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Abstract:  The Halting Problem is a version of the Liar's Paradox.  We examine 
specifications for dependence on the agent that performs them.  We look at the 
consequences for the Church-Turing Thesis and for the Halting Problem.

Epimenides

An ancient Cretan named Epimenides is reported to have said “All Cretans are liars.” [5].    
This is supposed to be self-contradictory, but it misses the mark.  If there is any other Cretan, 
and that Cretan is a truth-teller, then Epimenides' sentence is simply false:  Epimenides is a liar, 
but not all Cretans are liars.  Saint Paul missed the point completely, taking Epimenides' 
statement at face value, and elaborating: “It was one of themselves, one of their own prophets, 
who said, “Cretans were never anything but liars, dangerous animals, and lazy”:  and that is a 
true statement.” [1].  I will refer to the simpler sentence

This sentence is false.
as the Liar's Paradox.  If that sentence is true, then, according to the sentence, it is false.  If it is 
false, then it is true.  That simple sentence is self-contradictory.

I give the sentence a name, say  L  for Liar.
L:   L  is false.

 As a mathematical formula, it becomes
L = (L=false)

As an equation in unknown  L , it has no solution, because the equation is  false  regardless of 
whether  L  is  true  or  false .  As a definition or specification of  L  it is called “inconsistent”.  
(I am using italic  true  and  false  for the binary values representing truth and falsity.)

A slightly more complicated version presents the inconsistency as two sentences.
The next sentence is true.
The previous sentence is false.

Naming the first sentence  B  and the second  G , as mathematical formulas, they become
B = (G=true)
G = (B=false)

These two equations in the two unknowns  B  and  G  have no solution:  there is no assignment 
of binary values to  B  and  G  that satisfies the two equations.  They are inconsistent.  If you 
look at either one of the sentences alone, there is no inconsistency.  It may make sense to say 
that the next sentence is true, and it may make sense to say that the previous sentence is false.  
But together they are inconsistent.

Let me complicate this inconsistency by adding a parameter, so  B  can say whether any 
sentence is true, not just sentence  G .  To reduce contention over truth and falsity, I will stick 
with mathematical sentences, otherwise known as binary expressions (allowing subexpressions 
of any type, including functions).  To pass sentences as data, we need to encode them in some 
way.  The easiest encoding is as a text (character string).  Now  B  becomes a function from 
texts to binary values, and the pair of sentences become
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B (t)   =   true  if text  t  represents a binary expression with value  true ;
     false  otherwise

G        =   “ B (G) = false ”

I have made two definitions:   B  and  G .  Since  G  is just a text, there cannot be anything 
wrong with its definition;  it represents the binary expression  B (G) = false .  But the definition 
of  B , no matter how carefully worded, no matter how clear it sounds, conceals an 
inconsistency.  I am not concerned with computing  B ;  I just want to define a mathematical 
function.  The parameter allows us to show a large number of examples, like  B (“0=0”) = true  
and  B (“0=1”) = false , which are not problematic.  They may fool us into believing that the 
definition of  B  makes sense.  But they are irrelevant. The inconsistency is revealed by applying  
B  to  G .  If  B (G) = true , then  G  represents a  false  expression, so  B (G)  should be  false .  
If  B (G) = false , then  G  represents a  true  expression, so  B (G)  should be  true .  The 
inconsistency is the same as in the unparameterized, unencoded version of the Liar's Paradox.

Gödel

The Liar's Paradox is about truth.  Gödel used the same self-contradictory construction to talk 
about provability [6].  He used a numeric, rather than text, encoding of sentences, and he used 
the name  Bew  (short for “Beweisbar”, which is German for “Provable”) for a function similar 
to  B .   The sentence encoded by  G  is popularly called “the Gödel sentence”.  With our 
notations and encoding,  B  and  G  become

B (t)   =   true  if text  t  represents a provable binary expression;
     false  otherwise

G        =   “ B (G) = false ”

What is the value of  B (G) ?  If we suppose  B (G)  is  true , then  G  represents a  false  
sentence, and in a consistent logic, no  false  sentence is provable, so  B (G)  should be  false .  
If we suppose  B (G)  is  false , then  G  represents a  true  sentence, and in a complete logic, all  
true  sentences are provable, so  B (G)  should be  true .  Gödel concluded that if a logic is 
expressive enough to define  B , then the logic is either inconsistent or incomplete.

