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Abstract. In this methodology, programming problems which can be specified by an input/output
assertion pair are solved in two steps:

(1) Refinement of a correct program that can be implemented sequentially.

(2) Declaration of program properties, so-called semantic relations, that allow relaxations in
the sequencing of the refinement’s operations (e.g., concurrency).

Formal properties of refinements comprise semantics (input/output characteristics) and
(sequential) execution time. Declarations of semantic relations preserve the semantics but may
improve the execution time of a refinement. The consequences are:

(a) The concurrency in a program is deduced from its formal semantics. Semantic correctness
is not based on concurrency but precedes it.

(b) Concurrency is a property not of programs but of executions. Programs do not contain
concurrent commands, only suggestions (declarations) of concurrency.

(c) The declaration of too much concurrency is impossible. Programs do not contain primitives
for synchronization or mutual exclusion.

(d) Proofs of parallel correctness are stepwise without auxiliary variables.

(e) Freedom from deadlock and starvation is implicit without recourse to an authority outside
the program, e.g., a fair scheduler.

1. Concepts of concurrent programs

The last decade has brought considerable advances in the field of programming
methodology, in general, and in the understanding of concurrency, in particular.
The popular technique for programming concurrency is to define a set of concurrent
units, processes, and to control their interaction by some means of synchronization.
The early language constructs proposed in the sixties, fork and join for processes
[4] and semaphores for synchronization [5], were intuitive but difficult to formalize.
However, the invention of formal methods for the specification of program seman-
tics [13] increased our understanding and ability to handle process programs.
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Normally, the first step of the program development is to specify, in a concurrent
command, a set of processes, 1,52, ..., Sn,

cobegin S1//S2| . . .//Sn coend

which are sequential within themselves but are executed in concurrence with respect
to each other. The double slashes (//) signify concurrent execution. To prevent
concurrency where it may lead to incorrect program behaviours, some construct
for conditional delay must be added. For instance,

await(B— SL)

appearing in process Si suspends the execution of Si until logical condition B is
satisfied. Typically, B will be generated by some concurrent process Sj, j # i. Upon
validation of B, the execution of Si proceeds with statement list SL. While SL is
being executed, any concurrent operation that might cause correctness problems
(for example, invalidate B again) is suspended. The technique of forcing activities
of different concurrent processes into a sequence in order to preserve correctness
is called mutual exclusion. To protect statement S by mutual exclusion, it is framed
with angle brackets:

(S).

These constructs for programming with processes (the concurrent command,
conditional delay, and mutual exclusion) can be formally defined [21, 28], and we
can convince ourselves of the correctness of a process program by

(a) first verifying all processes separately as if they were isolated sequential
programs, and then

(b) proving the correctness of their interactions in concurrent execution.

A good example is the proof of a concurrent garbage collector [9].

There are, of course, problems and the one we are particularly concerned with
in this paper is the apparent lack of guidelines or criteria to aid the program design.
A proof system alone does not necessarily provide support for the development
of correct programs. We might continually produce code and discover that it is
incorrect. What we need is a methodology, a programming calculus that merges
program design and verification in order to obtain correct and maybe even par-
ticularly suitable programs.

The approach to concurrency just described does not serve as a methodology
for program development for the following reasons:

There are no guidelines for the choice of processes. But even if there were,
dividing a program into processes is a bold first step, because it usually defines too
much concurrency, which then has to be properly pruned with conditional delays
and mutual exclusion. Failure to undo all incorrect concurrency leaves one with
an incorrect program. Unfortunately, parallel correctness can only be established
after the development of the processes involved has been completed. Thus the
development of processes and the proof of their correct cooperation are strictly
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separated. One has to understand all process interactions in their entirety in order
to arrive at a correct program.

