Independent Composition

Dependent Composition \(P.Q \) (sequential execution)

\(P \) and \(Q \) must have exactly the same state variables

Independent Composition \(P||Q \) (parallel execution)

\(P \) and \(Q \) must have completely different state variables

and the state variables of the composition are those of both \(P \) and \(Q \)

Ignoring time and space variables

\[P||Q = P \land Q \]
Independent Composition

example in integer variables \(x, y, \) and \(z \)

\[
x := x + 1 \parallel y := y + 2
\]

partition the variables:

put \(x \) in left part, put \(y \) and \(z \) in right part

\[
x' = x + 1 \parallel y' = y + 2 \land z' = z
\]

reasonable partition rule

If either \(x' \) or \(x := \) appears in a process specification, then \(x \) belongs to that process

(then neither \(x' \) nor \(x := \) can appear in the other process specification).

If neither \(x' \) nor \(x := \) appears at all, then \(x \) can be placed on either side of the partition.
Independent Composition

example in variables \(x, y, \) and \(z \)

\[
x := y \parallel y := x
\]

partition: put \(x \) in left, \(y \) in right, \(z \) in either

\[
x' = y \land y' = x \land z' = z
\]

implementation of a process makes a private copy of the initial value of a variable belonging to the other process if the other process contains an assignment to that variable
Independent Composition

example in binary variable b and integer variable x

$$
b := x = x \ || \ x := x + 1
$$

=

$$
b := T \ || \ x := x + 1
$$

replace $x = x$ by T

example in integer variables x and y

$$(x := x + 1, \ x := x - 1) \ || \ y := x$$

=

$$
ok \ || \ y := x
$$

=

$$y := x$$
Independent Composition

\[(x := x + y. \ x := x \times y) \ |\ | \ (y := x - y. \ y := x/y)\]

You should have written

\[(x := x + y \ |\ | \ y := x - y). \ (x := x \times y \ |\ | \ y := x/y)\]
Independent Composition

\[P \| Q = \exists tP, tQ \cdot \]
\[\land (\text{substitute } tP \text{ for } t' \text{ in } P) \]
\[\land (\text{substitute } tQ \text{ for } t' \text{ in } Q) \]
\[\land t' = \text{max } tP \text{ tQ} \]

laws

\((x := e \| y := f). \, P = (\text{for } x \text{ substitute } e \text{ and independently for } y \text{ substitute } f \text{ in } P) \)

\[P \| Q = Q \| P \]
\text{symmetry}

\[P \| (Q \| R) = (P \| Q) \| R \]
\text{associativity}

\[P \| Q \lor R = (P \| Q) \lor (P \| R) \]
\text{distributivity}

\[P \| \text{if b then } Q \text{ else } R \, \text{fi} = \text{if b then } P \| Q \text{ else } P \| R \, \text{fi} \]
\text{distributivity}

\[\text{if b then } P \| Q \text{ else } R \| S \, \text{fi} = \text{if b then } P \text{ else } R \, \text{fi} \| \text{if b then } Q \text{ else } S \, \text{fi} \]
\text{distributivity}
List Concurrency

\[L_i := e \equiv L'_i = e \land (\forall j: 0,..\#L \cdot j+i \Rightarrow L'_j = L_j) \land x' = x \land y' = y \land \ldots \]

\[L_i := e \equiv L'_i = e \land (\forall j: (\text{this part}) \cdot j+i \Rightarrow L'_j = L_j) \land x' = x \land \ldots \]

example find the maximum item in a nonempty list

\[\text{findmax } 0 \ (\#L) \text{ where } \]

\[\text{findmax } = \langle i, j \rightarrow i < j \Rightarrow L'_i = \text{MAX } L[i;..j] \rangle \]

\[\text{findmax } i \ j \ \Leftarrow \quad \text{if } j-i = 1 \text{ then ok } \]

\[\text{else } \ (\text{findmax } i \ (\text{div } (i+j) \ 2) \ | | \ \text{findmax } (\text{div } (i+j) \ 2) \ j). \]

\[L_i := \text{max } (L \ i) \ (L \ (\text{div } (i+j) \ 2)) \text{ fi} \]

recursive time \(= \text{ceil } (\log \ (j-i)) \)
Sequential to Parallel Transformation

\[x := y. \quad x := x + 1. \quad z := y \]

\[= \quad x := y. \quad (x := x + 1 \parallel z := y) \]

\[= \quad (x := y. \quad x := x + 1) \parallel z := y \]
Sequential to Parallel Transformation

rules

Whenever two programs occur in sequence, and neither assigns to a variable appearing in the other, they can be placed in parallel.

example $x := z. \ y := z$ becomes $x := z \ || \ y := z$

Whenever two programs occur in sequence, and neither assigns to a variable assigned in the other, and no variable assigned in the first appears in the second, they can be placed in parallel; a copy must be made of the initial value of any variable appearing in the first and assigned in the second.

