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ABSTgACr The problem of determining the minimum representation of programs for executmn by a 
computer is considered The methods of measuring space requirements suggest practical methods for encoding 
programs and for designing machine languages An analysis of the operation portion of instructions finds that 
the 47 operation codes used by a well-known compiler require, on average, fewer than two bits each 
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1. Introduction 

In this paper we assume that a computer designer's goal is to design the best machine for 
the intended environment. Specifically, if the environment is represented by a class of 
programs to be run on the machine, the goal is to minimize the length of the machine- 
language representation of the class, or equivalently the average length of programs 
(weighted by frequency of program) in the class. Identifying and removing common 
dependencies and contributors to redundancy in machine language has two advantages. 
First, as much as 75 percent of the space taken by contemporary machine-language 
representations can be saved. Second, if some data path (between memory and proces- 
sor, within a processor, or between memories) is a system bottleneck, then minimizing 
space will help to reduce execution time by making more efficient use of available 
bandwidth. The cost is an increase in hardware complexity; at current and projected 
prices, this is an attractive trade-off. Although the discussion in this paper is in terms of 
machine languages, it is equally applicable to any situation in which storage or transmis- 
sion of information is a major expense. 

One may object to the goal of minimizing redundancy on the grounds that ~t is needed 
for reliability. Some forms of redundancy allow the detection of some errors. If there are 
unused operation codes, or addresses that are illegal or inaccessible, and if the error 
happens to result in one of these illegal instructions, it can be detected and the offending 
instruction identified. If the error results in a legal instruction, it may be detected 
indirectly but escape identification, or it may escape detection. Other forms of redun- 
dancy, such as interinstruction dependencies, do not provide any error detection ability. 

The use of accidental redundancy in machine-language instructions for error detection 
is at best a haphazard approach, and at worst a poor excuse for badly designed codes. 
The purpose of machine language is to specify a sequence of actions as succinctly as 
possible. Error detection ability is important enough to deserve its own separate mecha- 
nisms, specially designed for that purpose, such as parity bits or tag bits [2, 3, 9]. 

The information content of a program is an almost achievable target to aim for in its 
machine-language representation; redundancy is an absolute measure of performance in 
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this respect for any machine; methods for determining ent ropy suggest practical methods 
for improving a machine language. Definitions of these terms will now be presented and 
apphed to the encodings of operat ions For  other parts of instructions and for data  the 
reader  is referred to [6]. 

2. Definitions 

In information theory [11, 1] the entropy of a set of n messages is defined as H = 
- ~p~log p,,  where p, is the probabili ty or relative frequency of the tth message, 
p, > 0, ~ p ,  = 1. (All logarithms are to base 2, and all sums take subscripts over the 
range 1 to n. We may al lowp,  = 0 by taking 0 log 0 = 0, although with a statable adJust- 
ment of the message set, this is unnecessary.) The entropy of a set of messages repre- 
sents the average amount  of  choice involved in sending a message, or the average 
amount of uncertainty on the part  of the receiver as to which message will be sent. 
Entropy is independent  of any representat ion of the messages. I t  is a close (within one 
bit) lower bound on the average length of messages (weighted by frequency of message),  
according to a "bes t"  binary representat ion,  i .e. a binary representat ion that minimizes 
the average length of a message. 

We now define the information content of the t th program (or message) in a class (or 
set) of programs (or messages) as I, = - logp~ .  It is the amount  of information,  measured 
in bits, that distinguishes it from the other members  of the class. Like entropy,  the 
information content of a program is independent  of the representat ion and is a close 
(within one bit) estimate of the number  of bits taken by a best binary representation.  
Entropy is then the average information content of a program. 