Our goal is a programming methodology that includes aspects of concurrency.
In addition to a formally defined language in which one can communicate programs
to the computer, we aim at methods for a correct and suitable stepwise development
of such programs. In this methodology, concurrency will be a property not of a
program but of an execution. If the semantic properties of the program permit
concurrency, an implementation should be able to make use of it to whatever extent
is possible and practical. But the semantics will determine the concurrency, not
vice versa. Then the correctness of the program does not depend on our understand-
ing of concurrency. A consequence of this view is that our programming language
will not contain primitives for sequencing, concurrency, or synchronization. These
are aspects of executions, not of the program itself.

We will develop and prove concurrency in steps. Each step will increase the
concurrency of the program’s executions by observing local properties of some
program components. A global understanding of the concurrency permitted by the
program is not necessary.

We will be result-oriented, i.e., interested only in results of programs and the
speed with which these results can be obtained, but not in certain program
behaviours. Our programs will suggest suitable computations rather than expressing
a set of given computations. In contrast, process programs are behaviour-oriented,
i.e., designed with specific computations in mind.

A much-dreaded sign of the complications parallelism introduces into programs
is that the complexity of proofs explodes with increasing concurrency. This is blamed
on the necessity to argue consistency of shared data. To prevent such an argument,
one can discipline the use of shared variables [14, 29], but that restricts also the
potential of concurrency. Or one can eliminate shared variables altogether [8, 16],
but may in proofs still have to deal with shared auxiliary variables [1, 24]. Auxiliary
variables are variables added to a program in order to obtain a proof [28, 29]. Our
methodology uses shared variables, and subtle concurrency may require a complex
proof. But proofs do not contain auxiliary variables.

There are also the obstacles of deadlock and starvation. Deadlock, the situation
where the concurrent execution cannot proceed, can occur in terminating as well
as non-terminating applications. Criteria for the prevention or avoidance of dead-
lock have been investigated [17, 21, 28, 29]. For terminating programs, total
correctness implies absence of deadlock. Starvation, the situation where some action
concurrent with others can in theory be activated but actually never is, can only
occur in non-terminating programs. To avoid starvation one often appeals to a fair
scheduler. We shall show that, under certain very simple restrictions, the generaliz-
ation from terminating to non-terminating programs does not have to pose addi-
tional concurrency problems. All programs derived with our methodology will be
implicitly free from deadlock and starvation without recourse to an outside authority
like a scheduler.
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2. Devising a methodology

Our foremost interest is in the result of a program’s execution, and in the
constraints under which this result can be achieved. In this paper, we do not consider
additional constraints on the program’s behaviour. Consequently, we want to solve
programming problems that can be formally specified by an input/output assertion
pair. Because we are looking for results, we do not permit programs to generate
the false output assertion. This restricts the range of specifiability to finite problems,
i.e., problems that have terminating solutions (the false output assertion indicates
non-termination). An infinite problem must be expressed by a specifiable finite
segment whose terminating solution can be applied repeatedly. Solutions cannot
contain event-driven activities but might be part of a system with real-time con-
straints. In such a case we may, in addition, specify execution time requirements.

The program development consists of two phases:

(1) Formal refinement of a totally correct program that can be implemented
sequentially.

We will use methods that can, if used correctly, only produce refinements whose
semantics satisfy the problem specification. The proof of a refinement will also
yield a first estimate of its execution time, namely a measure for its sequential
execution.

(2) Declaration of program properties, so-called semantic relations, that allow
relaxations in the sequencing of the refinement’s operations (e.g., concurrency).

We will define semantic relations between refinement components and provide
rules for their declaration. Semantic declarations will preserve the semantics of
the refinement but may suggest faster executions, e.g., by permitting con-
currency.

Semantic declarations are a mechanism for the stepwise development of concur-
rency. They require only a local understanding -of the refinement components
appearing in the declared relation. Remember that we are interested in out-
puts, not in program behaviours. Accordingly, we view concurrency as a tool for
satisfying execution time requirements, not for obtaining certain program be-
haviours.