example $x := y. \ y := z$ becomes $c := y. \ (x := c \ || \ y := z)$
Buffer

\[produce = \cdots b := e \cdots\]

\[consume = \cdots x := b \cdots\]

\[control = produce \cdot consume \cdot control\]

\[P \rightarrow C \rightarrow P \rightarrow C \rightarrow P \rightarrow C \rightarrow P \rightarrow C \rightarrow\]
Buffer

\[
\text{produce} = \cdots b := e \cdots
\]

\[
\text{consume} = \cdots x := b \cdots
\]

\[
\text{control} = \text{produce}. \text{newcontrol}
\]

\[
\text{newcontrol} = \text{consume}. \text{produce}. \text{newcontrol}
\]

\[
\text{produce} = \cdots b := e \cdots
\]

\[
\text{consume} = \cdots x := b \cdots
\]

\[
\text{control} = \text{produce}. \text{newcontrol}
\]

\[
\text{newcontrol} = (\text{consume} \, || \, \text{produce}). \text{newcontrol}
\]

11/19
Buffer

\[produce = \cdots b := e \cdots\]

\[consume = \cdots x := c \cdots\]

\[control = produce . newcontrol\]

\[newcontrol = c := b . (consume \parallel produce) . newcontrol\]
Buffer

\[
\begin{align*}
\text{produce} &= \cdots b \ w := e. \ w := w + 1 \cdots \\
\text{consume} &= \cdots x := b. \ r := r + 1 \cdots \\
\text{control} &= w := 0. \ r := 0. \ \text{newcontrol} \\
\text{newcontrol} &= \text{produce. consume. newcontrol}
\end{align*}
\]
Buffer

\[\text{produce} = \ldots b \ w := e. \ w := \text{mod} (w+1) \ n \ldots \]

\[\text{consume} = \ldots x := b \ r. \ r := \text{mod} (r+1) \ n \ldots \]

\[\text{control} = w := 0. \ r := 0. \ \text{newcontrol} \]

\[\text{newcontrol} = \text{produce. consume. newcontrol} \]
Insertion Sort

define

\[sort = \langle n \rightarrow \forall i, j: 0,..n \cdot i \leq j \Rightarrow L_i \leq L_j \rangle \]

\[swap = \langle i, j: 0,..\#L \rightarrow L_i := L_j \parallel L_j := L_i \rangle \]

\[sort' (\#L) \iff sort 0 \Rightarrow sort' (\#L) \]

\[sort 0 \Rightarrow sort' (\#L) \iff \text{for } n := 0,..\#L \text{ do } sort n \Rightarrow sort' (n+1) \text{ od} \]

\[sort n \Rightarrow sort' (n+1) \iff \]

\hspace{1em} if \(n=0 \) then ok

\hspace{1em} else if \(L(n-1) \leq L n \) then ok

\hspace{1em} else swap \((n-1)\ n. \quad sort (n-1) \Rightarrow sort' n \fi \fi

\[
\begin{bmatrix}
L_0 & L_1 & L_2 & L_3 & L_4
\end{bmatrix}
\]

0 1 2 3 4 5
Insertion Sort

If $|i-j| > 1$ then S_i and S_j in parallel

If $|i-j| > 1$ then S_i and C_j in parallel

C_i and C_j in parallel
Dining Philosophers
Dining Philosophers

\[
\begin{align*}
\text{life} & = (P_0 \lor P_1 \lor P_2 \lor P_3 \lor P_4). \text{life} \\
P_i & = \text{up } i \text{. up}(i+1) \text{. eat } i \text{. down } i \text{. down}(i+1) \\
\text{up } i & = \text{chopstick } i := T \\
\text{down } i & = \text{chopstick } i := \perp \\
\text{eat } i & = \cdots \text{chopstick } i \cdots \text{chopstick}(i+1) \cdots
\end{align*}
\]

If \(i \neq j \), (up \(i \). up \(j \)) becomes (up \(i \) \| up \(j \)).
If \(i \neq j \), (up \(i \). down \(j \)) becomes (up \(i \) \| down \(j \)).
If \(i \neq j \), (down \(i \). up \(j \)) becomes (down \(i \) \| up \(j \)).
If \(i \neq j \), (down \(i \). down \(j \)) becomes (down \(i \) \| down \(j \)).
If \(i \neq j \land i+1 \neq j \), (eat \(i \). up \(j \)) becomes (eat \(i \) \| up \(j \)).
If \(i \neq j \land i+1 \neq j \), (up \(i \). eat \(j \)) becomes (up \(i \) \| eat \(j \)).
If \(i \neq j \land i+1 \neq j \), (eat \(i \). down \(j \)) becomes (eat \(i \) \| down \(j \)).
If \(i \neq j \land i+1 \neq j \land i \neq j+1 \), (eat \(i \). eat \(j \)) becomes (eat \(i \) \| eat \(j \)).
Dining Philosophers

\[
\begin{align*}
\text{life} &= (P_0 \lor P_1 \lor P_2 \lor P_3 \lor P_4). \text{ life} \\
P_i &= \text{up } i. \text{ up}(i+1). \text{ eat } i. \text{ down } i. \text{ down}(i+1) \\
\text{up } i &= \text{chopstick } i:= \top \\
\text{down } i &= \text{chopstick } i:= \bot \\
\text{eat } i &= \cdots \text{chopstick } i \cdots \text{chopstick}(i+1) \cdots
\end{align*}
\]

\[
\begin{align*}
\text{life} &= P_0 \parallel P_1 \parallel P_2 \parallel P_3 \parallel P_4 \quad \times \\
P_i &= (\text{up } i \parallel \text{up}(i+1)). \text{ eat } i. (\text{down } i \parallel \text{down}(i+1)). \text{ P } i
\end{align*}
\]