
Information Content of Programs and Operation Encoding

ERIC C. R. HEHNER

Umversity of Toronto, Toronto, Ontario, Canada

ABSTgACr The problem of determining the minimum representation of programs for executmn by a
computer is considered The methods of measuring space requirements suggest practical methods for encoding
programs and for designing machine languages An analysis of the operation portion of instructions finds that
the 47 operation codes used by a well-known compiler require, on average, fewer than two bits each

KEY WOROS AND PHRASES: redundancy, mlmmum redundancy encoding, machine language, operation codes

CR CATEGORIES" 5.6, 6.0

1. Introduction

In this paper we assume that a computer designer's goal is to design the best machine for
the intended environment. Specifically, if the environment is represented by a class of
programs to be run on the machine, the goal is to minimize the length of the machine-
language representation of the class, or equivalently the average length of programs
(weighted by frequency of program) in the class. Identifying and removing common
dependencies and contributors to redundancy in machine language has two advantages.
First, as much as 75 percent of the space taken by contemporary machine-language
representations can be saved. Second, if some data path (between memory and proces-
sor, within a processor, or between memories) is a system bottleneck, then minimizing
space will help to reduce execution time by making more efficient use of available
bandwidth. The cost is an increase in hardware complexity; at current and projected
prices, this is an attractive trade-off. Although the discussion in this paper is in terms of
machine languages, it is equally applicable to any situation in which storage or transmis-
sion of information is a major expense.

One may object to the goal of minimizing redundancy on the grounds that ~t is needed
for reliability. Some forms of redundancy allow the detection of some errors. If there are
unused operation codes, or addresses that are illegal or inaccessible, and if the error
happens to result in one of these illegal instructions, it can be detected and the offending
instruction identified. If the error results in a legal instruction, it may be detected
indirectly but escape identification, or it may escape detection. Other forms of redun-
dancy, such as interinstruction dependencies, do not provide any error detection ability.

The use of accidental redundancy in machine-language instructions for error detection
is at best a haphazard approach, and at worst a poor excuse for badly designed codes.
The purpose of machine language is to specify a sequence of actions as succinctly as
possible. Error detection ability is important enough to deserve its own separate mecha-
nisms, specially designed for that purpose, such as parity bits or tag bits [2, 3, 9].

The information content of a program is an almost achievable target to aim for in its
machine-language representation; redundancy is an absolute measure of performance in

Copyright © 1977, Association for Computing Machinery, Inc. General permission to repubhsh, but not for
profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is
made to the pubhcatlon, to Rs date of issue, and to the fact that reprinting pnvdeges were granted by
permission of the Association for Computing Machinery

This work was supported m part by the National Research Council of Canada

Author's address' Computer Systems Research Group, University of Toronto, Toronto, Ontario M5S 1A4,
Canada.

Journal of the Association for Computing Machinery, Vol 24, No 2, Aprd 1977, pp 290-297

Information Content of Programs and Operation Encoding 291

this respect for any machine; methods for determining ent ropy suggest practical methods
for improving a machine language. Definitions of these terms will now be presented and
apphed to the encodings of operat ions For other parts of instructions and for data the
reader is referred to [6].

2. Definitions

In information theory [11, 1] the entropy of a set of n messages is defined as H =
- ~p~log p,, where p, is the probabili ty or relative frequency of the tth message,
p, > 0, ~ p , = 1. (All logarithms are to base 2, and all sums take subscripts over the
range 1 to n. We may al lowp, = 0 by taking 0 log 0 = 0, although with a statable adJust-
ment of the message set, this is unnecessary.) The entropy of a set of messages repre-
sents the average amount of choice involved in sending a message, or the average
amount of uncertainty on the part of the receiver as to which message will be sent.
Entropy is independent of any representat ion of the messages. I t is a close (within one
bit) lower bound on the average length of messages (weighted by frequency of message),
according to a "bes t" binary representat ion, i .e. a binary representat ion that minimizes
the average length of a message.

We now define the information content of the t th program (or message) in a class (or
set) of programs (or messages) as I, = - logp~ . It is the amount of information, measured
in bits, that distinguishes it from the other members of the class. Like entropy, the
information content of a program is independent of the representat ion and is a close
(within one bit) estimate of the number of bits taken by a best binary representation.
Entropy is then the average information content of a program.