In the remainder of the paper we give an informal description of the methodology
and illustrate it with programming examples. The examples are given without proofs
but have been proved (the proofs are contained in the first author’s Ph.D. thesis
[26]). We are focussing on the overall picture rather than on formal details. A
follow-up paper will present the formalism [27] (or the reader may consult the
thesis [26]). Unfortunately, people concerned with concurrency are often more
interested in the behaviour of programs rather than in a result. They essentially
want to simulate activities of concurrency, synchronization, and scheduling. Our
methodology does not apply to simulation — we do not specify behaviour (a previous
paper contains an attempt to do so[25]). But we can express the desired concurrency,
as we informally understand it, in our programming notation.
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3. Refinement

The first step of the program development is the derivation of a refinement from
the input/output assertion pair that specifies the problem. Our notation for this
purpose is RL, a Refinement Language closely related to that of Hehner [11]. Its
central feature is a primitive procedure concept, which can be implemented
efficiently enough to be used extensively as a refinement mechanism.

Statements in RL can either be refined, or basic (not refined). A refined statement
is an invented name, say S. Its meaning is conveyed by a refinement, S: SL, relating
the name S to a refinement body SL. Refinements may be ‘indexed’, e.g., Sj: SL,
where index j is a variable referenced in SL. An index is a primitive form of value
parameter: j may not be changed by SL.

In practice, indices will have to be identified by an index declaration in the
refinement, e.g., Sj(j: int): SL, where SL refers to j. But, for the sake of brevity,
RL does not contain a mechanism for data declarations. We will identify indices
as parts of the refinement name that appear in its body.

There are four options of refinement; we call them refinement rules: continuance,
replacement, divide (and conquer), and case analysis. Each refinement rule employs
a different programming feature: null, assignment, statement composition, or
alternation. Divide (and conquer) and case analysis employ a fifth programming
feature: the refinement call. Null and assignment are the basic (not refined) state-
ments of RL.

(a) continuance:

S: skip (null)

skip does nothing at all.
(b) replacement:

S:x =E (assignment)

x = E gives variable x the value of expression E.
(c) divide-in-2:
S:S1:S2 (composition)

S1;S2 applies statement S2 to the results of statement S1.
A divide-in-n comprises n — 1 divide-in-2 in one refinement step. A special case
of divide-in-# is the for loop. Our notation is

&

Si

1

| ee

i

which stands for S7;...; Sn.!

! The loop bounds must be constants in the loop scope. i is a constant for every step Si and local
to the loop.
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(d) case analysis:
S: if B then S else S2 fi (alternation)

S1 is applied if B evaluates to true, S2 is applied if B evaluates to false. B is
called a guard.

We write if B then S fi for if B then S else skip fi.

Note the absence of a popular language feature: indefinite repetition. Iterative
algorithms are formulated as recursive refinements or, in simple cases, by for-
composition. While our preference of recursion over repetition is not essential for
the methodology, the concept of refinement is.

4. Semantic relations

The second step of the program development is the declaration of semantic
relations between parts of the refinement. Semantic relations may allow relaxations
in the sequencing of the refinement’s operations. The purpose of their declaration
is to speed up the refinement’s execution, e.g., by concurrency.

It is important to realize that, while this step may improve the execution time
of a solution, it is not going to change or add to its semantics. Semantic declarations
only make certain semantic properties, which are already laid down in the
refinement, more apparent.

We introduce one unary and four binary relations for refinement components.
The unary relation is idempotence; the binary relations are commutativity, full
commutativity, non-interference, and independence. Refinement components are
either statements or guards. Components in general are denoted with the letter C,
statements in particular with S, and guards with B. This paper gives only an informal
characterization of semantic relations. The precise definitions can be found in
[26, 27].

(a) idempotence:

!B always,
!S iff S;S hasthesame effect as S.

An idempotent component C may be applied consecutively any number of times.
(b) commutativity :

Bl & B2 always,
S&B iff S leaves B invariant,
S1&S2 iff SI1;S2 hasthesame effectasS2;S1.

Commutative components CI and C2 may be applied in any order: C2 following
C1, or vice versa.
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() full commutativity:
Clx=C2 ift cI& c2 forall basic componentscl in CI and c2 in C2.