Most of Gödel's paper [6] is devoted to showing how to define  Bew .  His definition was 
equivalent to programming a prover, using a functional language, namely the logic of Principia 
Mathematica [14] (hence the name of his paper).  That was an amazing piece of work.  But 
Gödel needn't have gone to so much trouble.  Bew  is defined to apply to all sentence encodings.  
But there is only one sentence encoding he wants to apply it to.  For a single sentence, we don't 
need a sentence encoding.  Define

B  =  true  if  G  is a provable binary expression;
         false  otherwise
G  =  (B=false)

What is the value of  B ?  If we suppose  B  is  true , then  G  is a  false  sentence, and in a 
consistent logic, no  false  sentence is provable, so  B  should be  false .  If we suppose  B  is  
false , then  G  is a  true  sentence, and in a complete logic, all  true  sentences are provable, so  
B  should be  true .  We can conclude from this simpler construction that if a logic is expressive 
enough to define  B , then the logic is either inconsistent or incomplete.

Even this simpler construction includes one more definition than necessary.  We could define

B  =  true  if  B=false  is a provable binary expression;
         false  otherwise 
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If we suppose  B  is  true , then  B=false  is a  false  sentence, and in a consistent logic, no  false  
sentence is provable, so  B  should be  false .  If we suppose  B  is  false , then  B=false  is a  
true  sentence, and in a complete logic, all  true  sentences are provable, so  B  should be  true .  
If a logic is expressive enough to define  B , then the logic is either inconsistent or incomplete.

Turing

Epimenides talked about truth;  Gödel talked about provability;  Turing talked about 
computability using the same sort of arguments [12].  For my examples, I will use the Pascal 
programming language, but the choice of language is irrelevant;  any other programming 
language would do just as well.  I'll start with a procedure named  twist  that is closely 
analogous to the Liar's Paradox.

procedure twist;
begin

if (execution of  twist  terminates) then twist
end

I have not finished writing procedure  twist ;  what remains is to replace the informal binary 
expression (execution of  twist  terminates) with either  true  or  false , whichever one is 
appropriate.  The problem in doing so is that the informal binary expression refers to itself in a 
self-contradictory manner:  if the execution of procedure  twist  terminates, it should be 
replaced with  true , creating a procedure whose execution does not terminate;  if the execution 
of  twist  does not terminate, it should be replaced with  false , creating a procedure whose 
execution does terminate.  This is not a programming problem, not a computability problem, 
not a lack of expressiveness of Pascal.  The problem is that the informal binary expression is an 
inconsistent specification.  One might protest:

Either execution of  twist  terminates, or it doesn't.  If it terminates, use  true ;  if it 
doesn't, use  false .  How can there possibly be an inconsistency?

But I hope the inconsistency is clear enough that no-one will protest.

As we did with the Liar's Paradox, let's present the same inconsistency as two declarations.

const halts = {  true  if execution of  twist  terminates,  false  otherwise };

procedure twist;
begin

if halts then twist
end

The value of constant  halts  is missing.  In place of the value there is a comment to specify 
what the value should be.  If execution of procedure  twist  terminates, then the value should be  
true .  If execution of procedure  twist  does not terminate, then the value should be  false .  So 
there is no problem in programming the value of  halts  after we determine whether the 
execution of  twist  terminates.  If we suppose it does, then  halts=true , and so we see that 
execution of  twist  does not terminate.  If we suppose it does not, then  halts=false , and so we 
see that execution of  twist  does terminate.

