How to Compute Halting

Eric C.R. Hehner

Department of Computer Science, University of Toronto

hehner@cs.utoronto.ca

Abstract: A consistently specified halting function may be computed.

Halting Problem

Here is the function header and specification of a Pascal function halts to compute the termination status of Pascal procedures; the function body is absent. Following that, we have a Pascal procedure diag in its entirety.

function halts (p, i: string): string;
{ return 'yes' if p represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input i ; }
{ return 'no' if p represents a Pascal procedure with one string input parameter }
{ whose execution does not terminate when given input i ; }
{ return 'not applicable' if p does not represent a Pascal procedure }
{ with one string input parameter }

procedure diag (s: string);
begin
 if halts (s, s) = 'yes' then diag (s)
end

We assume there is a dictionary of function and procedure definitions that is accessible to halts, so that the call halts ('diag', 'diag') allows halts to look up 'diag', and subsequently 'halts', in the dictionary, and retrieve their texts for analysis. What should the result of halts ('diag', 'diag') be? This is a question about the specification of halts. Let's look at each possibility in turn.

Should the result of halts ('diag', 'diag') be 'not applicable'? Syntactically, diag is a procedure; to determine that halts is being used correctly within diag, we need only the header for halts, not the body, and we have the header. Semantically, it is a procedure; to determine the meaning of the call to halts within diag, we need only the specification of halts, not its implementation, and we have the specification. (That important programming principle enables a programmer to call procedures written by other people, knowing only the specification, not the implementation. It also enables a programmer to change the implementation of a procedure, but still satisfying the specification, without knowing where and why the procedure is being called.) So there is nothing wrong with the definition of diag, and the result should not be 'not applicable'.

Should the result of halts ('diag', 'diag') be 'yes'? If so, the semantics of diag ('diag') is nontermination, so it should be 'no'.

Should the result of halts ('diag', 'diag') be 'no'? If so, the semantics of diag ('diag') is termination, so it should be 'yes'.

We have ruled out all possibilities. Therefore the halts specification is inconsistent, and halts cannot be programmed according to its specification.
How to Compute Limited Halting

It is inconsistent to ask for a Pascal function to compute the halting status of all Pascal procedures. But we can ask for a Pascal function to compute the halting status of some Pascal procedures. For example, a function to compute the halting status of just the two procedures

\begin{verbatim}
procedure loop (s: string); begin loop (s) end
procedure stop (s: string); begin end
\end{verbatim}

is easy. Perhaps we can ask for a Pascal function \textit{halts1} to compute the halting status of all Pascal procedures that do not refer to \textit{halts1}, neither directly nor indirectly. Here is its header, specification, and a start on its implementation.

\begin{verbatim}
function halts1 (p, i: string): string;
{ return 'yes' if \(p \) represents a Pascal procedure with one string input parameter }
{ that does not refer to \textit{halts1} (neither directly nor indirectly) }
{ and whose execution terminates when given input \(i \); }
{ return 'no' if \(p \) represents a Pascal procedure with one string input parameter }
{ that does not refer to \textit{halts1} (neither directly nor indirectly) }
{ and whose execution does not terminate when given input \(i \); }
{ return 'maybe' if \(p \) represents a Pascal procedure with one string input parameter }
{ that refers to \textit{halts1} (either directly or indirectly); }
{ return 'not applicable' if \(p \) does not represent a Pascal procedure }
{ with one string input parameter }
begin
if (\(p \) does not represent a Pascal procedure with one string input parameter)
then halts1:= 'not applicable'
else if (\(p \) refers to \textit{halts1} directly or indirectly)
then halts1:= 'maybe'
else (return halting status of \(p \), either 'yes' or 'no')
end
\end{verbatim}

The first case checks whether \(p \) represents a (valid) procedure exactly as a Pascal compiler does. The middle case looks like a transitive closure algorithm, but it is problematic because, theoretically, there can be an infinite chain of calls. Thus we may be able to compute halting for this limited set of procedures, but not determine whether a procedure is in this limited set. The last case may not be easy, but at least it is free of the reason it has been called incomputable: that it cannot cope with

\begin{verbatim}
procedure diag1 (s: string);
begin
if halts1 (s, s) = 'yes' then diag1 (s)
end
\end{verbatim}

Procedure \textit{diag1} refers to \textit{halts1} by calling it, so \textit{halts1} is not required to determine the halting status of \textit{diag1}. Therefore \(\text{halts1 ('diag1', 'diag1')} = 'maybe' \), and execution of \textit{diag1 ('diag1')} is terminating.