Full commutativity is commutativity rippled down the refinement structure. The
execution of fully commutative components CI and C2 may be interleaved. Only
their basic operations must be indivisible.

(d) non-interference:

Cl»C2 iff every basic component of CI or C2 gets no more than one
view or update of the set of data shared by CI and C2.
Non-interference of components CI and C2 lifts the mutual exclusions, i.e.,
permits the divisibility of their basic components (assignment and guard evaluation).
(e) independence

¢l it el=c2 el

Independence combines full commutativity with non-interference. Independent
components CI and C2 may be executed in parallel.

Examples.

(D) S5588=25 15X

2) S:x=y,B:x=3,~(S&B),S<B.

B) Sl:y=x+1,82:x=3,~(S1&S2),S1<S2.

(4) S:t=p;p=q;9q=t,B:pvq,S&B, ~(SxB), ~(S¥B).

S) Sl:t=i—-1;i=t;t=i+1;i=1t,82:j:=i,S1 & S2, ~(S1382),S1+S2.
(6) Sl:x=x+a,82:x =x+b,51=852, ~(S1+S2).

(7) S:c=F,B:anb,S|B.

8) Sl:u=f(w),S2:v:=g(w),SI|S2.

Most independence relations will be evident from the following

Independence Theorem. Two components C1 and C2 of which neither changes
any variables appearing in both can be declared independent.

For a proof see [26, 27].
All independence relations declared in programming examples of this paper are
applications of the independence theorem.
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5. Semantic declarations

A semantic relation is declared by stating the relation after a refinement. We
will only declare idempotence, commutativity, and independence. Relations
between guards hold always and do not have to be declared. We will not investigate
the question of which relations might be automatically declarable, although it is a
very interesting one. For the purpose of this paper, it suffices to assume that the
programmer declares every semantic relation (other than between guards).

A set (or complex) declaration, e.g.

{S1, S2}|{T1, T2}
comprises declarations between all set members, in this case,

Si|\ Bt SL|T2 S2m S22

A predicate qualifying the range of refinement index values may be used to define
the sets involved. For example,

A pred (i, j): Si||Sj
i,]

stands for the set of declarations Si||Sj such that i and j satisfy pred(i,j). A set
index in a complex declaration is passed on to all set members. Assume, for instance,
the independence of turn signals of different cars in a traffic system: if we give the
operations of the left and right turn signals of car i the names left; and right;, we
will declare

N i #j: {left, right}; ||{left, right};.
ij

Semantic declarations define additional computations for the refinement they
augment. Computations may contain components (statements and guards), CI » C2
indicating sequential execution of CI and C2, and (&}) indicating their parallel
execution. We will at this point say no more about the structure of computations
and only give a vague idea of the effect of semantic declarations (for details see
[26,27]):

A refinement is characterized by a set of sequential computations. The semantic
declarations extend this set as follows:

(a) ! C adds computations with instances C - C replaced by C, and vice versa,

(b) C1 & C2 adds computations with instances CI - C2 or C2 > CI swapped,

(c) C1||C2 adds computations with instances CI > C2 or C2 > C1 replaced by
(&.

Where further computations can be obtained, the same declarations extend the
computation set thus derived, etc. (transitive closure).
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Note that semantic relations, although valid, may not be exploitable (i.e., may
not generate new computations) for the refinement they are declared for.” The
declaration and exploitation of semantic relations are separate concerns. We
advise to first declare all semantic relations that can be proved, and only in a later
step worry about their exploitability.