Procedure  twist  has been written in its entirety.  Syntactically, it is a procedure;  to determine 
that  halts  is being used correctly within  twist , we need only the type of  halts , not the value, 
and we have the type.  Semantically, it is a procedure;  to determine the meaning of  twist  we 
need only the specification of  halts , not its implementation, and we have the specification.  
(That important programming principle enables a programmer to use pieces of programs written 
by other people, knowing only their specifications, not their implementations.  It also enables a 
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programmer to change the implementation of part of a program, but still satisfying the 
specification, without knowing where and why the part is being used.)  So there is nothing 
wrong with the definition of  twist .  The problem is that we cannot write the value of  halts  to 
satisfy its specification.  This is not a programming problem, not a computability problem, not a 
lack of expressiveness of Pascal.  The problem is that the specification of  halts  is inconsistent.  
One might protest:

Either execution of  twist  terminates, or it doesn't.  If it terminates, use   true ;  if it 
doesn't, use  false .  How can there possibly be an inconsistency?

The inconsistency cannot be seen by looking only at  halts  or only at  twist .  Each refers to the 
other, and together they are inconsistent.

Let me complicate this inconsistency by adding a parameter so  halts  can say whether 
execution of any parameterless Pascal procedure terminates, not just  twist .  To pass procedures 
as data, we need to encode them in some way, and the easiest encoding is as a text.  (Whenever 
programs are presented as input data to a compiler or interpreter, they are presented as texts.)  
We could pass the whole procedure as text, but it is simpler to pass just the procedure name as 
text, and to assume there is a dictionary of function and procedure definitions that is accessible 
to  halts , so that the call  halts ('twist')  allows  halts  to look up  'twist'  and  'halts'  in the 
dictionary, and retrieve their texts for analysis.  For later reference, call this version of  halts  
and  twist  the “intermediate” version:

function halts (p: string): boolean;
{ return  true  if  p  represents a parameterless Pascal procedure whose execution terminates; }
{ return  false  otherwise }

procedure twist;
begin

if halts ('twist') then twist
end

To determine that  twist  is syntactically a Pascal procedure, we need only the header for  halts , 
not the body, and we have the header.  To determine the semantics of  twist , we need only the 
specification of  halts , not its implementation, and we have the specification.

As before, we cannot write the body of  halts  to satisfy the specification.  No matter how 
carefully worded it is, no matter how clear it sounds, the specification conceals an 
inconsistency.  The inconsistency is revealed by applying  halts  to  'twist' .  If  
halts ('twist') = true , then execution of  twist  is nonterminating, so  halts ('twist')  should be  
false .  If  halts ('twist') = false , then execution of  twist  is terminating, so  halts ('twist')  should 
be  true .  This is still not a programming problem, not a computability problem, not a lack of 
expressiveness of Pascal.  It is still the same inconsistency that was present in the 
unparameterized, unencoded version, and the same inconsistency that was present in the  twist  
procedure.  One might protest:

Either execution of a procedure represented by  p  terminates, or it doesn't.  If it 
terminates,  halts (p)  should return  true ;  if it doesn't,  halts (p)  should return  false .  
How can there possibly be an inconsistency?

Now the protest starts to sound more plausible because the parameter allows us to show a large 
number of examples which are not problematic.  For example, if we define  stop  and  go  as

procedure stop; begin end
procedure go; begin go end

then
halts ('stop') = true
halts ('go') = false

These nonproblematic examples may fool us into believing that the specification of  halts  
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makes sense.  But they are irrelevant.  Procedure  twist  shows us the inconsistency.

There is one last complication:  a second parameter so  halts  can say whether execution of any 
Pascal procedure with an input parameter terminates.

function halts (p, i: string): boolean;
{ return  true  if  p  represents a Pascal procedure with one text input parameter }
{ whose execution terminates when given input  i ;  return  false  otherwise }

procedure twist (s: string);
begin

if halts (s, s) then twist (s)
end

This is now a modern version of Turing's Halting Problem.  Turing's argument is as follows.