In information theory,  the redundancy of a set of messages is defined as D = 
1 - (relative entropy),  where the relative entropy is the actual entropy divided by the 
maximum possible entropy of the set. For  a set ofn  messages, entropy is at its maximum 
when p, = 1/n for each l.  Redundancy is therefore 1 - H / l o g  n.  This defimtion is 
independent  of representat ion and unsuitable for our purposes.  We define the redun- 
dancy of a representation as D' = 1 - H/(average message length), where the length of a 
message depends on its representation.  With this definition, redundancy measures the 
proport ion of the representat ion that exceeds the entropy.  

3. Determination of Entropy 

If the entire class of programs to be run on the machine and the probabili ty or frequency 
of each program are known, then calculating the information content of each program 
and the entropy of the class Is straightforward. More than that,  an algorithm for 
determining a best representat ion has been given by [7]. However ,  few machine design- 
ers are given the luxury of such information. 

Normally one knows only that the programs to be run on the machine come from an 
infinite class, such as the set of all Algol programs, the set of all PL/1 programs, or the 
union of such sets. The definition of entropy can easily be extended to cover an infinite 
class, and, if the probabili ty distribution is known, one can still compute the target for 
the average length of a program. According to the classical definition, the redundancy of 
any infinite class whose members appear  with nonzero probabil i t ies is 100 percent ,  but 
the redundancy of representat ion provides a performance measure even for infinite 
classes. With luck, one may find a good machine-language representat ion for the 
particular distr ibution,  but there is no algorithm for determimng a best representat ion 
for an arbitrary distribution over an infinite class. 

Normally the probabili ty distribution is not known. One is given a sample of programs 
from which a reasonable estimate of the distribution for the class must be derived. The 
sample is intended to be representative to some degree of the entire class. The answer to 
the question "Just  how representat ive?" will provide the method of determining the class 
entropy. 
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It may be assumed that the relative frequencies of the language tokens in a large 
sample are representative of the frequencies in the class. Similarly it may be assumed 
that the relative frequencies of production numbers in a parse of the sample, or the 
frequencies of states in the parser, represent their frequencies over the entire class. Since 
a token sequence is a particular representation of programs, the entropy of the token set 
(average information content of a token) multiplied by the average number of tokens in a 
program (over the sample) will be an estimate of the entropy of the class of programs. 
Similarly the production sequence and parser state sequence provide estimates of the 
entropy. Unfortunately these estimates may be poor, and they depend rather heavily on 
the choice of representation. 

Almost as certainly, the frequencies of token pairs, production pairs, or state pairs are 
representative. With decreasing confidence, it may be assumed that higher m-tuple 
frequencies are representative. In the following paragraphs, j will stand for an (m - 1)- 
tuple of subscripts. If P,a is the probability of the ijth rn-tuple of symbols from an 
alphabet ofn symbols (tokens, productions, etc.) and N is the average length in symbols 
of a program, then the estimate of entropy based on nonoverlapping m-tuple frequencies 
is 

Gm= - ( N / m )  ~., p~j logp~j. 
q 

As m increases, these estimates form a monotonically decreasing sequence (Appendix 1, 
Theorem 1). Furthermore, as m becomes large, m-tuples become entire programs, and 
the sequence of estimates converges to the entropy of the sample. When the value ofm is 
too small, not enough use is made of the sample, and the estimate is too high. When m is 
too large, too much use is made, and the estimate is low (unless the sample is the 
complete class, in which case the sample entropy is the class entropy). 

More effective use can be made ofm-tuple frequencies by considering the conditional 
entropy of the next symbol when the m - 1 preceding symbols are known. Ifpku is the 
probability of appearance of the kth symbol given that the jth (m - 1)-tuple precedes it, 
then the mth estimate of class entropy based on conditional symbol entropy is 

Fm = - N  ~ p j ~  PkLJ 1ogpktj, 
j k 

where now the frequencies include overlapping tuples. Like Gin, Fm is a monotonically 
decreasing function of m (Appendix 1, Theorem 2), converging to the entropy of the 
sample, and Fm -< Gm (Appendix 1, Theorem 3). 