6. First example: Sorting

The problem is to sort an array a[0..#n] of real numbers into ascending order
in time O(n):

n
sortn.pre: )\ ali]€creal
i=0

sortn.post: AO<i<j<sn>a'li]<a'[j]) rperm(a, a’)
ij :

sortn. time: O(n)

where perm(a, a') is the predicate that is true if the resulting array a’ is a permutation
of its original value a, and false otherwise.
Our refinement is an insertion sort adapted from Knuth [20]:

n
Sortin: b LSl

S0: skip
@ =0) &Sii: csi;Si—1
csi: ifali —1]>a[i] then swapi fi
swapi: tlil=ali—1];ali —1]:=alil]; ali]:=1[i]

Nj#i—1,ii+1: csi|csj.
i

Note that for |i —j|>1, csi and cs j are disjoint: they do not share any variables.
Hence they fulfil the premise of the independence theorem and can be declared
independent.

To declare semantic relations for some refinement, one does not need to under-
stand the refinement as a whole. A local understanding of the components appearing
in the declared relation is sufficient. Most declarations come easily to mind and
have a simple proof.

2 Example: A conventional for loop implementation with incremental step calculation will render
semantic relations between loop steps unexploitable. To exploit them, an index value has to be assigned
to every step before any step is executed.
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For a five-element array (n =4), the refinement has the following sequential
execution, if we interpret composition ‘;’ as sequencing ‘- ’:

cslocs2>csl>cs3>cs2>cs1>csd4—>cs3>cs2—>cs 1.

If we count the number of comparator modules cs, this sequence has length 10, or
n(n+1)/2 for general n, i.e., it is O(n>). We can exploit the independence declar-
ation by commuting comparator modules in this sequence left (independence
subsumes commutativity), and then ‘ravelling’ adjacent modules whose indices
differ by 2 into parallel:

cs 1->es 2—><CS 3>_><cs 2>—><CS 1>—>cs 2->cs 1.
cs 1 cs 4 cs 3

This execution is of length 7, or 2n —1 for general n, i.e., O(n). The degree of
concurrency increases as we add inputs. We are not limited to a fixed number of
concurrent actions. However, if only a fixed number k of processors is available,
the independence declaration may not be exploited to generate a degree of concur-
rency higher than k.

7. Second example: The sieve of Eratosthenes
The odd prime numbers less than a given integer, N, are to be determined by

rectifying the initial assumption that all odd numbers are prime. We specify:

sieve.pre: N\ primel[i]
iel

sieve. post: A (prime[i]=i is prime)
iel

where I =4{i|3<i <N, iecint, i odd}.

This is a second ‘pure’ problem, i.e., a problem which is fully specified by an
input/output assertion pair. Our program follows suggestions of Knuth [19]:

LWN-1)/2]
sieve: 5 if prime[2i + 1] then elim mults of 2i +1 fi
L(N—i2)/2i] .
elim mults of i 3 prime[i”+2ij;]:=false
Ji=0

(1)  Ai#j: prime[i]="false|prime[j]
i

(2) Ai#j: prime[i]:=false|prime[;]:=false
ij

3) A ! prime[i]:=false.

i



A method for concurrent programming: informal presentation 11

Any pair of tests and/or eliminations of different numbers is independent; any
test or elimination of a number is idempotent. (Remember that guard independence
and idempotence need not be declared.)

According to the semantic declarations, guard prime[ ;] and statement elim mults
of i are independent unless j happens to be a multiple of i. Thus the order of
execution of prime[j] and elim mults of i may only be manipulated if j is not a
multiple of i: transformed computations must maintain an order, introduced by
the refinement, in which guard prime[j] appears only where its truth ensures that
j is prime. In other words, no computation will call elim mults of i for non-prime
i. Moreover, because of idempotence, there are computations which eliminate every
multiple exactly once.

The execution time of refinement sieve is exponential in the input N. The fastest
computations generated by the semantic declarations have an execution time
constant in N : the time it takes to eliminate one multiple.

One purpose of this example is to demonstrate how difficult optimum concurrency
can be — even when derived from simple semantic declarations. To derive the fastest
computations for every input rn, all multiples would have to be known —which
makes the execution of sieve obsolete. Moreover, there is no way to find all multiples
other than by infinite enumeration.

