
applications
communication protocols

processors (CPUs)

kernel of a secure distributed operating system

compilers

safety-critical: medical systems, nuclear control

railway automated control

aerospace — attitude monitors

instrumentation systems

telephone and internet switching systems

airplane cabin communications

/1 43

applications
communication protocols

processors (CPUs)

kernel of a secure distributed operating system

compilers

safety-critical: medical systems, nuclear control

railway automated control

aerospace — attitude monitors

instrumentation systems

telephone and internet switching systems

airplane cabin communications

any software that must be correct

/2 43

programs are
commands to a computer

/3 43

programs are
commands to a computer

mathematical expressions

/4 43

programs are
commands to a computer → execution

mathematical expressions

/5 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

/6 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory?

/7 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory?

formal theory

/8 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory?

formal theory = formalism + rules of proof, calculation, manipulation

/9 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory?

theory = formalism + rules of proof, calculation, manipulation

/10 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory? → proof

theory = formalism + rules of proof, calculation, manipulation

/11 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory? → proof, calculation

theory = formalism + rules of proof, calculation, manipulation

/12 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory? → proof, calculation, precision

theory = formalism + rules of proof, calculation, manipulation

/13 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory? → proof, calculation, precision, understanding

theory = formalism + rules of proof, calculation, manipulation

/14 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory? → proof, calculation, precision, understanding

theory = formalism + rules of proof, calculation, manipulation

formal ⧧ careful, detailed

informal ⧧ sloppy, sketchy

/15 43

programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory? → proof, calculation, precision, understanding

theory = formalism + rules of proof, calculation, manipulation

formal ⧧ careful, detailed

informal ⧧ sloppy, sketchy

formal = using formulas (mathematical expressions)

informal = using a natural language (English)

/16 43

start informal (with discussion)

/17 43

start informal (with discussion)

end formal (with program)

/18 43

start informal (with discussion)

end formal (with program)

then test, but

/19 43

start informal (with discussion)

end formal (with program)

then test, but

how do you know if the program is working?

/20 43

start informal (with discussion)

end formal (with program)

then test, but

how do you know if the program is working?

what about the inputs you didn't test?

/21 43

start informal (with discussion)

end formal (with program)

then test, but

how do you know if the program is working?

what about the inputs you didn't test?

proof tells whether program is correct for all inputs

/22 43

start informal (with discussion)

end formal (with program)

then test, but

how do you know if the program is working?

what about the inputs you didn't test?

proof tells whether program is correct for all inputs

proof / verification after development

/23 43

start informal (with discussion)

end formal (with program)

then test, but

how do you know if the program is working?

what about the inputs you didn't test?

proof tells whether program is correct for all inputs

proof / verification after development

program development, with proof at each step

/24 43

start informal (with discussion)

end formal (with program)

then test, but

how do you know if the program is working?

what about the inputs you didn't test?

proof tells whether program is correct for all inputs

proof / verification after development

program development, with proof at each step

program modification, with proof

/25 43

other theories
Hoare triples P{S}R or {P}S{R}

/26 43

other theories
Hoare triples P{S}R or {P}S{R}

Dijkstra's weakest preconditions wp(S, R)

Vienna Development Method (VDM)

Z and B

temporal logic ☐ ◊
process algebras (CSP, CCS, mu-calculus, pi-calculus, ...)

event traces, interleaved histories

/27 43

other theories
Hoare triples P{S}R or {P}S{R}

Dijkstra's weakest preconditions wp(S, R)

Vienna Development Method (VDM)

Z and B

temporal logic ☐ ◊
process algebras (CSP, CCS, mu-calculus, pi-calculus, ...)

event traces, interleaved histories

model checking

/28 43

other theories
Hoare triples P{S}R or {P}S{R}

Dijkstra's weakest preconditions wp(S, R)

Vienna Development Method (VDM)

Z and B

temporal logic ☐ ◊
process algebras (CSP, CCS, mu-calculus, pi-calculus, ...)

event traces, interleaved histories

model checking

exhaustive automated testing

/29 43

other theories
Hoare triples P{S}R or {P}S{R}

Dijkstra's weakest preconditions wp(S, R)

Vienna Development Method (VDM)

Z and B

temporal logic ☐ ◊
process algebras (CSP, CCS, mu-calculus, pi-calculus, ...)

event traces, interleaved histories

model checking

exhaustive automated testing

up to 1060 states

/30 43

other theories
Hoare triples P{S}R or {P}S{R}

Dijkstra's weakest preconditions wp(S, R)

Vienna Development Method (VDM)

Z and B

temporal logic ☐ ◊
process algebras (CSP, CCS, mu-calculus, pi-calculus, ...)

event traces, interleaved histories

model checking

exhaustive automated testing

up to 1060 states ≈ 2200 states

/31 43

other theories
Hoare triples P{S}R or {P}S{R}

Dijkstra's weakest preconditions wp(S, R)

Vienna Development Method (VDM)

Z and B

temporal logic ☐ ◊
process algebras (CSP, CCS, mu-calculus, pi-calculus, ...)

event traces, interleaved histories

model checking

exhaustive automated testing

up to 1060 states ≈ 2200 states = 200 bits

/32 43

other theories
Hoare triples P{S}R or {P}S{R}

Dijkstra's weakest preconditions wp(S, R)

Vienna Development Method (VDM)

Z and B

temporal logic ☐ ◊
process algebras (CSP, CCS, mu-calculus, pi-calculus, ...)

event traces, interleaved histories

model checking

exhaustive automated testing

up to 1060 states ≈ 2200 states = 200 bits ≈ 6 variables

/33 43

other theories
Hoare triples P{S}R or {P}S{R}

Dijkstra's weakest preconditions wp(S, R)

Vienna Development Method (VDM)

Z and B

temporal logic ☐ ◊
process algebras (CSP, CCS, mu-calculus, pi-calculus, ...)

event traces, interleaved histories

model checking

exhaustive automated testing

up to 1060 states ≈ 2200 states = 200 bits ≈ 6 variables

abstraction, proof (not automated)

/34 43

this theory
simpler

just binary (boolean) expressions

/35 43

this theory
simpler

just binary (boolean) expressions

more general

includes terminating and nonterminating computation

/36 43

this theory
simpler

just binary (boolean) expressions

more general

includes terminating and nonterminating computation

includes sequential and parallel computation

/37 43

this theory
simpler

just binary (boolean) expressions

more general

includes terminating and nonterminating computation

includes sequential and parallel computation

includes stand-alone and interactive computation

/38 43

this theory
simpler

just binary (boolean) expressions

more general

includes terminating and nonterminating computation

includes sequential and parallel computation

includes stand-alone and interactive computation

includes time and space bounds and real time

/39 43

this theory
simpler

just binary (boolean) expressions

more general

includes terminating and nonterminating computation

includes sequential and parallel computation

includes stand-alone and interactive computation

includes time and space bounds and real time

includes probabilistic computations

/40 43

this theory
simpler

just binary (boolean) expressions

more general

includes terminating and nonterminating computation

includes sequential and parallel computation

includes stand-alone and interactive computation

includes time and space bounds and real time

includes probabilistic computations

prerequisite
some programming, any language

/41 43

this theory
simpler

just binary (boolean) expressions

more general

includes terminating and nonterminating computation

includes sequential and parallel computation

includes stand-alone and interactive computation

includes time and space bounds and real time

includes probabilistic computations

prerequisite
some programming, any language

assignment statement, if-statement

/42 43

TEXTBOOK

available

FREE

at

www.cs.utoronto.ca/~hehner

/43 43