The problem is to decide which m makes Fm or Gm the best estimate of H. It must be 
large enough to include all dependencies or statistical influences characteristic of the 
class and none that are due only to the finite size of the sample. This m is found by 
formulating an appropriate hypothesis and applying a statistical test to determine, to a 
given level of confidence, whether the sample is sufficient to support (or reject) the 
hypothesis. Suppose the sample were the complete class. Now Gm÷~ =Gm implies G~ = 
Gin-1 (Appendix 1, Theorem 1). For most programming languages, pairs of tokens 
(productions, states) are not independent (usually not all pairs are legal); hence by 
Theorem 1, G2 ~ G~ and therefore Gm -~ H for any m. The F estimates are more 
cooperative; Fm may converge to H for some finite m. Of course, when it does, Fm+l = 
Fm ever after. Now F,~+i =Fm if and only ifpkla = PkU (Appendix 1, Theorem 2). With a 
limited sample, one looks for the last m for which the hypothesis Pk~,J = PklJ can be 
confidently rejected, i.e. the largest distance over which the sample indicates that a 
dependency exists. With limited computer resources, one may wish to make an addi- 
tional assumption: that a dependency of order m imphes a dependency of order m - 1. 
This allows one to stop at the first m for which a dependency is not indicated. 

There are other methods of estimating entropy, for example, by calculating symbol 
entropy conditionally upon information contained in the parse stack during a parse of the 
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programs.  The methods presented above lead, m Section 4, to practical suggestions for 
machine-language design. 

4. Apphcation to Operanon Codes 

Wortman was able to improve the operat ion set of the Student PL machine [12] by 
inventing new operations to replace certain pairs of old ones wherever they occur in a 
program. The pairs were chosen on the basis of high frequency and compatible seman- 
tics, i .e. pairs that fit "natural ly"  together;  the result of the combinations was a reduction 
in the average space required for a program. This technique can be made algorithmic by 
replacing, wherever it occurs in the sample, that pair that reduces the information 
content the most (Appendix 2), then repeating until some prespecified limit is reached.  
We call this method "iterative pairing." As a heuristic for finding which pair reduces 
reformation content the most,  the most common pair may be chosen. This heuristic is 
well suited to machines with fixed length fields since it tends to produce operat ions that 
have nearly equal frequencies. Unfortunately there may be no pair  whose replacement  
reduces the information content;  ~t may actually increase for any or all pairs. Further-  
more,  gaining the most benefit  from a limited number  of replacements may reqmre 
choosing, at intermedmte stages, paxrs other than those that reduce information content  
the most or those that are most frequent.  

If all pairs of operat ions are replaced by new operations,  or in general  all m-tuples by 
compound operations,  then the space required for a minimum redundancy encoding of 
the m-tuples will not increase, and it will decrease if there are dependencies  of order  m or 
less (Appendix 1, Theorem 1). This coding method corresponds to the estimates of 
entropy based on m-tuple frequencies. Implementat ion considerations limit the size of 
the operat ion set, which may grow exponentially with m.  In practice, however,  the 
growth is much slower: In one study, of the 10 zt possible 10-tuples of operat ions on the 
CDC3600,  fewer than 7000 had nonzero frequencies, indicating that there are important  
dependencies of order  10 or less [5]. The advantage of iterative pairing, in spite of its 
uncertainty, is that It takes account of important  high order  dependencies before less 
important  low order  dependencies,  and therefore gains more benefit  from fewer new 
instructmns. 