But we can compile sieve with limited concurrency. We know, for instance, that,
if the multiples of the first m primes have been eliminated, the m + 1st and m +2nd
element left in I must be prime: the m + 1st certainly is, the m +2nd must be
because between a prime and its first multiple there is always another prime.’
Therefore operations elim mults of i can, with increasing i, at least proceed pairwise
in parallel.* We leave it up to the number theorists to find more compilable
concurrency.

8. Third example: The dining philosophers

Five philosophers, sitting at a round table, alternate between eating and thinking.
When a philosopher gets hungry, he picks up two forks next to his plate and starts
eating. There are, however, only five forks on the table, one between each two
philosophers. So a philosopher can eat only when neither of his neighbours is
eating. When a philosopher has finished eating, he puts down his forks and goes
back to thinking. This example demonstrates how the methodology can be used
to build never-ending algorithms.

Our methodology can only yield terminating refinements. Therefore we modify
the problem specification and give the philosophers a finite life of N meals (allowing
different philosophers individually many eating sessions is a trivial extension). If

3 Bertrand’s Postulate [10].
* For a process program exploiting this fact see Hoare [15].



12 Ch. Lengauer, E.C.R. Hehner

variable eaten[i] counts the meals of philosopher i and variable fork[i] indicates
if fork i is currently on the table (fork[i]=0) or not (fork[i]=1), the semantic
specification becomes:

4
lives. pre: A fork[i]=0
i=0
4
lives. post: A (fork'[i]1=0 reaten'[i]=eaten[i]+ N).
i=0

Resulting values of fork and eaten are primed, initial values are unprimed.

We represent the philosophers’ actions by statements up; and down; for a move-
ment, i.e., seizure and release of fork i, eat; for a meal, and think; for a thinking
period of philosopher i:

N 4
lives : ;I[ 3 phil,—]]

1W0:=0
phil;: up;; Upie1; eat;; down;; down,e; think;
up;: fork[i]:=1

down;:  fork[i]=0
eat;: use fork i; use fork i ®1; eaten[i]:=eaten[i]+1
use fork i: if fork[i]=1 then skip else error fi
think;: skip
@ Ai2v phil; & phil;
ij

2) Aj#i©l,i,i®l: eat|eat;
i

3) Aj#iL,i®1l: eat;||{up, down};

i

@ N A {up, down}; || {up, down};
ij

(5)  Aj#i: think; || phil,.
ij

@ denotes addition, © subtraction modulo 5; use fork i is an operation which
touches variable fork[i]but has no effect. For error any refinement can be chosen — it
should never be executed. Thinking philosophers do nothing of relevance to the
system.

This program lets philosophers properly compete for their share of the meal and
eventually die. The declarations state that philosophers may eat at different intervals
according to their hunger (1), non-neighbours may eat at the same time (2), forks
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that are presently not used for eating may be moved (3), different forks may be
moved in parallel (4), and thinking philosophers do not interact with the rest of
the system (5). There are additional, undesirable semantic relations in this
refinement whose declaration we carefully avoided. For instance, a philosopher
can think at any time, not just between eating sessions. For a more complicated
refinement of phil; which does not contain undesirable semantic relations see [26].

The total correctness of the refinement guarantees that the system cannot get
stuck. None of the five semantic declarations invalidates total correctness (no correct
declaration ever does), and therefore the concurrent version is also deadlock-free.
We do not need additional proof, but to help convince the reader, here is a reasoning
especially tailored for this algorithm. In the refinement, before concurrency is
considered, philosopher 0, say, completes his eating session, putting down his forks,
before philosopher 1 picks up his forks. The declarations do not permit philosopher
0’s final down; to commute with philosopher 1’s initial up;. Entire eating sessions
(phil;) can be commuted, and when non-neighbours are adjacent, their eating
sessions can be concurrent. But no declaration can generate a deadlocked execution
(where each philosopher has one fork and is waiting for the other) from an execution
without deadlock.

