Time Dependence
Time Dependence

\[\text{deadline} := t + 5 \]
Time Dependence

\[\text{deadline} := t + 5 \]
no problem
Time Dependence

deadline := t + 5

if $t < \text{deadline}$ then ... else ... fi

no problem
Time Dependence

\[\text{deadline} := t + 5 \]

\[\text{if } t < \text{deadline} \text{ then } \ldots \text{ else } \ldots \text{ fi} \]

no problem
Time Dependence

\[\text{deadline} := t + 5 \]

\[\text{if } t < \text{deadline then } \ldots \text{ else } \ldots \text{ fi} \]

\[t := 5 \]

no problem

no problem

problem: unimplementable
Time Dependence

\[\text{deadline} := t + 5 \]

\[\text{if } t < \text{deadline} \text{ then } \ldots \text{ else } \ldots \text{ fi} \]

\[t := 5 \]

\[\text{wait until } w \]

no problem

no problem

problem: unimplementable
Time Dependence

\[
\text{deadline} := t + 5 \\
\text{if } t < \text{deadline} \text{ then } ... \text{ else } ... \text{ fi} \\
t := 5 \\
\text{wait until } w = t := t↑w
\]

no problem

no problem

problem: unimplementable
Time Dependence

\[\text{deadline} := t + 5 \]

if \(t < \text{deadline} \) then ... else ... fi

\[t := 5 \]

wait until \(w = t \uparrow w \)

no problem

no problem

problem: unimplementable

busy-wait loop
Time Dependence

\[\text{deadline} := t + 5 \quad \text{no problem} \]
\[\text{if } t < \text{deadline} \text{ then } ... \text{ else } ... \text{ fi} \quad \text{no problem} \]
\[t := 5 \quad \text{problem: unimplementable} \]
\[\text{wait until } w = t \uparrow w \quad \text{busy-wait loop} \]
\[\text{wait until } w \Leftarrow \text{ if } t \geq w \text{ then ok else } t := t + 1. \text{ wait until } w \text{ fi} \]
Time Dependence

\[\text{deadline} := t + 5 \]

\[\text{if } t < \text{deadline} \quad \text{then} \quad \ldots \quad \text{else} \quad \ldots \quad \text{fi} \]

no problem

\[t := 5 \]

problem: unimplementable

\[\text{wait until } w = t := t \uparrow w \]

busy-wait loop

\[\text{wait until } w \iff \text{if } t \geq w \quad \text{then ok} \quad \text{else} \quad t := t + 1. \quad \text{wait until } w \quad \text{fi} \]

proof
Time Dependence

\[
\text{deadline} := t + 5 \\
\text{if } t < \text{deadline} \text{ then } ... \text{ else } ... \text{ fi} \\
t := 5 \\
\text{wait until } w \implies t := t \uparrow w \\
\text{wait until } w \iff \text{if } t \geq w \text{ then ok else } t := t + 1. \text{ wait until } w \text{ fi}
\]

\textbf{proof}

\[t \geq w \land \text{ok}\]
Time Dependence

deadline:= t + 5

if t < deadline then ... else ... fi

no problem

t:= 5

problem: unimplementable

wait until w = t↑w

busy-wait loop

wait until w ⇐ if t≥w then ok else t:= t+1. wait until w fi

proof

\(t ≥ w \land ok \)