Assume that  halts  is computable, and that it has been programmed according to its 
specification.  Does execution of  twist ('twist')  terminate?  If it terminates, then  
halts ('twist', 'twist')  returns  true , and so we see from the body of  twist  that execution 
of  twist ('twist')  does not terminate.  If it does not terminate, then  halts ('twist', 'twist')  
returns  false , and so we see from the body of  twist  that execution of  twist ('twist')  
terminates.  This is inconsistent.  Therefore function  halts  cannot have been 
programmed according to its specification;  halts  is incomputable.

The two parameters  (p, i)  make a two-dimensional space, and point  ('twist', 'twist')  is on its 
diagonal, which is why the argument is sometimes called a “diagonal argument”.  But any text 
would do equally well as a value for the second parameter, and the second parameter adds 
nothing to Turing's argument.

The surprise, and a main point of this paper, is that the computability assumption is unnecessary 
to the argument.  Without assuming that  halts  is computable, I ask what the specification of  
halts  says the result of  halts  ('twist', 'twist')  should be.  If the specification says the result 
should be  true , then the semantics of  twist ('twist')  is nontermination, so  halts ('twist', 'twist')  
should be  false .  If the specification says the result should be  false , then the semantics of  
twist ('twist')  is termination, so  halts ('twist', 'twist')  should be  true .  This is inconsistent.  
Therefore  halts  cannot be programmed according to its specification.  But the problem is not 
incomputability;  it is inconsistency of specification [10][11].  It is the same inconsistency that 
was present in all previous versions, before I added the complications of parameters and 
encodings.  It is just the Liar's Paradox in fancy clothing.  In fact, Turing's argument could have 
been applied to the simplest version of  twist  with equal (in)validity.

procedure twist;
begin

if (execution of  twist  terminates) then twist
end

Assume that the expression (execution of  twist  terminates) is computable, and that it 
has been programmed according to its specification.  Does execution of  twist  terminate?  
If it terminates, then (execution of  twist  terminates) is  true , and so we see from the 
body of  twist  that its execution does not terminate.  If it does not terminate, then 
(execution of  twist  terminates) is  false , and so we see from the body of  twist  that its 
execution terminates.  This is inconsistent. Therefore the expression (execution of  twist  
terminates) cannot have been programmed according to its specification;  it is 
incomputable. 
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But there are only two possibilities for programming  (execution of  twist  terminates) ;  they are  
true  and  false .  Calling this choice “incomputable” says that one of them is correct but no 
computer program can determine which one. In fact, neither of them is correct, and that is 
called “an inconsistent specification”.

Turing's argument can be applied to any property of program execution.  For example,

procedure twist1;
begin

if (execution of  twist1  prints  'A' ) then print ('B') else print ('A')
end

Termination of execution of  twist1  is not in question:  when  (execution of  twist1  prints  'A' )  
is replaced with either  true  or  false , whichever is appropriate, execution of  twist1  
terminates.  The question is whether  'A'  or  'B'  is printed.  Turing's argument says that the 
property “prints  'A' ” is incomputable, and so is every property of program execution (except 
for the trivial “always  true ” and “always  false ” properties) [9].  But the problem is not 
incomputability;  the problem is inconsistency of specification.

Turing's argument can even be applied to a completely meaningless property of program 
execution.  For example, “calumation” is a meaningless word.  Suppose  Calumate  is a 
procedure whose execution has the calumation property, and  DoNotCalumate  is a procedure 
whose execution does not have the calumation property.

procedure twist2;
begin

if (execution of  twist2  calumates) then DoNotCalumate else Calumate
end

Turing's argument says that the meaningless property calumation is incomputable.