In information theory, the redundancy of a set of messages is defined as D =
1 - (relative entropy), where the relative entropy is the actual entropy divided by the
maximum possible entropy of the set. For a set ofn messages, entropy is at its maximum
when p, = 1/n for each l. Redundancy is therefore 1 - H / l o g n. This defimtion is
independent of representat ion and unsuitable for our purposes. We define the redun-
dancy of a representation as D' = 1 - H/(average message length), where the length of a
message depends on its representation. With this definition, redundancy measures the
proport ion of the representat ion that exceeds the entropy.

3. Determination of Entropy

If the entire class of programs to be run on the machine and the probabili ty or frequency
of each program are known, then calculating the information content of each program
and the entropy of the class Is straightforward. More than that, an algorithm for
determining a best representat ion has been given by [7]. However , few machine design-
ers are given the luxury of such information.

Normally one knows only that the programs to be run on the machine come from an
infinite class, such as the set of all Algol programs, the set of all PL/1 programs, or the
union of such sets. The definition of entropy can easily be extended to cover an infinite
class, and, if the probabili ty distribution is known, one can still compute the target for
the average length of a program. According to the classical definition, the redundancy of
any infinite class whose members appear with nonzero probabil i t ies is 100 percent , but
the redundancy of representat ion provides a performance measure even for infinite
classes. With luck, one may find a good machine-language representat ion for the
particular distr ibution, but there is no algorithm for determimng a best representat ion
for an arbitrary distribution over an infinite class.

Normally the probabili ty distribution is not known. One is given a sample of programs
from which a reasonable estimate of the distribution for the class must be derived. The
sample is intended to be representative to some degree of the entire class. The answer to
the question "Just how representat ive?" will provide the method of determining the class
entropy.

292 ERIC C. R. H E H N E R

It may be assumed that the relative frequencies of the language tokens in a large
sample are representative of the frequencies in the class. Similarly it may be assumed
that the relative frequencies of production numbers in a parse of the sample, or the
frequencies of states in the parser, represent their frequencies over the entire class. Since
a token sequence is a particular representation of programs, the entropy of the token set
(average information content of a token) multiplied by the average number of tokens in a
program (over the sample) will be an estimate of the entropy of the class of programs.
Similarly the production sequence and parser state sequence provide estimates of the
entropy. Unfortunately these estimates may be poor, and they depend rather heavily on
the choice of representation.

Almost as certainly, the frequencies of token pairs, production pairs, or state pairs are
representative. With decreasing confidence, it may be assumed that higher m-tuple
frequencies are representative. In the following paragraphs, j will stand for an (m - 1)-
tuple of subscripts. If P,a is the probability of the ijth rn-tuple of symbols from an
alphabet ofn symbols (tokens, productions, etc.) and N is the average length in symbols
of a program, then the estimate of entropy based on nonoverlapping m-tuple frequencies
is

Gm= - (N / m) ~., p~j logp~j.
q

As m increases, these estimates form a monotonically decreasing sequence (Appendix 1,
Theorem 1). Furthermore, as m becomes large, m-tuples become entire programs, and
the sequence of estimates converges to the entropy of the sample. When the value ofm is
too small, not enough use is made of the sample, and the estimate is too high. When m is
too large, too much use is made, and the estimate is low (unless the sample is the
complete class, in which case the sample entropy is the class entropy).

More effective use can be made ofm-tuple frequencies by considering the conditional
entropy of the next symbol when the m - 1 preceding symbols are known. Ifpku is the
probability of appearance of the kth symbol given that the jth (m - 1)-tuple precedes it,
then the mth estimate of class entropy based on conditional symbol entropy is

Fm = - N ~ p j ~ PkLJ 1ogpktj,
j k

where now the frequencies include overlapping tuples. Like Gin, Fm is a monotonically
decreasing function of m (Appendix 1, Theorem 2), converging to the entropy of the
sample, and Fm -< Gm (Appendix 1, Theorem 3).