= \(t ≥ w \land (t := t) \)
Time Dependence

declaration: $t = t + 5$

no problem

if $t < \text{deadline}$ then ... else ... fi

no problem

$t := 5$

problem: unimplementable

wait until $w = t \uparrow w$

busy-wait loop

wait until $w \Leftarrow$ if $t \geq w$ then ok else $t := t + 1$. wait until w fi

proof

$t \geq w \land ok$

$= t \geq w \land (t := t)$

$= t \geq w \land (t := t \uparrow w)$
Time Dependence

deadline := t + 5

if $t < \text{deadline}$ then ... else ... fi

no problem

t := 5

problem: unimplementable

wait until $w = t \uparrow w$

busy-wait loop

wait until $w \iff \text{if } t \geq w \text{ then ok else } t := t + 1 \text{. } \text{wait until } w \text{ fi}$

proof

$t \geq w \land ok$

$= t \geq w \land (t := t)$

$= t \geq w \land (t := t \uparrow w)$

$\Rightarrow \text{wait until } w$
Time Dependence

deadline := t + 5

if $t < \text{deadline}$ then ... else ... fi

$t := 5$

no problem

problem: unimplementable

wait until $w = t \uparrow w$

busy-wait loop

wait until $w \iff \text{if } t \geq w \text{ then ok else } t := t + 1. \text{ wait until } w \text{ fi}$

proof
Time Dependence

deadline := t + 5

if $t < \text{deadline}$ then ... else ... fi

$t := 5$

wait until $w = t \uparrow w$

wait until $w \Leftarrow$ if $t \geq w$ then ok else $t := t+1$. wait until w fi

proof

$t < w \land (t := t+1. \text{ wait until } w)$
Time Dependence

\[\text{deadline} := t + 5 \]

\[\text{if } t < \text{deadline} \text{ then } \ldots \text{ else } \ldots \text{ fi} \]

\[t := 5 \]

no problem

problem: unimplementable

\[\text{wait until } w \quad = \quad t := t \uparrow w \]

busy-wait loop

\[\text{wait until } w \quad \Leftarrow \quad \text{if } t \geq w \text{ then ok else } t := t+1. \quad \text{wait until } w \text{ fi} \]

proof

\[t < w \land (t := t+1. \; \text{wait until } w) \]

\[= \quad t < w \land (t := t+1. \; t := t \uparrow w) \]
Time Dependence

\[
\text{deadline} := t + 5 \quad \text{no problem}
\]

\[
\text{if } t < \text{deadline} \text{ then } \ldots \text{ else } \ldots \text{ fi} \quad \text{no problem}
\]

\[
t := 5 \quad \text{problem: unimplementable}
\]

\[
\text{wait until } w = t \uparrow w \quad \text{busy-wait loop}
\]

\[
\text{wait until } w \iff \text{if } t \geq w \text{ then ok else } t := t + 1. \text{ wait until } w \text{ fi}
\]

proof

\[
t < w \land (t := t + 1. \text{ wait until } w)
\]

\[
= t < w \land (t := t + 1. \ t := t \uparrow w)
\]

\[
= t + 1 \leq w \land
\]
Time Dependence

\[\text{deadline} := t + 5\] no problem

\textbf{if} \ t < \text{deadline} \ \textbf{then} ... \ \textbf{else} ... \ \textbf{fi} no problem

\[t := 5\] problem: unimplementable

\textbf{wait until} \ w \ = \ t := t^{\uparrow}w\] busy-wait loop

\textbf{wait until} \ w \ \Leftarrow \ \textbf{if} \ t \geq w \ \textbf{then} \ ok \ \textbf{else} \ t := t+1. \ \textbf{wait until} \ w \ \textbf{fi}

\textbf{proof}

\[t < w \land (t := t+1. \ \textbf{wait until} \ w)\]

\[= t < w \land (t := t+1. \ t' = t^{\uparrow}w \land \ldots)\]

\[= t+1 \leq w \land \ldots\]
Time Dependence

deadline := t + 5

if \(t < \) deadline then ... else ... fi

\(t := 5 \)

wait until \(w = t \uparrow w \)

wait until \(w \Leftarrow \) if \(t \geq w \) then ok else \(t := t+1 \). wait until \(w \) fi

proof

\[t < w \land (t := t+1. \text{ wait until } w) \]

\[= t < w \land (t' = (t+1) \uparrow w \land ...) \]