Calling is one kind of referring, but not the only kind. In the specification of \textit{halts1}, the name \textit{halts1} appears, and also in the body. These are self-references, whether or not \textit{halts1} calls itself. We exempt \textit{halts1} from having to determine the halting status of procedures containing any form of reference to \textit{halts1}; the result is 'maybe'. We might try to circumvent the limitation by writing another function \textit{halts2} that is identical to \textit{halts1} but renamed (including in the specification, the return statements, and any recursive calls).
function halts2 (p, i: string): string;
{ return 'yes' if p represents a Pascal procedure with one string input parameter }
{ that does not refer to halts2 (neither directly nor indirectly) }
{ and whose execution terminates when given input i ; }
{ return 'no' if p represents a Pascal procedure with one string input parameter }
{ that does not refer to halts2 (neither directly nor indirectly) }
{ and whose execution does not terminate when given input i ; }
{ return 'maybe' if p represents a Pascal procedure with one string input parameter }
{ that refers to halts2 (either directly or indirectly); }
{ return 'not applicable' if p does not represent a Pascal procedure }
{ with one string input parameter }
begin
if (p does not represent a Pascal procedure with one string input parameter)
then halts2 := 'not applicable'
else if (p refers to halts2 directly or indirectly)
then halts2 := 'maybe'
else (return halting status of p , either 'yes' or 'no')
end;

Of course, halts2 has its own nemesis:

procedure diag2 (s: string);
begin
if halts2 (s, s) = 'yes' then diag2 (s)
end

The point is that halts2 can determine halting for procedures that halts1 cannot, and halts1
can determine halting for procedures that halts2 cannot. For example,
halts1 (diag1 , 'diag1') = 'maybe' because diag1 calls halts1
halts2 (diag1 , 'diag1') = 'yes' because execution of diag1 ('diag1') terminates
halts2 (diag2 , 'diag2') = 'maybe' because diag2 calls halts2
halts1 (diag2 , 'diag2') = 'yes' because execution of diag2 ('diag2') terminates
But there are procedures that refer to both halts1 and halts2 , for which both halts1 and
halts2 say 'maybe' . The most interesting point is this: even though halts1 and halts2 are
identical except for renaming, they produce different results when given the same input,
according to their specifications.

How to Compute Unlimited Halting

In Pascal, as originally defined, identifiers cannot contain underscores. I now define a new
programming language, Pascal_ , which is identical to Pascal except that all identifiers must end
with an underscore. Pascal_ is neither more nor less powerful than Pascal: they are both
Turing-Machine-equivalent. In this new language, perhaps we can write a function named
halts_ that determines the halting status of all Pascal procedures. Pascal procedures are
syntactically prevented from referring to halts_ , so the problem of determining whether a
Pascal procedure refers to halts_ disappears, along with the 'maybe' option.

function halts_ (p_, i_: string): string;
{ return 'stops' if p_ represents a Pascal procedure with one string input parameter }
{ whose execution terminates when given input i_; }
{ return 'loops' if p_ represents a Pascal procedure with one string input parameter }
{ whose execution does not terminate when given input i_; }
{ return 'not applicable' if p_ does not represent a Pascal procedure }
{ with one string input parameter }

begin
if (\(p_ \) does not represent a Pascal procedure with one string input parameter)
then \(\text{halts}__ := '\text{not applicable}' \)
else (return halting status of \(p_ \), either 'stops' or 'loops')
end

If it is possible to write a Pascal function \(\text{halts}_1 \) to compute the halting status of all Pascal procedures that do not refer to \(\text{halts}_1 \), then by writing \(\text{halts}__ \) in another language, we can compute the halting status of all Pascal procedures.

There is an argument that, at first sight, seems to refute the possibility of computing the halting status of all Pascal procedures just by programming in another language. If we can write \(\text{halts}__ \) in Pascal_, then we can easily obtain a Pascal function \(\text{halts} \) just by deleting the underscores from the Pascal_ identifiers. We thus obtain a Pascal function with the same functionality. But there cannot be a Pascal function that computes the halting status of all Pascal procedures. Therefore, the argument concludes, there cannot be a Pascal_ function to do so either.

As compelling as the previous paragraph may seem, it is wrong. We have already seen that renaming \(\text{halts}_1 \) to \(\text{halts}_2 \) produces a function with different results. The phenomenon can be understood in everyday experience. If I say “My name is Eric Hehner.” I am telling the truth. If Margaret Jackson says exactly the same words, she is lying. The truth of that sentence depends on who says it.