The problem is to decide which m makes Fm or Gm the best estimate of H. It must be
large enough to include all dependencies or statistical influences characteristic of the
class and none that are due only to the finite size of the sample. This m is found by
formulating an appropriate hypothesis and applying a statistical test to determine, to a
given level of confidence, whether the sample is sufficient to support (or reject) the
hypothesis. Suppose the sample were the complete class. Now Gm÷~ =Gm implies G~ =
Gin-1 (Appendix 1, Theorem 1). For most programming languages, pairs of tokens
(productions, states) are not independent (usually not all pairs are legal); hence by
Theorem 1, G2 ~ G~ and therefore Gm -~ H for any m. The F estimates are more
cooperative; Fm may converge to H for some finite m. Of course, when it does, Fm+l =
Fm ever after. Now F,~+i =Fm if and only ifpkla = PkU (Appendix 1, Theorem 2). With a
limited sample, one looks for the last m for which the hypothesis Pk~,J = PklJ can be
confidently rejected, i.e. the largest distance over which the sample indicates that a
dependency exists. With limited computer resources, one may wish to make an addi-
tional assumption: that a dependency of order m imphes a dependency of order m - 1.
This allows one to stop at the first m for which a dependency is not indicated.

There are other methods of estimating entropy, for example, by calculating symbol
entropy conditionally upon information contained in the parse stack during a parse of the

Information Content of Programs and Operation Encoding 293

programs. The methods presented above lead, m Section 4, to practical suggestions for
machine-language design.

4. Apphcation to Operanon Codes

Wortman was able to improve the operat ion set of the Student PL machine [12] by
inventing new operations to replace certain pairs of old ones wherever they occur in a
program. The pairs were chosen on the basis of high frequency and compatible seman-
tics, i .e. pairs that fit "natural ly" together; the result of the combinations was a reduction
in the average space required for a program. This technique can be made algorithmic by
replacing, wherever it occurs in the sample, that pair that reduces the information
content the most (Appendix 2), then repeating until some prespecified limit is reached.
We call this method "iterative pairing." As a heuristic for finding which pair reduces
reformation content the most, the most common pair may be chosen. This heuristic is
well suited to machines with fixed length fields since it tends to produce operat ions that
have nearly equal frequencies. Unfortunately there may be no pair whose replacement
reduces the information content; ~t may actually increase for any or all pairs. Further-
more, gaining the most benefit from a limited number of replacements may reqmre
choosing, at intermedmte stages, paxrs other than those that reduce information content
the most or those that are most frequent.

If all pairs of operat ions are replaced by new operations, or in general all m-tuples by
compound operations, then the space required for a minimum redundancy encoding of
the m-tuples will not increase, and it will decrease if there are dependencies of order m or
less (Appendix 1, Theorem 1). This coding method corresponds to the estimates of
entropy based on m-tuple frequencies. Implementat ion considerations limit the size of
the operat ion set, which may grow exponentially with m. In practice, however, the
growth is much slower: In one study, of the 10 zt possible 10-tuples of operat ions on the
CDC3600, fewer than 7000 had nonzero frequencies, indicating that there are important
dependencies of order 10 or less [5]. The advantage of iterative pairing, in spite of its
uncertainty, is that It takes account of important high order dependencies before less
important low order dependencies, and therefore gains more benefit from fewer new
instructmns.

Foster and Gonter have suggested a method of shortening the operat ion field that
takes advantage of interinstruction dependencies [4]. In their method each of the n
operatmns is allowed k successors plus an escape; that is, after any operat ion, only its k
most frequent successor operat ions are given a code, plus one code for all n - k other
operations. The "operand" of the escape code ~s used to set the state of the machine as it
would be if an operat ion which has the desired successor had just been performed. These
codes are called "condit ional" since an operat ion code can be decoded only by knowing
the preceding operat ion. Since Foster and Gonter used a fixed length operat ion code
field, their method can save space only l fk < n - 1. With a variable length field, there is
no advantage in keeping k < n, so we take k = n. We make use of the variable length
fields by giving the operat ions a minimum redundancy encoding for each possible
predecessor operat ion. Inclusion of a zero-frequency nonoperat ion m the set produces
an open-ended code for future expansion, at a cost of one bit on the least frequent
operat ion.