Underdetermination

The Liar's Paradox, the Gödel sentence, and Halting Problem are all examples of inconsistency, 
which is also known as overdetermination.  Here, “determination” means determining a 
solution.  If there is no solution, we have overdetermination;  if there is more than one solution, 
we have underdetermination.  An example is the sentence

This sentence is true.
Whereas the Liar's Paradox can be neither true nor false, the sentence just written can be either 
true or false.  Giving the sentence the name  U  for underdetermined, it becomes the formula

U = (U=true)
As an equation in unknown  U , it has two solutions:  both  true  and  false .  As a specification 
of  U , it is consistent, but does not determine  U .

Here is an example of the underdetermination of Gödel's provability specification.

B (t)   =   true  if text  t  represents a provable binary expression;
     false  otherwise

H        =   “ B (H) = true ”

That is the same specification of  B  as before.  Now we ask:  What is the value of  B (H) ?  If 
we suppose  B (H) = true , then  H  represents the sentence  true=true , which is provable, so   
B (H)  should be  true , as supposed.  If we suppose  B (H) = false , then  H  represents the 
sentence  false=true , which is not provable, so  B (H)  should be  false , as supposed.  The 
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specification of  B  is both overdetermined (for  G ) and underdetermined (for  H ).

Here is an example of the underdetermination of Turing's halting specification.

function halts (p, i: string): boolean;
{ return  true  if  p  represents a Pascal procedure with one text input parameter }
{ whose execution terminates when given input  i ;  return  false  otherwise }

procedure straight (s: string);
begin

if not halts (s, s) then straight (s)
end

That is the same  halts  specification as before;  it says that the  halts  function will tell us 
whether the execution of a procedure terminates.  What does it say about  straight ?  If we 
suppose that  halts ('straight', 'straight') = true , we see from the body of  straight  that its 
execution terminates, as supposed, so that is a solution.  If we suppose that  
halts ('straight', 'straight') = false , we see from the body of  straight  that its execution does not 
terminate, as supposed, so that is also a solution.  That is another inadequacy of the  halts  
specification.  The specification sounds just right:  neither overdetermined nor underdetermined.  
But we are forced by the examples to admit that the specification is not as it sounds.  In at least 
one instance ( twist ), the  halts  specification is overdetermined, and in at least one instance 
( straight ), the halts specification is underdetermined.

Objective and Subjective Specifications

I now want to consider specifications of behavior, or activity, in general.  I include human 
behavior, computer behavior, and other behavior.  To keep the examples simple, I will use 
specifications that say what the output, or final state, of the behavior should be.  And I will use 
specifications that relate input, or initial state, to output, or final state.  The conclusions apply 
also to specifications that say what the interactions during the behavior should be, but my 
examples will not be that complicated.  

A specification may have the form of a question, for example “What is two plus two?”.  Or it 
may have the form of a command, for example “Tell me what is two plus two.”.  The question 
and the command are equivalent because they invoke the same behavior.  A specification may 
describe the desired behavior, for example, “saying what is two plus two”.

A specification is objective if the specified behavior does not vary depending on the agent that 
performs it.  For examples:
(0) Given a natural number, what is its square?
(1) What is the number of words in this question?
(2) What is the name of the first Turing Award winner?
For all three questions, the correct answer does not depend on who or what is answering.

A specification is subjective if the specified behavior varies depending on the agent that 
performs it.  For examples:
(3) What is your name?
(4) What is your IP address?
The correct answer to question (3) depends on whom you ask.  In this paper, “subjective” does 
not mean that the answer is a matter of disagreement, debate, doubt, or dishonesty.  If we ask 
Alice what her name is, the answer “Alice” is correct, and all other answers are wrong.  If we 
ask Bob the same question, the correct answer is different.  Question (4) is similar to question 
(3), but applies to a computer rather than a human. 
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Subjectively and Objectively Inconsistent