\[= t + 1 \leq w \land \]
Time Dependence

\[
\text{deadline} := t + 5 \quad \text{no problem}
\]
\[
\text{if } t < \text{deadline} \text{ then } ... \text{ else } ... \text{ fi} \quad \text{no problem}
\]
\[
t := 5 \quad \text{problem: unimplementable}
\]
\[
\text{wait until } w = t := t \uparrow w \quad \text{busy-wait loop}
\]
\[
\text{wait until } w \Leftarrow \text{ if } t \geq w \text{ then } \text{ok} \text{ else } t := t + 1. \text{ wait until } w \text{ fi}
\]

proof

\[
t < w \land (t := t + 1. \text{ wait until } w)
\]
\[
= t < w \land (t := t + 1. t := t \uparrow w)
\]
\[
= t + 1 \leq w \land (t := (t + 1) \uparrow w)
\]
Time Dependence

deadline := t + 5

if \(t < \) deadline then ... else ... fi

t := 5

wait until \(w = t := t \uparrow w \)

wait until \(w \iff \) if \(t \geq w \) then ok else \(t := t + 1 \). wait until \(w \) fi

proof

\[
\begin{align*}
t < w \land (t := t + 1. \text{ wait until } w) \\
= & \quad t < w \land (t := t + 1. \ t := t \uparrow w) \\
= & \quad t + 1 \leq w \land (t := (t + 1) \uparrow w) \\
= & \quad t < w \land (t := w)
\end{align*}
\]
Time Dependence

deadline := t + 5

\textbf{if} t < \textit{deadline} \textbf{then} ... \textbf{else} ... \textbf{fi}

\texttt{t := 5}

\texttt{wait until} \ w \ \ \ = \ \ \ t := t \uparrow w

\texttt{wait until} \ w \ \ \leftarrow \ \ \textbf{if} \ t \geq w \ \textbf{then} \ ok \ \textbf{else} \ t := t+1. \ \texttt{wait until} \ w \ \textbf{fi}

\textbf{proof}

\(t < w \land (t := t+1. \ \texttt{wait until} \ w) \)

\(= \)

\(t < w \land (t := t+1. \ t := t \uparrow w) \)

\(= \)

\(t + 1 \leq w \land (t := (t+1) \uparrow w) \)

\(= \)

\(t < w \land (t := w) \)

\(= \)

\(t < w \land (t := t \uparrow w) \)
Time Dependence

\[\text{deadline}: = t + 5 \]

if \(t < \text{deadline} \) then ... else ... fi

no problem

\[t: = 5 \]

problem: unimplementable

wait until \(w \) \(= \) \(t: = t \uparrow w \)

busy-wait loop

\[\text{wait until } w \iff \text{if } t \geq w \text{ then ok else } t: = t + 1. \text{ wait until } w \text{ fi} \]

proof

\[t < w \land (t: = t + 1. \text{ wait until } w) \]

\[= \]

\[t < w \land (t: = t + 1. \ t: = t \uparrow w) \]

\[= \]

\[t + 1 \leq w \land (t: = (t + 1) \uparrow w) \]

\[= \]

\[t < w \land (t: = w) \]

\[= \]

\[t < w \land (t: = t \uparrow w) \]

\[\Rightarrow \]

\[\text{wait until } w \]
Space Dependence
Space Dependence

\textbf{if } s < 1000000 \textbf{ then ... else ... fi } \quad \text{no problem}
Space Dependence

\[
\text{if } s < 1000000 \text{ then ... else ... fi}
\]

\[
s := 5
\]

no problem

problem
Space Dependence

\[
\begin{align*}
&\text{if } s < 1000000 \text{ then } \ldots \text{ else } \ldots \text{ fi} \\
&s := 5
\end{align*}
\]

no problem

problem

assignments to s must account for space
Space Dependence

\[
\text{if } s < 1000000 \text{ then ... else ... fi}
\]
\[
s := 5
\]

no problem

problem

assignments to \(s \) must account for space

real space

implementation dependent
Assertions
assert b
Assertions

```plaintext
assert b

= “I believe b is true”
```
Assertions