An immediate generalizatmn of their method makes each operat ion code conditional
upon the preceding m - 1 operations; gwen the m-tuple frequencies, the appropria te
codes can be generated. This corresponds, m real coding terms, to the mth estimate of
class entropy based on conditional symbol entropy. Like m-tupling, this method carries
the guarantee which lterative pairing lacks: It will not increase the required space and
wdi reduce it if there are dependencies of order m or less (Appendix 1, Theorem 2). For
each m (greater than 1) this method is more effective in reducing space than compound-
mg instructions into m-tuples (Appendix 1, Theorem 3). Fur thermore , conditional

294 ERIC C. R. HEHNER

coding is more readily viewed as just a coding technique, not as an increase in the
operation set.

5. Experimental Results

To see what gains may be made by these encoding techniques, a large program
(X C O M - t h e compiler for the XPL language), written in a PL/1-1ike language (XPL),
was compiled into a machine language that closely expresses the capabilities of the
source language. Every commutative operator presents an opportumty to exchange the
sequences of instructions that develop the two operands; to get maximum benefit from
iterative pairing or conditional coding, commutative instructions were placed in a
standard order We arbitrarily chose to place development of a complex expression
operand before a single variable or constant operand, and we chose to place a variable
operand before a constant operand. Within the category "variable operand," we placed
procedure (function) calls ahead of arrays and arrays ahead of simple variables. We
realize that the meaning of a program may be changed if development of an operand
involves a call to a procedure with side effects, but we choose not to cater to such
programming practices.

As a basis for comparison, an IBM-360-1ike encoding [8] is included, along with a
minimum redundancy encoding on the assumption of operation independence [7]. The
former gives 8 bits to each operation code, and the latter gave an average of 3.6 bits per
operation code.

The lteratlve pairing procedure was applied to the 47 original operations until the
number of operations had increased to 178 (at this point our ability to give sensible
names to the new combinations was exhausted). The pairs being combined must not
include any pairs whose second member is the object of a branch. A stricter, but more
convenient, condition is to disallow pairs of instructions that cross a statement boundary
in the original source program. The result was an average of 4.85 bits per new operation
code, or 1.8 bits per original operation.

The original operations were given a conditional coding, first in the context of one
preceding operation, then in the context of the preceding pair, and finally in the context
of the preceding triple of operations. Rather than maintaining context wherever possi-
ble, we established a standard context at every instruction that is the object of any branch
or call. Our result is thus weakened, but easier to achieve. The chosen standard context
was an arbitrary tuple of instructions. The results were 2.1, 1.7, and 1.6 bits per
operation code on average. These results are summarized in Table I.

6. Conclusions

Some results in the encodings of operation have been presented. Results for other
portions of instructions, and for data, show that similar space savings are possible [6].
With our sample (XPL compiler [10]), we trimmed 75 percent from the space taken by a
contemporary machine representation (IBM 360) and 60 percent from a language
directed machine representation that did not employ our techniques. As a bonus, the
variable length encodings eliminate the overflow problem that results from trying to
represent a large or infinite set by a fixed length encoding.

These encodings may be useful w~th current hardware for long term storage of
programs. For execution, a hardware expander could transform instructions to a conven-
tional fixed length representation. They may be useful whenever the transmission of
reformation through a fixed bandwidth is a major expense or system bottleneck. Or, and
this is our main interest, space-saving encodings could be the basis for a more economic
computer design.

Appendix 1. Some Information Theorems

In this Appendix log denotes the binary (base 2) logarithm. All free subscripts are under-

Informatton Content o f Programs and Operation Encoding 295

TABLE I
Encoding Bits per operatmn Percent of (b) Percent of (a)

(a) Like IBM 360 8
(b) "Mlmmum redundancy" 3.6
(c) Iteratwe pamng 1.8 a 49.9
(d) Condltmnal coding

1 precedmg 2.1 57 2
2 preceding 1 7 47.0
3 preceding 1 6 43.8

45 3
22.6

25.9
213
198

a Bits per original operaaon, 4 85 b]ts per compound operation

stood to be universally quantified over the range 1 to n , and all sums are over the range
1 to n . j stands for an (m - 1)-tuple of subscripts. A subscripted p is a probabihty:
p, is the probability of appearance of the ith symbol in any position in a sequence of these
symbols; p,j is the probability of appearance of the tjth m-tuple; Pklj is the probability
of appearance of the kth symbol given that the jth (m - 1)-tuple precedes it.