Now consider this example:
(5) Lift Bob.
I am not interested in the variety of lifting techniques;  I am interested only in the specified 
result:  the agent lifts Bob.  If we ask Hercules, who is very strong, to lift Bob, he can do so 
without difficulty.  If we ask Alice, who is much smaller than Bob, she is not strong enough.  
The result is different, depending on who is trying to lift Bob.  So it may seem that (5) is 
subjective.  But the definition of subjective specification says “the specified behavior varies 
depending on the agent”.  When we ask Alice to lift Bob, we are asking for the same behavior 
(lifting Bob) as when we ask Hercules.  So it may seem that (5) is objective.  But suppose we 
ask Bob to lift Bob.  He cannot do so, but not due to lack of strength.  He cannot do so because 
the specification does not make sense when we ask Bob to lift himself.  The specification makes 
sense for some agent (anyone other than Bob), and makes no sense for some agent (Bob).  For 
that reason, (5) is subjective.  If we restrict the set of agents to exclude Bob, then (5) is 
objective.

(6) Can Carol correctly answer “no” to this question?
Let's ask Carol.  If she says “yes”, she's saying that “no” is the correct answer for her, so “yes” 
is incorrect.  If she says “no”, she's saying that she cannot correctly answer “no”, which is her 
answer.  We are assuming for this and all subsequent questions that the only acceptable answers 
are “yes” and “no”, and in this case, both answers are incorrect.  Carol cannot answer the 
question correctly.  Now let's ask Dave.  He says “no”, and he is correct because Carol cannot 
correctly answer “no”.  So (6) is subjective because it is a consistent, satisfiable specification for 
some agent (anyone other than Carol), and an inconsistent, unsatisfiable specification for some 
agent (Carol).

(7) Can any man correctly answer “no” to this question?
Let's ask Ed, who is a man.  Suppose Ed says “no”.  Ed is saying that no man can correctly 
answer “no”, and Ed, a man, is answering “no”, so Ed is saying that his answer is incorrect.  
Suppose Ed says “yes”.  Ed is saying that some man, let's call him Frank, can correctly answer 
“no”.  But if Frank answers “no”, he is saying that his own answer is incorrect.  So Frank 
cannot say “no” correctly.  So Ed's “yes” answer is incorrect.  And the same goes for every man.  
But Gloria, who is not a man, can correctly say “no”.  Specification (7) is subjective because it 
is a consistent, satisfiable specification for some agent (anyone who is not a man), and an 
inconsistent, unsatisfiable specification for some agent (any man).

(8) Can anyone correctly answer “no” to this question?
If we ask Harry and he says “no”, he is saying that his answer is incorrect.  If he says “yes”, he 
is saying that someone, let's say Irene, can correctly answer “no”.  But if Irene answers “no”, 
she is saying that her answer is incorrect.  So Harry can neither say “no” nor “yes” correctly.  
And the same goes for anyone else we ask.  The correct answer to the question is therefore 
“no”, but no-one can correctly say so (oops, I just did).  I meant:  no-one who is a possible 
agent can say so.  I exclude myself from the set of possible agents just so that I can tell you that 
no possible agent can correctly answer “no”.  Specification (8) is objectively inconsistent.

Specifications (6), (7), and (8) are examples of twisted self-reference.  The self-reference occurs 
when the specification talks about the agent who will perform the specification.  The twist, in 
these examples, is the word “no”.  If we replace “no” with “yes” in these three specifications, 
then everyone can correctly answer “yes” to all of them, making them objectively consistent.
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Church-Turing Thesis

If a specification can be computed by any one of:
• a Turing Machine (a kind of computer) [12]
• the lambda-calculus (a mathematical formalism) [3]
• general recursive functions (another mathematical formalism) [4][7]
then it can be computed by all of them;  they all have the same computing power.  The Church-
Turing Thesis [13] says that each of these formalisms compute all that is computable.  In a more 
modern version, the Church-Turing Thesis says that if a specification can be computed, then it 
can be computed by a program in any programming language.  All programming languages 
provide the same computing power;  each is equivalent to a Turing Machine.

