
0

Halting Problem

Eric C.R. Hehner

Department of Computer Science, University of Toronto
hehner@cs.utoronto.ca

Abstract Halting cannot be computed due to inconsistency of specification.

Problem

The first proof that halting is incomputable was by Alan Turing in 1936 [1]. I begin by
presenting Turing's proof, but modernized in two respects. Instead of using Turing Machine
operations, I use a modern programming language: Pascal. To apply a function to the domain
of programs, Turing encoded programs as numbers. Today, when one program is presented as
input data to another program (for example, to a compiler or interpreter), it is represented as a
text (character string), and that's the encoding I will use. These changes are standard in modern
textbooks; they change nothing essential in the proof of incomputability.

I cannot write a Pascal function to say whether the execution of any Pascal procedure
halts, so instead I write the function header, and a comment to specify what the result of the
function is supposed to be. Following the program is the standard argument leading to the
incomputability conclusion.

I agree with the first half of the concluding sentence: function halts cannot be programmed
according to its specification. But I claim that the reason is not due to incomputability; it is due
to an inconsistency (or self-contradiction) in the specification.

It is easy to write procedures for which the desired result of halts is clear. For example:

function halts (p, i: string): boolean;
{ returns true if string p represents a Pascal procedure with one string input }
{ whose execution halts when given input i ; returns false otherwise }

procedure twist (s: string);
begin

if halts (s, s) then twist (s)
end

Assume function halts has been programmed according to its specification/definition/
description/comment. Does execution of twist ('twist') terminate? If it terminates, then
halts ('twist', 'twist') returns true according to its specification, and so we see from the body
of twist that execution of twist ('twist') does not terminate. If it does not terminate, then
halts ('twist', 'twist') returns false , and so execution of twist ('twist') terminates. This is a
contradiction (inconsistency). Therefore function halts cannot have been programmed
according to its specification; halts is incomputable.

http://www.cs.utoronto.ca/~hehner

Eric Hehner1

procedure fine (s: string);
begin

if s='loop' then fine (s)
end

The result of halts ('fine', 'fine') should be true , and the result of halts ('fine', 'loop') should be
false . Examples like this may give us false comfort that halts is consistently defined. But
halts must apply to all Pascal procedures with one string input, including twist . So what
should the result of halts ('twist', 'twist') be? I am not asking how to compute it; I just want to
know what the result should be. If we say it should be true , then execution of twist ('twist') is
nonterminating, so halts ('twist', 'twist') should be false . If we say it should be false , then
execution of twist ('twist') is terminating, so halts ('twist', 'twist') should be true . Both
options are ruled out. This is an inconsistency in the specification, or definition, of halts .

Simpler Version

Now I want to get rid of a distraction in the previous presentation of the Halting Problem.
Although halts is defined to say whether execution of any Pascal procedure p terminates
when given any input i , the argument for incomputability uses halts for only one procedure,
twist , on only one input, 'twist' . So now let me write a simpler version of halts that works on
only the one procedure we're interested in, eliminating the parameters. This simplified version
supports the argument leading to incomputability just as well (or badly) as the previous version.

It's really easy to program the body of halts . Either it's
begin halts:= true end

which returns true , or it's
begin halts:= false end

which returns false . There's no programming problem here. The problem is to decide whether
we want halts to return true or false . Whichever one we decide on, it won't satisfy the
specification of halts . There is a logical inconsistency in the specification of halts .

function halts: boolean;
{ returns true if execution of twist halts; returns false otherwise }

procedure twist;
begin

if halts then twist
end

Assume function halts has been programmed according to its specification. Does execution
of twist terminate? If it terminates, then halts returns true according to its specification,
so we see from the body of twist that its execution does not terminate. If it does not
terminate, then halts returns false , and so execution of twist terminates. This is a
contradiction (inconsistency). Therefore function halts cannot have been programmed
according to its specification; halts is incomputable.

Halting Problem 2

Models of Computation

When we say that a function is “computable”, or that it is “incomputable”, we mean that it can,
or cannot, be computed by a Turing-Machine-equivalent computer. All computers currently in
use are Turing-Machine-equivalent, or rather, they would be if they had infinite memory, so we
usually don't bother to say “Turing-Machine-equivalent”. We can easily build a computer that
cannot compute all that a Turing-Machine-equivalent computer can compute: for example, a
finite-state automaton. Maybe someone will discover a model of computing that can compute
functions that cannot be computed by a Turing-Machine-equivalent computer, although the
Church-Turing Thesis says that's not possible.

To prove that a function is (in)computable, the proof must make substantive use of the
model of computing with respect to which the function is (in)computable. A proof that X is
computable could be a program that computes X using the instructions of the model. A proof
that X is incomputable could be a structural induction over all programs of the model.

In any standard proof of incomputability of the halting function, there is an explicit
assumption (for the purpose of contradiction) that a halting program has been written, and it is
either stated or clearly assumed that this program is written in a Turing-Machine-equivalent
programming language, and applies to all programs written in that same language. But
nowhere does the proof make substantive use of that assumption. This paper uses Pascal, which
is Turing-Machine-equivalent. But suppose we allow halts to be an oracle that works by
magic; still we come to the contradiction that halts ('twist', 'twist') can neither return true nor
return false . That's because the contradiction does not depend on any computing model. It
depends only on the specification of halts . The specification of halts is inconsistent.

Turing defined a model. Turing's proof of incomputability of halting talks vaguely about
the “motion” of his machine, just as the above specification of halts may be accompanied by a
statement saying that it is to be written in Pascal. But the proof makes no use of that model of
computation. The proof depends only on what is to be computed, not on how it is to be
computed. Any such proof fails to prove incomputability.

Conclusion

If “incomputable” meant having an inconsistent specification, then halts would be
incomputable. But “incomputable” doesn't mean “inconsistent”. It means that a well-defined
function, one with a consistent specification, cannot be computed by a Turing-Machine-
equivalent computer, and apply to all programs on that same computer. The halts specification
is inconsistent; no function satisfies it; so the question of computability does not arise. For a
full discussion, see [0].

References

[0] E.C.R.Hehner: Problems with the Halting Problem, Advances in Computer Science and
Engineering v.10 n.1 p.31-60, 2013 March, www.cs.utoronto.ca/~hehner/PHP.pdf

[1] A.M.Turing: on Computable Numbers with an Application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society s.2 v.42 p.230-265, 1936;
correction s.2 v.43 p.544-546, 1937

other papers on halting

http://www.cs.utoronto.ca/~hehner/halting.html

