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programs are
commands to a computer → execution

mathematical expressions → theory of programming

why theory? → proof, calculation, precision, understanding

theory   =   formalism  +  rules of proof, calculation, manipulation

formal  ⧧  careful, detailed

informal  ⧧  sloppy, sketchy

formal  =  using formulas (mathematical expressions)

informal  =  using a natural language (English)
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proof tells whether program is correct for all inputs

proof / verification after development

program development, with proof at each step
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other theories
Hoare triples     P{S}R  or  {P}S{R}

Dijkstra's weakest preconditions     wp(S, R)

Vienna Development Method (VDM)

Z and B

temporal logic    ☐  ◊
process algebras (CSP, CCS, mu-calculus, pi-calculus, ...)

event traces, interleaved histories

model checking

exhaustive automated testing

up to 1060 states  ≈  2200 states  =  200 bits  ≈  6 variables

abstraction, proof (not automated)
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this theory
simpler

just binary (boolean) expressions

more general

includes terminating and nonterminating computation

includes sequential and parallel computation

includes stand-alone and interactive computation

includes time and space bounds and real time

includes probabilistic computations

prerequisite
some programming, any language

assignment statement, if-statement 
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TEXTBOOK

available

FREE

at

www.cs.utoronto.ca/~hehner
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