p j > O, Pklj = Pjk/Pj,

Z Pj = Z P k l j = 1, Z P , j = ~ Pjk = Pj.
1 le t

We may allow pj = 0 if we accept the convention 0 log 0 = O, 0/0 = 0 ° = 1.
Let g m = - (l / m) ~ , j log p,j be the average information content per symbol of an m-

tuple of symbols. Then the estimate of entropy based on rn-tuple frequencies is G m =
Ngm, where N is the average number of symbols in a message.

Let fm = - ~jPj ~kPklj logpklj be the average information content per symbol,
conditional upon the preceding m - 1 symbols. Then the ruth estimate of class entropy
based on conditional symbol entropy is Fm = Nfm. Define

dm+:= - [1 / (m + 1)] ~ Puk log (P,jPjk/Pj).
zjk

LEMMA 1. I f q, > 0 and Y~q, = 1, then - ~.p, log p, <-- - Ypdog q, wtth equality i f f
p , = q , .

PROOF. See [1].
LEMMA 2. gm+l ~--- dm+l with equality i f f pkl,j = PklJ.
PROOf.

PJk/PJ > 0, and ~ (PtjPjk/Pj) = ~ (PijPj/Pj) = 1.

Therefore, by Lemma 1, gin+: ~ dm+~ with equality iffpqe = PqPje/Pj , i.e. i f fp i je /p I =
Pjk/Pj, hence the result.

THEOREM 1. g~ --> g~+], gm = gm+l implies gm-~ = gin. That is, g may begin fiat, but
after the first decease, it is a strictly monotonically decreasing function o f m.

PROOF. By induction on m :
Induction basis:

gl = - ~ p,logp~

1 Z ly,
= - 2 ,k ptklogp, -- 2 ,k P,k Iogpk

= - --2,, p,~log (P,Pk)
2 ,k

-- - 2 ,k p~klogp,k by Lemma 1

= g 2 ,

2 9 6 ERIC C. R. HEHNER

Note. g~ = gz iffp~k = P,Pt , , Le . the symbol probabil i t ies are independen t .
Induc t ion step: First no te that

(m + 1)dm+l = - ~ Pqk log (P , } P j k / P j)
qk

= - ~ p , j k l o g p , j - ~ P,jk Iogpjk + ~ P,jk Iogpj
qk tjk ,jk

= ~ g m - - (m - - 1) g i n - , ;

(m + 1)(gin - g,,+,) = (m - 1)(gm-, - gin) + 2 m g m - - (m - 1)gin-, - (m + 1)gin+,
= (m - 1)(gin-, - gm) + (m + 1)(dm+, - gm+~) .

The first te rm is nonnega t ive by the induc t ion hypothesis . The second te rm is nonnega-
tive by L e m m a 2. Hence the left side is nonnega t ive , and the mduc t ion is complete . If the
left side is zero, the first te rm on the right must also be zero; hence the result. .

THEOREM 2.

PROOF.

f., >- fro+,, f m = fm+~ Cf Pk . j = Pk~j"

fm = -- £ P j ~ (Pjk/pj)Iog(Pj~/Pj)
$ k

= - ~ p j J o g p j k + ~ p j l o g p j

= mg,~ - (m - 1)g,n-1.

f,n - f r o + , = mgm - (m - 1)gin-, - (m + 1)gin+, + mg,,~

= (m + 1)(gin - gm+O - (m - 1)(gin-, - gin).

From the proof of T h e o rem 1 we have

(m + 1)(gin - gm+~) = (m - 1)(gin-, -- gin) + (m + 1)(dm+l - gm+l);

therefore fro - fm+~ = (m + 1) (d m + l - gin+a) >- 0 by L e m m a 2, with equali ty iffpk~,j = Pklj.
TI-IEOREM 3. fm --< g ~ .
PROOF. F rom the proof of Th eo rem 2 we have fro = m g m - (m - 1)gm-a ; therefore

gm - f , , = (m - 1)(g~_~ - gin) >- 0 by T h e o rem 1.