Foster  and Gonter  have suggested a method of shortening the operat ion field that 
takes advantage of interinstruction dependencies [4]. In their method each of the n 
operatmns is allowed k successors plus an escape; that is, after any operat ion,  only its k 
most frequent successor operat ions are given a code, plus one code for all n - k other  
operations.  The "operand"  of the escape code ~s used to set the state of the machine as it 
would be if an operat ion which has the desired successor had just been performed.  These 
codes are called "condit ional"  since an operat ion code can be decoded only by knowing 
the preceding operat ion.  Since Foster  and Gonter  used a fixed length operat ion code 
field, their method can save space only l fk  < n - 1. With a variable length field, there is 
no advantage in keeping k < n, so we take k = n. We make use of the variable length 
fields by giving the operat ions a minimum redundancy encoding for each possible 
predecessor operat ion.  Inclusion of a zero-frequency nonoperat ion m the set produces 
an open-ended code for future expansion, at a cost of one bit on the least frequent 
operat ion.  

An immediate generalizatmn of their method makes each operat ion code conditional 
upon the preceding m - 1 operations;  gwen the m-tuple frequencies,  the appropria te  
codes can be generated.  This corresponds,  m real coding terms, to the mth  estimate of 
class entropy based on conditional symbol entropy.  Like m-tupling,  this method carries 
the guarantee which lterative pairing lacks: It will not increase the required space and 
wdi reduce it if there are dependencies of order  m or less (Appendix 1, Theorem 2). For  
each m (greater than 1) this method is more effective in reducing space than compound- 
mg instructions into m-tuples (Appendix 1, Theorem 3). Fur thermore ,  conditional 
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coding is more readily viewed as just a coding technique, not as an increase in the 
operation set. 

5. Experimental Results 

To see what gains may be made by these encoding techniques, a large program 
( X C O M - t h e  compiler for the XPL language), written in a PL/1-1ike language (XPL), 
was compiled into a machine language that closely expresses the capabilities of the 
source language. Every commutative operator presents an opportumty to exchange the 
sequences of instructions that develop the two operands; to get maximum benefit from 
iterative pairing or conditional coding, commutative instructions were placed in a 
standard order We arbitrarily chose to place development of a complex expression 
operand before a single variable or constant operand, and we chose to place a variable 
operand before a constant operand. Within the category "variable operand,"  we placed 
procedure (function) calls ahead of arrays and arrays ahead of simple variables. We 
realize that the meaning of a program may be changed if development of an operand 
involves a call to a procedure with side effects, but we choose not to cater to such 
programming practices. 

As a basis for comparison, an IBM-360-1ike encoding [8] is included, along with a 
minimum redundancy encoding on the assumption of operation independence [7]. The 
former gives 8 bits to each operation code, and the latter gave an average of  3.6 bits per 
operation code. 

The lteratlve pairing procedure was applied to the 47 original operations until the 
number of operations had increased to 178 (at this point our ability to give sensible 
names to the new combinations was exhausted). The pairs being combined must not 
include any pairs whose second member is the object of a branch. A stricter, but more 
convenient, condition is to disallow pairs of instructions that cross a statement boundary 
in the original source program. The result was an average of 4.85 bits per new operation 
code, or 1.8 bits per original operation. 

The original operations were given a conditional coding, first in the context of  one 
preceding operation, then in the context of the preceding pair, and finally in the context 
of the preceding triple of operations. Rather than maintaining context wherever possi- 
ble, we established a standard context at every instruction that is the object of any branch 
or call. Our result is thus weakened, but easier to achieve. The chosen standard context 
was an arbitrary tuple of instructions. The results were 2.1, 1.7, and 1.6 bits per 
operation code on average. These results are summarized in Table I. 

6. Conclusions 

Some results in the encodings of operation have been presented. Results for other 
portions of instructions, and for data, show that similar space savings are possible [6]. 
With our sample (XPL compiler [10]), we trimmed 75 percent from the space taken by a 
contemporary machine representation (IBM 360) and 60 percent from a language 
directed machine representation that did not employ our techniques. As a bonus, the 
variable length encodings eliminate the overflow problem that results from trying to 
represent a large or infinite set by a fixed length encoding. 