\texttt{assert } b

\begin{align*}
\text{=} & \quad \text{“I believe } b \text{ is true”} \\
\text{=} & \quad \text{precondition } b
\end{align*}
assert b

$=$

“I believe b is true”

$=$

precondition b

$=$

postcondition b
assert b

= “I believe b is true”
= precondition b
= postcondition b
= invariant b
Assertions

assert \, b

= “I believe \, b \, is true”

= precondition \, b

= postcondition \, b

= invariant \, b

= if \, b \, then \, ok \, else \, print \, “error: ...” \, . \, wait \, until \, ∞ \, fi
Assertions

assert b

= “I believe b is true”

= precondition b

= postcondition b

= invariant b

= if b then ok else print “error: ...”. wait until ∞ fi

redundant
Assertions

assert b

= “I believe b is true”

= precondition b

= postcondition b

= invariant b

= if b then ok else print “error: ...”. wait until ∞ fi

redundant, adds robustness
Assertions

```plaintext
assert \( b \)
```

= “I believe \(b \) is true”

= precondition \(b \)

= postcondition \(b \)

= invariant \(b \)

= if \(b \) then ok else print “error: …”. wait until \(\infty \) fi

redundant, adds robustness, costs execution time
Assertions

assert b

= “I believe b is true”

= precondition b

= postcondition b

= invariant b

= if b then ok else print “error: ...”. wait until ∞ fi

redundant, adds robustness, costs execution time

ensure b
Assertions

assert \(b \)

= “I believe \(b \) is true”

= precondition \(b \)

= postcondition \(b \)

= invariant \(b \)

= if \(b \) then ok else print “error: ...”. \textbf{wait until} \(\infty \) fi

redundant, adds robustness, costs execution time

ensure \(b \)

= “make \(b \) be true without doing anything”
assert \(b \)

= “I believe \(b \) is true”

= precondition \(b \)

= postcondition \(b \)

= invariant \(b \)

= if \(b \) then \(ok \) else print “error: ... ”. wait until \(\infty \) fi

redundant, adds robustness, costs execution time

ensure \(b \)

= “make \(b \) be true without doing anything”

= if \(b \) then \(ok \) else \(b' \land ok \) fi
Assertions

assert b

= “I believe b is true”

= precondition b

= postcondition b

= invariant b

= if b then ok else print “error: ...”. wait until ∞ fi

redundant, adds robustness, costs execution time

ensure b

= “make b be true without doing anything”

= if b then ok else $b' \land ok$ fi

= $b' \land ok$
Assertions

assert \(b \)

= “I believe \(b \) is true”

= precondition \(b \)

= postcondition \(b \)

= invariant \(b \)

= if \(b \) then ok else print “error: ...”. wait until \(\infty \) fi

redundant, adds robustness, costs execution time

ensure \(b \)

= “make \(b \) be true without doing anything”

= if \(b \) then ok else \(b' \land ok \) fi

= \(b' \land ok \)

unimplementable
Assertions

assert \(b \)

= “I believe \(b \) is true”

= precondition \(b \)

= postcondition \(b \)

= invariant \(b \)

= if \(b \) then \(\text{ok} \) else print “error: ...”. \(\text{wait until } \infty \) fi

redundant, adds robustness, costs execution time

ensure \(b \)

= “make \(b \) be true without doing anything”