A p p e n d i x 2. I t erauve Pair ing

Suppose that in a representa t ive sequence S the symbol pair a la2 Is replaced with the new
symbol a0. L e t p ' be the probabi l i ty of occurrence of a, in the new sequence S' . T h e n

p ; = p12/(1 - plx), p l = (P, - p12)/(1 - plz), po' = (Pz - p~2)/(1 - p,2),
and p~ = p , / (1 - PlZ)

f o r / = 3 t o n . The average in format ion con ten t of a symbol in S i s / = - ~ p , logp , . The
average in format ion con ten t of a symbol in S ' per symbol in S is I ' = - (1 - P~2)
Y. 7=0P' log p~. So the change m in format ion con ten t (per symbol in S) is

piP 'P2 p~ (1 - px2) l-ms
I ' I log (p , _ p~2)p,_v,~(p2 _ p,z)p~_V,~p, m~ ,.

Note . 0 --< Pt2 --< P~, P~ --< 1; so the fract ion is always positive.
If p l or P2 = 0 or 1, then 1' = I. Ifp~2 < p l , P2 << 1, then by applymg a b inomia l

expans ion we find that , to first order , I ' - I = p~210g(pap2/p~z) • I fpl2 = Pap2, then to
first order I ' = I . I f a~a l is the symbol pair replaced, then

Information Content o f Programs and Operation Encoding

piP,(1 - p n) l - p , ,

I ' - I = log (Pl - 2 p n) p ' - 2 p ' P H T M

or, to first order,

297

I ' - I = plllog(p~/Pll) •

In i tera t ive pair ing, that pair for which I' - I is greatest is combined at each stage.
Perhaps a good heuristic is choosing that pair a,a~ for whichpu is greatest. If the symbols
al and a2 appear only in the pair a l a 2 , then pl = pz = plz and

I' - I = p l l o g p l + (1 - p 0 1 o g (1 - p 0 < 0 for 0 < p ~ < 1.

Therefore such pairs should always be combined.

ACKNOWLEDGMENTS. This work has benefited from discussions with several people,
particularly D.B. Wortman, J.J. Horning, W.M. McKeeman, and R.N.S. Horspool, and
from the constructive criticisms of the referees.

REFERENCES

1 ASH, R Information Theory Interscience Tracts in Pure and Applied Mathematics, No 19, Wiley, New
York, 1965

2. BURROUGHS CORe Burroughs B6700 Information Processing Systems Reference Manual. Detroit,
Mlch , 1969

3. FEUSTAL, E.A The Rice Research Compute r - a tagged architecture Proc AFIPS 1972 SJCC, Vol 40,
AFIPS Press, Montvale, N J , pp 369-377.

4. FOSTER, C C , AND GONTER, R H Conditional interpretation of operation codes IEEE Trans. Com-
puters C-20 (Jan. 1971), 108-111

5. FOSTER, C C. Private commumcatlon.
6 HEHNER, E C R Computer design to minimize memory requirements Computer 9, 8 (Aug 1976), 65-

70
7 HUFFMAN, D A A method for the construction of minimum redundancy codes I R.E 40, 9 (Sept

1952), 1098-1101
8. IBM CORP IBM System/360 Principles of Operation Form A22-6821-x, IBM Syst. Develop Div ,

Poughkeepsie, N Y , 1968
9 ILIFFE, J K Basic Machine Principles American Elsevier, New York, 1968

10 MCKEEMAN, W M , HORNING, J J , AND WORTMAN, D B A Compder Generator. Prentice-Hall, Engle-
wood Cliffs, N J., 1970

11 SHANNON, C.E , AND WEAVER, W The Mathematical Theory of Commumcatton U of Illinois Press,
Urbana, Ill , 1949

12 WORTMAN, D B A study of language directed machine design Ph D Th , Comptr. Scl. Dep , Stanford
U , Stanford, Cahf , 1972

RECEIVED OCTOBER 1975, REVISED AUGUST 1976

Journal of the Association for Computing Machmery, Vol 24, No 2, April 1977