These encodings may be useful w~th current hardware for long term storage of 
programs. For execution, a hardware expander could transform instructions to a conven- 
tional fixed length representation. They may be useful whenever the transmission of 
reformation through a fixed bandwidth is a major expense or system bottleneck. Or, and 
this is our main interest, space-saving encodings could be the basis for a more economic 
computer design. 

Appendix 1. Some Information Theorems 

In this Appendix log denotes the binary (base 2) logarithm. All free subscripts are under- 
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TABLE I 
Encoding Bits per operatmn Percent of (b) Percent of (a) 

(a) Like IBM 360 8 
(b) "Mlmmum redundancy" 3.6 
(c) Iteratwe pamng 1.8 a 49.9 
(d) Condltmnal coding 

1 precedmg 2.1 57 2 
2 preceding 1 7 47.0 
3 preceding 1 6 43.8 

45 3 
22.6 

25.9 
213 
198 

a Bits per original operaaon, 4 85 b]ts per compound operation 

stood to be universally quantified over the range 1 to n ,  and all sums are over the range 
1 to n .  j stands for an (m - 1)-tuple of subscripts. A subscripted p is a probabihty: 
p, is the probability of appearance of the ith symbol in any position in a sequence of these 
symbols; p,j is the probability of appearance of the tjth m-tuple;  Pklj is the probability 
of appearance of the kth symbol given that the jth (m - 1)-tuple precedes it. 

p j  > O, Pklj = Pjk/Pj, 

Z Pj = Z P k l j  = 1, Z P , j  = ~ Pjk = Pj. 
1 le t 

We may allow pj = 0 if we accept the convention 0 log 0 = O, 0/0 = 0 ° = 1. 
Let g m = - ( l / m )  ~ , j  log p,j be the average information content per symbol of an m- 

tuple of symbols. Then the estimate of entropy based on rn-tuple frequencies is G m =  
Ngm, where N is the average number  of symbols in a message. 

Let fm = - ~jPj ~kPklj logpklj be the average information content per symbol, 
conditional upon the preceding m - 1 symbols. Then the ruth estimate of class entropy 
based on conditional symbol entropy is Fm = Nfm. Define 

dm+:= - [ 1 / ( m  + 1)] ~ Puk log (P,jPjk/Pj). 
zjk 

LEMMA 1. I f  q, > 0 and Y~q, = 1, then - ~.p, log p, <-- - Ypdog  q, wtth equality i f f  
p ,  = q , .  

PROOF. See [1]. 
LEMMA 2. gm+l ~--- dm+l with equality i f f  pkl,j = PklJ. 
PROOf. 

PJk/PJ > 0, and ~ (PtjPjk/Pj) = ~ (PijPj/Pj) = 1. 

Therefore, by Lemma 1, gin+: ~ dm+~ with equality iffpqe = PqPje/Pj ,  i.e. i f fp i je /p  I = 
Pjk/Pj,  hence the result. 

THEOREM 1. g~ --> g~+], gm = gm+l implies gm-~ = gin. That is, g may begin fiat, but 
after the first decease, it is a strictly monotonically decreasing function o f  m. 

PROOF. By induction on m : 
Induction basis: 

gl = - ~ p,logp~ 

1 Z ly, 
= - 2 ,k ptklogp, -- 2 ,k P,k Iogpk 

= - --2,, p,~log (P,Pk) 
2 ,k 

-- - 2 ,k p~klogp,k by Lemma 1 

= g 2 ,  
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Note.  g~ = gz iffp~k = P,Pt , ,  Le .  the symbol  probabil i t ies  are independen t .  
Induc t ion  step: First  no te  that  

(m + 1)dm+l = - ~  Pqk log ( P , } P j k / P j )  
qk 

= - ~  p , j k l o g p , j -  ~ P,jk Iogpjk + ~ P,jk Iogpj  
qk tjk ,jk 

= ~ g m  - -  ( m  - -  1 ) g i n - , ;  

(m + 1)(gin - g,,+,) = ( m  - 1)(gm-, - gin) + 2 m  g m  - -  (m  - 1)gin-, - (m + 1)gin+, 
= (m - 1)(gin-, - gm) + (m  + 1)(dm+, - gm+~) . 