For a never-ending program, a solution to the infinite problem, the finite lives
may be called repeatedly in sequence. The user of our finite algorithms is responsible
for a mechanism for infinite repetition; we refuse to consider it in our calculus.
But we guarantee that, if the problem specification allows an infinite repetition of
the solution (i.e., if the output assertion implies the input assertion), all algorithmic
properties except termination are preserved. The user can rely on partial correct-
ness, absence of deadlock, and absence of starvation without recourse to an authority
outside the program, e.g., a fair scheduler.

Our solutions may be slightly more restrictive than non-terminating solutions
have to be. We do not allow unbounded non-determinism, not even for unbounded
activities. In this example, the table is cleared completely in arbitrarily long intervals,
whereas it is not necessary for all philosophers to leave (or, in our terminology, die).

There is a straight-forward extension to our calculus which lifts this restriction:
the exploitation of semantic relations between components of different calls of
refinement lives must be allowed. Then a call of lives can start before the previous
call terminates. Deadlock remains impossible, but to prevent starvation, a fair
scheduler must ensure that no call phil; is commuted to infinity.

9. Fourth example: Producing and consuming

Suppose that two parts of a program are almost distinct; there is only one variable,
buf, that appears in both. One part ‘produces’ values and deposits them into the
buffer, the other ‘consumes’ deposited values by reading them from the buffer. The
following program fragment reflects this situation. Productions and consumptions
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are called in turn M times; the omitted expressions in the assignments represent
the creation of item i in production 7, and the use of item / in consumption i:

M-1
stream : s [prod;; cons;]
prod;:  buf=--:
cons;: - - - = buf.

The dependence of productions and consumptions forces an execution in
sequence. But we would like some concurrency. We apply the independence
theorem (Sect. 4) and disconnect different prod/cons pairs by giving everyone its
private buffer. Then a production of some item i may go on in parallel with the
consumption of other items j produced previously:

M-1
Stream : s [prod;; cons;l
0

prod;:  buflil="---
COns;: - = pufli]
(1) Ai#j: prod;|cons;
ij
We did not specify any special properties of productions and consumptions other
than their interaction over buf. If the creation of item i/ does not depend on

knowledge of items 0 to / —1, productions may be mutually independent and so
may consumptions. Then we may add two more declarations:

) Ni#j: prod;| prod;
i

(3) Ni#j: cons;|cons;
i

For an implementation we must assume a bound, say xn, on the number of
variables. We modify the previous program by indexing the buffer modulo »:

M-1

stream : 5 [prod;; cons;]
i=0

prod;:  buf[i medn]="--

cons;: -+ =buf[i modn]

(1) AG#j)modn: prod;|cons;
i

and again, if productions are mutually independent and so are consumptions,

2) AG#j)modn: prod;|prod;

ij
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3) NG #j)modn: cons;|cons;
ij

Concurrency works only for prod/cons pairs within a certain neighbourhood:”
productions can be at most n items ahead of consumptions, then the buffer is full;
consumptions can at most catch up with productions, then the buffer is empty.
Note that the condition ‘buffer empty’ is part of any program with producing and
consuming, whereas ‘buffer full’ arises out of a need for a buffer bound in an
implementation.

The outcome of this section is nothing new. The solution to concurrent producing
and consuming is well known. But we wanted to exhibit its stepwise development
in our methodology and tried not to rely on previous knowledge.

10. Summary

We take the view that concurrency is a property not of programs but of executions.
Consequently, looking at programs, concurrency may be hard to recognize. RL
programs do not contain concurrent commands or synchronization primitives, only
declarations of independence. And because an independence declaration may
remain unexploited it only suggests that some action may or may not be involved
in a parallel execution.

The reader might feel that starting with the definition of processes helps structur-
ing a program, and that a refinement without immediate regard to concurrency
forces us to artificially order logically separate tasks. We believe there is a separation
of concerns: modularity structures the problem solution, concurrency speeds its
execution up. For example, an airline reservation or taxi dispatching system receives
its structure from the modularity of its transactions. It can well be imagined as an
arbitrary sequence of transactions (in fact, this view will be helpful), although only
a concurrent execution will be practical.