= if \(b \) then \(\text{ok} \) else \(b' \land \text{ok} \) fi

= \(b' \land \text{ok} \)

unimplementable by itself, but may be used in some contexts
nondeterministic choice

\[P \lor Q \]
nondeterministic choice (a programming notation):

\[P \lor Q \]
nondeterministic choice (a programming notation):

\[P \text{ or } Q = P \lor Q \]
nondeterministic choice (a programming notation):

\[P \text{ or } Q \quad = \quad P \lor Q \]

\[x := 0 \text{ or } x := 1 \]
nondeterministic choice (a programming notation):

\[P \text{ or } Q \quad = \quad P \lor Q \]

\[x := 0 \text{ or } x := 1 \]

\[= \quad x' = 0 \land y' = y \lor x' = 1 \land y' = y \]
nondeterministic choice (a programming notation):

\[P \text{ or } Q \quad = \quad P \lor Q \]

\[x := 0 \text{ or } x := 1. \quad \text{ensure } x = 1 \]

\[= \quad x' = 0 \land y' = y \lor x' = 1 \land y' = y. \quad x' = 1 \land x' = x \land y' = y \]
nondeterministic choice (a programming notation):

\[P \text{ or } Q = P \lor Q \]

\(x := 0 \text{ or } x := 1. \text{ ensure } x = 1 \)

\[= \quad x' = 0 \land y' = y \lor x' = 1 \land y' = y. \quad x' = 1 \land x' = x \land y' = y \]

\[= \quad \exists x'', y''. \quad (x'' = 0 \land y'' = y \lor x'' = 1 \land y'' = y) \land x' = 1 \land x' = x'' \land y' = y'' \]
nondeterministic choice (a programming notation):

\[P \text{ or } Q = P \lor Q \]

\[x := 0 \text{ or } x := 1. \text{ ensure } x=1 \]

\[= x' = 0 \land y' = y \lor x' = 1 \land y' = y. \text{ } x' = 1 \land x' = x \land y' = y \]

\[= \exists x'', y''. \ (x'' = 0 \land y'' = y \lor x'' = 1 \land y'' = y) \land x' = 1 \land x' = x'' \land y' = y'' \]
nondeterministic choice (a programming notation):

\[P \text{ or } Q = P \lor Q \]

\[x := 0 \text{ or } x := 1. \quad \text{ensure } x = 1 \]

\[= \]

\[x' = 0 \land y' = y \lor x' = 1 \land y' = y. \quad x' = 1 \land x' = x \land y' = y \]

\[= \]

\[\exists x'', y''. \quad (x'' = 0 \land y'' = y \lor x'' = 1 \land y'' = y) \land x' = 1 \land x' = x'' \land y' = y'' \]
nondeterministic choice (a programming notation):

\[P \lor Q = P \lor Q \]

\[x := 0 \text{ or } x := 1. \quad \textbf{ensure} \ x = 1 \]

\[= \ x' = 0 \land y' = y \lor x' = 1 \land y' = y. \quad x' = 1 \land x' = x \land y' = y \]

\[= \exists x'', y''. \quad (x'' = 0 \land y'' = y \lor x'' = 1 \land y'' = y) \land x' = 1 \land x' = x'' \land y' = y'' \]

\[= \ (x' = 0 \land y' = y \lor x' = 1 \land y' = y) \land x' = 1 \]
nondeterministic choice (a programming notation):

\[P \text{ or } Q \quad = \quad P \lor Q \]

\[
\begin{align*}
x &:= 0 \text{ or } x := 1. \quad \textbf{ensure} \ x = 1 \\
= & \quad x' = 0 \land y' = y \lor x' = 1 \land y' = y. \quad x' = 1 \land x' = x \land y' = y \\
= & \quad \exists x'', y''. \ (x'' = 0 \land y'' = y \lor x'' = 1 \land y'' = y) \land x' = 1 \land x' = x'' \land y' = y'' \\
= & \quad (x' = 0 \land y' = y \lor x' = 1 \land y' = y) \land x' = 1 \\
= & \quad x' = 1 \land y' = y
\end{align*}
\]
nondeterministic choice (a programming notation):

\[P \text{ or } Q = P \lor Q \]

\[x := 0 \text{ or } x := 1. \quad \text{ensure } x = 1 \]