Here is a simple example of the failure of program translation: a Pascal_ procedure that prints its own name.

procedure \(A__ \): \{ this procedure prints its own name \}
begin \(\text{print}__('A__)' \) end

Translating this procedure to Pascal, we face a dilemma. We could translate it as

procedure \(A \): \{ this procedure prints its own name \}
begin \(\text{print} ('A__)' \) end

arguing that the two procedures have the same output, but clearly this translation does not preserve the intention. The Pascal_ procedure \(A__ \) meets its specification; the Pascal translation \(A \) does not. Or we could translate it as

procedure \(A \): \{ this procedure prints its own name \}
begin \(\text{print} ('A') \) end

arguing that we have preserved the intention, but clearly the two procedures do not have the same output. Translating from \(\text{halts}__ \) to \(\text{halts} \) has the same problem. We cannot preserve the intention because the specification at the head of \(\text{halts}__ \), which is perfectly reasonable for a Pascal_ function, becomes inconsistent when placed at the head of a Pascal function. If we just use the same Pascal_ procedure but delete the underscores from the ends of identifiers, we obtain a Pascal procedure that no longer satisfies the specification.

There is another argument that, at first sight, also seems to refute the possibility of computing the halting status of all Pascal procedures just by programming in another language. In Pascal, we can write an interpreter for Pascal_ programs. So if we could write a halting function \(\text{halts}__ \) in Pascal_ for all of Pascal, we could feed the text of \(\text{halts}__ \) to this interpreter, and thus obtain a Pascal function to compute halting for all Pascal procedures. But there cannot be a
Pascal function that computes the halting status of all Pascal procedures. Therefore, the argument concludes, there cannot be a Pascal function to do so either.

The reason this argument fails is the same as the reason the previous argument fails. The interpreter interpreting *halts* is just like the translation of *halts* into Pascal by deleting underscores. The interpreter interpreting *halts* can be called by another Pascal program; *halts* cannot be called by a Pascal program. That fact materially affects their behavior. Pascal program *halts* can be applied to a Pascal procedure *d* that calls the interpreter interpreting *halts* applied to *d*, and it will produce the right answer. But the interpreter interpreting *halts* applied to *d* calls the interpreter interpreting *halts* applied to *d*, and execution will not terminate.

the Barber

A town named Russellville consists of some men (only men). Some of the men shave themselves; the others do not shave themselves. A barber is a person who shaves all and only those men in Russellville who do not shave themselves. There is a barber: a man named Bertrand who lives in the neighboring town of Russellville. Without any difficulty, he satisfies the specification of barber.

One of the men in Russellville, whose name is Bertrand, decided that there is no need to bring in a barber from outside town. Bertrand decided that he could do the job. He would shave those men whom Bertrand shaves, and not shave those men whom Bertrand does not shave. If Bertrand is fulfilling the role of barber, then by doing exactly the same actions as Bertrand, Bertrand reasoned that he would fulfill the role of barber. But Bertrand is wrong; those same actions will not fulfill the role of barber when Bertrand performs them. To be a barber, Bertrand has to shave himself if and only if he does not shave himself. A specification that is perfectly consistent and possible for someone outside town becomes inconsistent and impossible when it has to be performed by someone in town.

And so it is with the halting specification, and for the same reason. For Bertrand, the barber specification has no self-reference; for Bertrand, the barber specification has a self-reference. For *halts*, the halting specification has no self-reference; for *halts*, the halting specification has a self-reference (indirectly through *diag* and other procedures that call *halts*).

Vacuum Cleaners

Consider the problem of building a vacuum cleaner that can clean everything in your house. This vacuum cleaner will be an object in your house, so it is required to be able to clean out its own bag. But that's impossible, because vacuuming out the bag fills the bag. So Turing would conclude that vacuum cleaners are unbuildable. A sensible person would conclude that a vacuum cleaner can be built so long as we don't use it to clean out its own bag. And I would point out that an identical vacuum cleaner from next door can clean everything in your house, including your vacuum cleaner's bag.

Conclusion

By weakening the halting specification a little, reducing the domain from “all procedures” to “all procedures that do not refer to the halting function”, we obtain a specification that may be both consistent and computable. Equivalently, we may be able to compute the halting status of all procedures in a Turing-Machine-equivalent language by writing a halting function in another Turing-Machine-equivalent language, assuming that the procedures of the first language cannot refer to the halting function written in the second language. In any case, we do not yet have a proof that it is impossible.
Reference

other papers on halting