Church and Turing were thinking of specifications of mathematical functions, like (0).  It seems 
reasonable to me that the Church-Turing Thesis can be extended to all objective specifications.  
But its extension to subjective specifications comes up against a problem.

Reconsider subjective specification (7), but replace “man” with “Pascal program”.  (We define 
“Pascal program” in such a way that the question whether  p  is a Pascal program is decidable.  
And likewise for any other programming language.)
(9) Can any Pascal program correctly answer “no” to this question?
It's easy to write a Pascal program that prints “no”.  If that is the answer to (9), it is saying that 
there isn't a Pascal program that correctly answers “no” to the question, so in particular, the 
Pascal program that prints “no” doesn't give the correct answer.  It's just as easy to write a 
Pascal program that prints “yes”.  If that program is the answer to (9), it says that “no” is the 
correct answer, so the Pascal program that prints “yes” doesn't give the correct answer either.  In 
fact, the correct answer to (9) is “no”, but no Pascal program can correctly say so.  We can write 
a program in Python (which is another programming language) that prints “no” in answer to (9), 
and that answer is correct.  No matter whether the agents are people or programs, the result is 
the same:  one agent can satisfy the specification, but another can't.

The Church-Turing Thesis, in the version stated earlier, does not apply to subjective 
specifications.  Specification (9) can be computed by a Python program, but not by a Pascal 
program.

A consequence of the Church-Turing Thesis is that any program in any programming language 
can be translated to a program in any other programming language.  We'll look at program 
translation in a moment, but first, here is a non-programming example to illustrate the 
translation problem.
(10) Is this question in French?
The correct answer is “no”.  The question is easily translated into French.
(11) Cette question est-elle en français?
The correct answer is now “oui”.  Before translation, when the question is put to someone who 
understands the language the question is in, it invokes one behavior:  saying “no”.  After an 
accurate translation, when the question is put to someone who understands the language the 
question is now in, it invokes a different behavior:  saying “oui”.  Specifications (10) and (11) 
refer to a language, and changing the language of the question affects the answer.

Similarly, when we write a program to compute a subjective specification, then translate it to 
another language, it may invoke different behavior.  This can occur when the specification 
refers to a programming language.  First, here's an objective specification that refers to a 
programming language.
(12) Is text  p  a Pascal program?
Every compiler answers the question whether its input text is a program in the language that it 
compiles.  Whether we write the program that computes (12) in Pascal or in Python, for the 
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same input  p  we should get the same answer.  Specification (12) is objective, and the Church-
Turing Thesis applies.  Now replace the input with a self-reference.
(13) Is the program answering this question a Pascal program?
There are two ways to write a Python program to compute (13).  The hard way is to give the 
program access to its own text, perform the lexical analysis and parsing and type checking and 
so on, just as a compiler would do, and then print the answer, which will be “no”.  The easy 
way is just to print “no” because that's the right answer.  Now we translate our Python program 
to Pascal.  If we programmed the hard way, the translated program accesses its own text, does 
the analysis, and prints the correct answer, which is “yes”.  If we programmed the easy way, the 
translated program prints “no”, which is incorrect.  Specification (13) is subjective, and the 
Church-Turing Thesis does not apply.  Either the translation prints the correct answer by 
exhibiting different printing behavior, or the translation exhibits the same printing behavior and 
the answer is incorrect.

Yet another consequence of the Church-Turing Thesis is that in any programming language, you 
can write an interpreter for programs in any other programming language.  To pass a program as 
data to an interpreter, the program must be encoded, and the standard encoding is as text.  Or 
we can pass just the program name as text, and provide a dictionary of program definitions, so 
that the name can be looked up and the full text retrieved.