Our methodology yields modularity by way of refinement (as part of the
language!) and concurrency by way of semantic declarations. A change in the
refinement is likely to affect the semantic declarations for it (but an extension does
not). Concurrency works bottom-up and is therefore susceptible to top-down design
changes. But we insist the solutions are modifiable. They only put concurrency in
its proper place: determined by, not determining the semantics of the refinement.
If a refinement does not permit enough parallelism, the independence theorem
advises us to spread out variables over its components.

Concurrent actions are not synchronized by conditional delays but by conditional
concurrency. The solutions are the same but our methodology prevents overdefini-
tion and subsequent restriction of concurrency. The definition of concurrency
proceeds step by step on semantically correct territory, successive declarations

°> More independence is declared but not exploitable.
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yielding faster and faster executions. Exclusion is not explicitly programmed. A
process design approaches a solution from incorrect territory by trying to exclude
WIong concurrency.

In our methodology proofs do not require auxiliary variables [28, 29]. It seems
auxiliary variables have the purpose of relating the histories of concurrent program
parts that have been proved separately, like processes. In our programs, concurrency
is not synthesized from separate histories. (This is not obvious from the present
paper; see [26, 27].)

We consider only programming problems with results, i.e., we can only derive
terminating programs. Infinite repetition is a mechanism of the user environment
and applies only to entire RL programs, not their parts. Absence of deadlock is
guaranteed by the total correctness of the RL program, and the question of
starvation does not arise.

We do not permit program properties to vary due to overlapped execution.
Consider the following program of two processes whose outcome depends on the
point at which the first process is executed:

cobegin (x =1)//do (x =0->y =y +1) od coend.

There is no equivalent in RL because different interleaved executions have different
proper’cies.6 A popular programming problem of this type is concurrent garbage
collection as described for a LISP environment by Dijkstra [6] and Gries [9], and
RL in its present form can consequently not express it. (This is explained better
in [26, 27].) An extension to include such programs would seriously complicate the
formal theory of the methodology.

11. Related research

The introduction and summary relate our methodology to customary program-
ming with processes. We have referred to the proof methods for process programs
by Owicki and Gries [28,29]. These methods are, however, not concerned with
program development.

The view of programming with concurrency closest to ours is taken by van
Lamsweerde and Sintzoff [22]. They use a concurrent command but begin with
sequential semantics. Exclusions may be removed by way of correctness-preserving
program transformations which are not described in detail. The concurrent processes

¢ Note that limiting the number of repetitions,
dok times(x =0->y =y +1)od
or skipping the assignment to y,
do (x = 0 skip) od

still does not yield programs expressible in RL: the point of execution of x =1 determines both the
partial correctness and termination of the do loop.
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are guarded commands (transitions). The guards (synchronizing conditions) make
any order necessary for correctness explicit. Transitions are repeated forever, and
non-trivial formal techniques are necessary to prevent deadlock and starvation.

Broy describes the semantics of concurrent programs by correctness-preserving
transformations but elaborates only on the opposite direction: serializing concurrent
statements [3]. The transformations exploit a simple global independence relation.

Idempotence appears in a previous paper of the second author [12], but for
programs with traditional concurrency features (concurrent commands and syn-
chronization primitives). The implementation described there works only in the
presence of concurrency and only for last-action calls.

Path expressions [7], incorporated in the specification language for concurrent
systems COSY [23] and recently extended to predicate path expressions [2], reflect
an approach inverse to ours: starting out with complete concurrency one declares
relations, paths, that tighten sequencing. But since no quality distinctions are made
between different sequences, there is no selection problem. As a specification tool
path expressions do not come with a proof system.

Jones recognizes the lack of development methods for programs with concur-
rency, he calls them ‘interfering programs’, and proposes extensions to previous
methodologies for sequential programs, what he calls ‘isolated programs’ [18]. The
basic idea is to incorporate requirements for parallel correctness into the problem
specification.
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