\[= x' = 0 \land y' = y \lor x' = 1 \land y' = y. \quad x' = 1 \land x' = x \land y' = y \]

\[= \exists x'', y''. \ (x'' = 0 \land y'' = y \lor x'' = 1 \land y'' = y) \land x' = 1 \land x' = x'' \lor y' = y'' \]

\[= (x' = 0 \land y' = y \lor x' = 1 \land y' = y) \land x' = 1 \]

\[= x' = 1 \land y' = y \]

\[= x := 1 \]
nondeterministic choice (a programming notation):

\[
P \text{ or } Q = P \lor Q
\]

\[
x := 0 \text{ or } x := 1. \quad \textbf{ensure} \ x = 1
\]

\[
= \quad x' = 0 \land y' = y \lor x' = 1 \land y' = y. \quad x' = 1 \land x' = x \land y' = y
\]

\[
= \exists x'', y''. \ (x'' = 0 \land y'' = y \lor x'' = 1 \land y'' = y) \land x' = 1 \land x' = x'' \land y' = y''
\]

\[
= \quad (x' = 0 \land y' = y \lor x' = 1 \land y' = y) \land x' = 1
\]

\[
= \quad x' = 1 \land y' = y
\]

\[
= \quad x := 1
\]

implementation: **backtracking**
nondeterministic choice (a programming notation):

\[P \text{ or } Q \quad = \quad P \lor Q \]

\[x := 0 \text{ or } x := 1 \quad \textbf{ensure} \quad x = 1 \]

\[= \quad x' = 0 \land y = y \lor x' = 1 \land y = y \land x' = x \land y' = y \]

\[= \quad \exists x'', y''. \ (x'' = 0 \land y'' = y \lor x'' = 1 \land y'' = y) \land x' = 1 \land x' = x'' \land y'' = y'' \]

\[= \quad (x' = 0 \land y' = y \lor x' = 1 \land y' = y) \land x' = 1 \]

\[= \quad x' = 1 \land y' = y \]

\[= \quad x := 1 \]

implementation: backtracking

natural square root Given natural \(n \) find natural \(s \) satisfying \(s^2 \leq n < (s+1)^2 \)
nondeterministic choice (a programming notation):

\[P \text{ or } Q = P \lor Q \]

\[x := 0 \text{ or } x := 1. \text{ ensure } x = 1 \]

\[= x' = 0 \land y' = y \lor x' = 1 \land y' = y. \land x' = 1 \land x' = x \land y' = y \]

\[= \exists x'', y''. (x'' = 0 \land y'' = y \lor x'' = 1 \land y'' = y) \land x' = 1 \land x' = x'' \land y' = y'' \]

\[= (x' = 0 \land y' = y \lor x' = 1 \land y' = y) \land x' = 1 \]

\[= x' = 1 \land y' = y \]

\[= x := 1 \]

implementation: backtracking

natural square root Given natural \(n \) find natural \(s \) satisfying \(s^2 \leq n < (s+1)^2 \)

\[s := 0,..n+1 \]
nondeterministic choice (a programming notation):

\[P \text{ or } Q = P \lor Q \]

\[
x := 0 \text{ or } x:= 1. \text{ ensure } x=1
\]

\[
= x'=0 \land y'=y \lor x'=1 \land y'=y. \ x'=1 \land x'=x \land y'=y
\]

\[
= \exists x'', y''. \ (x''=0 \land y''=y \lor x''=1 \land y''=y) \land x'=1 \land x'=x'' \land y'=y''
\]

\[
= (x'=0 \land y'=y \lor x'=1 \land y'=y) \land x'=1
\]

\[
= x'=1 \land y'=y
\]

\[
= x:= 1
\]

implementation: backtracking

natural square root Given natural \(n \) find natural \(s \) satisfying \(s^2 \leq n < (s+1)^2 \)

\[
s:= 0,..n+1. \text{ ensure } s^2 \leq n < (s+1)^2
\]