A Q(value(first(past)))[past: rest(past)].

The alternation theorem is
(c?x:M->P(x)ld?y:N ->Q(y))sat R
= R[past: (); present: M UN]
A (Vm € M. P(value(m)) sat R [past: (m) past])
A (Vm € N. P(value(m)) sat Q[past: (m) past]).
An implementation of alternation is
fc?x:M->Px)ld?y:N->Q(y)#(s):
ifs =()
then M UN
else if first(s) e M

A more complete model of communicating processes 119

then ¢P(value(first(s)))# (rest(s))
else if first(s)e N

then £Q (value(first(s)))# (rest(s)).

15. Conclusion

To program in the notation of communicating processes, one must begin with a
specification, which is a predicate to be satisfied, and then choose an appropriate
construction. An axiom or proof rule should say what the components of the
construction must satisfy in order that the construction will satisfy the original
predicate. Thus one creates specifications for subcomponents in the usual ‘top-down’
fashion.

The intended use of an object should guide the design of the object. Just as a
specification, via the proof rules, guides the design of a process, so the desire for
such proof rules guides the design of the range of process constructs. It is therefore
appropriate for an axiomatic, implicit definition of communicating processes to
precede an explicit definition. The explicit definition serves both as a guide for
implementors, and as a more powerful tool for reasoning about processes. For
example, defining

P:b!0->P
the predicate
(chan b in P) sat true

is cited in [1] as an expressible but unprovable truth. With the definitions in this
paper, its proof is easy.

When processes are defined axiomatically, a model should be built to show that
the axioms describe at least one object of interest; that was first done in [2]. The
partial recursive functions in this paper serve as a second model, and a demonstration
of computability. With more models, one gains confidence that at least some of
the objects one wanted to define are in the class of objects defined.

How does one prove that the class defined includes all and only the desired
objects? A Turing Machine simulation can show that all computable functions are
expressible as processes, but the aptness of the process constructions is not amenable
to proof in the usual sense. However, when a second, independent definition proves
to be consistent with the first, confidence in the definitions is greatly increased.
That is a contribution of this paper. In one sense, the predicate definitions are not
independent: they were intended to be consistent with the axiomatic definitions.
Nonetheless, they provide the reader with another look at communicating processes.

120 E.C.R. Hehner, C. A.R. Hoare
Acknowledgment

This paper was improved by the helpful comments of the referees, particularly
Dr. Ernst-Rudiger Olderog.

References

[1] C.A.R. Hoare, A calculus of total correctness for communicating processes, Sci. Comput. Program -
ming 1(1) (1981) 49-72.

[2] C.A.R. Hoare, S.D. Brookes and A.W. Roscoe, A theory of communicating sequential processes,
Oxford University Programming Research Group Technical Monograph PRG-16 (1981).

[3] J.R. Shoenfield, Mathematical Logic (Addison-Wesley, Reading, MA, 1967) 36.

