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Abstract  Halting cannot be computed due to inconsistency of specification.

Problem

The first proof that halting is incomputable was by Alan Turing in 1936 [1].  I begin by 
presenting Turing's proof, but modernized in two respects.  Instead of using Turing Machine 
operations, I use a modern programming language:  Pascal.  To apply a function to the domain 
of programs, Turing encoded programs as numbers.  Today, when one program is presented as 
input data to another program (for example, to a compiler or interpreter), it is represented as a 
text (character string), and that's the encoding I will use.  These changes are standard in modern 
textbooks;  they change nothing essential in the proof of incomputability. 

I cannot write a Pascal function to say whether the execution of any Pascal procedure 
halts, so instead I write the function header, and a comment to specify what the result of the 
function is supposed to be.  Following the program is the standard argument leading to the 
incomputability conclusion.

I agree with the first half of the concluding sentence:  function  halts  cannot be programmed 
according to its specification.  But I claim that the reason is not due to incomputability;  it is due 
to an inconsistency (or self-contradiction) in the specification.

It is easy to write procedures for which the desired result of  halts  is clear.  For example:

function halts (p, i: string): boolean;
{ returns  true  if string  p  represents a Pascal procedure with one string input }
{ whose execution halts when given input  i ;  returns  false  otherwise }

procedure twist (s: string);
begin

if halts (s, s) then twist (s)
end

Assume function  halts  has been programmed according to its specification/definition/
description/comment.  Does execution of  twist ('twist')  terminate?  If it terminates, then  
halts ('twist', 'twist')  returns  true  according to its specification, and so we see from the body 
of  twist  that execution of  twist ('twist')  does not terminate.  If it does not terminate, then  
halts ('twist', 'twist')  returns  false , and so execution of  twist ('twist')  terminates.  This is a 
contradiction (inconsistency).  Therefore function  halts  cannot have been programmed 
according to its specification;  halts  is incomputable.
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procedure fine (s: string);
begin

if s='loop' then fine (s)
end

The result of  halts ('fine', 'fine')  should be  true , and the result of  halts ('fine', 'loop')  should be  
false .  Examples like this may give us false comfort that  halts  is consistently defined.  But  
halts  must apply to all Pascal procedures with one string input, including  twist .  So what 
should the result of  halts ('twist', 'twist')  be?  I am not asking how to compute it;  I just want to 
know what the result should be.  If we say it should be  true , then execution of  twist ('twist')  is 
nonterminating, so  halts ('twist', 'twist')  should be  false .  If we say it should be  false , then 
execution of  twist ('twist')  is terminating, so  halts ('twist', 'twist')  should be  true .  Both 
options are ruled out.  This is an inconsistency in the specification, or definition, of  halts .

Simpler Version

Now I want to get rid of a distraction in the previous presentation of the Halting Problem.  
Although  halts  is defined to say whether execution of any Pascal procedure  p  terminates 
when given any input  i , the argument for incomputability uses  halts  for only one procedure,  
twist , on only one input,  'twist' .  So now let me write a simpler version of  halts  that works on 
only the one procedure we're interested in, eliminating the parameters.  This simplified version 
supports the argument leading to incomputability just as well (or badly) as the previous version.

It's really easy to program the body of  halts .  Either it's
begin halts:= true end

which returns  true , or it's
begin halts:= false end

which returns  false .  There's no programming problem here.  The problem is to decide whether 
we want  halts  to return  true  or  false .  Whichever one we decide on, it won't satisfy the 
specification of  halts .  There is a logical inconsistency in the specification of  halts .

function halts: boolean;
{ returns  true  if execution of  twist  halts;  returns  false  otherwise }

procedure twist;
begin

if halts then twist
end

Assume function  halts  has been programmed according to its specification.  Does execution 
of  twist  terminate?  If it terminates, then  halts  returns  true  according to its specification, 
so we see from the body of  twist  that its execution does not terminate.  If it does not 
terminate, then  halts  returns  false , and so execution of  twist  terminates.  This is a 
contradiction (inconsistency).  Therefore function  halts  cannot have been programmed 
according to its specification;  halts  is incomputable.
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Models of Computation

When we say that a function is “computable”, or that it is “incomputable”, we mean that it can, 
or cannot, be computed by a Turing-Machine-equivalent computer.  All computers currently in 
use are Turing-Machine-equivalent, or rather, they would be if they had infinite memory, so we 
usually don't bother to say “Turing-Machine-equivalent”.  We can easily build a computer that 
cannot compute all that a Turing-Machine-equivalent computer can compute:  for example, a 
finite-state automaton.  Maybe someone will discover a model of computing that can compute 
functions that cannot be computed by a Turing-Machine-equivalent computer, although the 
Church-Turing Thesis says that's not possible.

To prove that a function is (in)computable, the proof must make substantive use of the 
model of computing with respect to which the function is (in)computable.  A proof that X  is 
computable could be a program that computes  X  using the instructions of the model.  A proof 
that  X  is incomputable could be a structural induction over all programs of the model.

In any standard proof of incomputability of the halting function, there is an explicit 
assumption (for the purpose of contradiction) that a halting program has been written, and it is 
either stated or clearly assumed that this program is written in a Turing-Machine-equivalent 
programming language, and applies to all programs written in that same language.  But 
nowhere does the proof make substantive use of that assumption.  This paper uses Pascal, which 
is Turing-Machine-equivalent.  But suppose we allow  halts  to be an oracle that works by 
magic;  still we come to the contradiction that  halts ('twist', 'twist')  can neither return  true  nor 
return  false .  That's because the contradiction does not depend on any computing model.  It 
depends only on the specification of  halts .  The specification of  halts  is inconsistent.

Turing defined a model.  Turing's proof of incomputability of halting talks vaguely about 
the “motion” of his machine, just as the above specification of  halts  may be accompanied by a 
statement saying that it is to be written in Pascal.  But the proof makes no use of that model of 
computation.  The proof depends only on what is to be computed, not on how it is to be 
computed.  Any such proof fails to prove incomputability.

Conclusion

If “incomputable” meant having an inconsistent specification, then  halts  would be 
incomputable.  But “incomputable” doesn't mean “inconsistent”.  It means that a well-defined 
function, one with a consistent specification, cannot be computed by a Turing-Machine-
equivalent computer, and apply to all programs on that same computer.  The  halts  specification 
is inconsistent;  no function satisfies it;  so the question of computability does not arise.  For a 
full discussion, see [0].
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