The  first te rm is nonnega t ive  by the induc t ion  hypothesis .  The  second te rm is nonnega-  
tive by L e m m a  2. Hence  the left side is nonnega t ive ,  and  the mduc t ion  is complete .  If the 
left side is zero, the first te rm on  the right must  also be zero; hence  the result. .  

THEOREM 2. 

PROOF. 

f., >- fro+,, f m =  fm+~ Cf Pk . j  = Pk~j" 

fm = -- £ P j ~  (Pjk/pj)Iog(Pj~/Pj) 
$ k 

= - ~ p j J o g p j k  + ~ p j l o g p j  

= mg,~ - (m - 1)g,n-1. 

f,n - f r o + ,  = mgm - (m  - 1)gin-, - (m + 1)gin+, + mg,,~ 

= (m + 1)(gin - gm+O - ( m  - 1)(gin-, - gin). 

From the proof  of T h e o rem 1 we have 

(m + 1)(gin - gm+~) = (m  - 1)(gin-, -- gin) + (m  + 1)(dm+l - gm+l); 

therefore fro - fm+~ = (m + 1 ) ( d m + l  - gin+a) >- 0 by L e m m a  2, with equali ty iffpk~,j = Pklj. 
TI-IEOREM 3. fm --< g ~ .  
PROOF. F rom the proof  of Th eo rem 2 we have fro = m g m  - ( m  - 1)gm-a ; therefore 

gm - f , ,  = (m - 1)(g~_~ - gin) >- 0 by T h e o rem 1. 

A p p e n d i x  2.  I t erauve  Pair ing  

Suppose that  in a representa t ive  sequence  S the symbol  pair  a la2 Is replaced with the new 
symbol  a0. L e t p '  be  the probabi l i ty  of occurrence of a, in the new sequence  S' .  T h e n  

p ;  = p12/(1 - plx), p l  = (P, - p12)/(1 - plz), po' = (Pz - p~2)/(1 - p,2), 
and  p~ = p , / ( 1  - PlZ) 

f o r / =  3 t o n .  The  average in format ion  con ten t  of a symbol  in S i s / =  - ~ p , logp , .  The  
average in format ion  con ten t  of  a symbol  in S '  per  symbol  in S is I '  = - (1 - P~2) 
Y. 7=0P' log p~. So the change m in format ion  con ten t  (per  symbol  in S )  is 

piP 'P2 p~ (1 - px2) l-ms 
I '  I log (p ,  _ p~2)p,_v,~(p2 _ p,z)p~_V,~p, m~ ,. 

Note .  0 --< Pt2 --< P~, P~ --< 1; so the fract ion is always positive. 
If p l  or  P2 = 0 or 1, then  1' = I.  Ifp~2 < p l ,  P2 << 1, then  by applymg a b inomia l  

expans ion  we find that ,  to first order ,  I '  - I = p~210g(pap2/p~z) • I fpl2  = Pap2, then  to 
first order  I '  = I .  I f a~a l  is the symbol pair  replaced,  then 
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piP,(1 - p n ) l - p , ,  

I '  - I = log (Pl  - 2 p n ) p ' - 2 p ' P H  T M  

or, to first order, 

297 

I '  - I = plllog(p~/Pll) • 

In  i tera t ive  pair ing,  that  pair for which I' - I is greatest is combined  at each  stage.  
Perhaps a good heuristic is choosing that pair a,a~ for whichpu is greatest. If the symbols 
al and a2 appear only in the pair a l a 2 ,  then pl = pz = plz and 

I' - I = p l l o g p l  + ( 1 - p 0 1 o g ( 1 - p 0  < 0  for 0 < p ~ <  1. 

Therefore such pairs should always be combined. 
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