Suppose we have an interpreter for Python programs written in Pascal.  When the Python 
program that computes (13) the easy way, by just printing “no”, is interpreted, the result is that 
“no” is printed.  Is this answer correct?  One might argue that the program answering the 
question is the Python program, and that the interpreter, written in Pascal, is just the execution 
mechanism.  By this argument, the answer is correct.  Or one might argue that the program 
being executed is the interpreter, and the Python program is just its text input.  By this 
argument, the answer is incorrect.  So the correct answer is unclear.

Suppose we interpret the Python program that computes (13) the hard way.  Which text, the 
Python program or the interpreter in Pascal, gets analyzed?  Again, the correct answer is 
unclear.

If  p  is a Python program, we can express its interpretation in Pascal as  interpret ('p') .  The 
language of  interpret ('p')  is Pascal, and  'p'  is a Pascal text (the Python text would be "p" ).  
Therefore I adopt the view that the program being executed is the interpreter, while 
acknowledging that the other answer also has merit.  This makes interpretation the same as 
executing a translation.  Interpretation is therefore similarly limited to programs that satisfy 
objective specifications.  Given a program that computes a subjective specification, its 
interpretation may produce behavior that differs from execution of the given program.

The same choice, whether to preserve the behavior or to preserve the specification, can occur 
without translation or interpretation, simply by renaming.  For example,
(14) Given a text  p  representing a program, determine whether a call to the determining 

program appears within  p .
Let's name the determining program  DoYouCallMe .  Given program  p , it searches within  p  
for a calling occurrence of  DoYouCallMe , reporting  “yes”  if one is found, and  “no”  if not.  
Now let's rename the determining program  DoYouCallMe2 .  If we just change the name of the 
program without changing what it is searching for, this name change preserves behavior, but the 
program no longer satisfies the specification (14).  If we change both the program name and 
what it is searching for, the program still satisfies the specification (14), but its behavior 
changes:  given the same input,  DoYouCallMe  and  DoYouCallMe2  may give different 
answers.  If a program has access to its own name, then changing its name automatically 
changes what it is searching for;  the result still satisfies (14), but has different behavior. 
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For objective specifications, I accept the Church-Turing Thesis that we can translate/interpret a 
program from any language to any other language preserving both the specification and the 
behavior.  For subjective specifications we may not be able to preserve both.  As we saw for 
specification (13), we may be able to choose which one we preserve.  As we saw for 
specification (9), it may not be possible to preserve the specification.  When a program's 
behavior depends on the language the program is written in, it may not be possible to preserve 
the behavior.  This last statement might be best explained by making the programming language 
explicit.  If program  p  is written in Python, and on input  x  computes output  y , write  
p  (Python, x) = y .  Translating  p  to Pascal, or writing an interpreter in Pascal, write  
p (Pascal, x) = z .  Even though the input to  p  remains the same  x , the output can change from  
y  to  z  because the language has changed from Python to Pascal.

Halting Problem, Language-Based

Turing's Halting Problem is usually presented as applying to programs having an input.  
Without loss of generality and without changing the character of the problem, I consider halting 
for programs with no input;  input to a program can always be replaced by a definition of a 
sequence of values, call it  input , within the program.
(15) Given a text  p  representing a Pascal program that requires no input, report  true  if 

execution of  p  terminates, and  false  if execution of  p  does not terminate.
The input  p  represents a Pascal program.  The agent that performs specification (15) must be a 
program, written in a programming language, running on a computer.  I am excluding 
distributed computations so that I can identify the agent.

As we saw earlier in the “intermediate” version of  halts  and  twist , we cannot write a Pascal 
program to satisfy specification (15).  When programmed in Pascal, specification (15) is another 
twisted self-reference.  The self-reference is indirect:  halts  applies to  twist , and  twist  calls  
halts .  The twist is supplied by  twist .  If  halts  reports that  twist 's execution will terminate, 
then  twist 's execution is a nonterminating loop.  If  halts  reports that  twist 's execution will 
not terminate, then  twist 's execution terminates.  Whatever  halts  reports about  twist , it is 
wrong.  Therefore specification (15) is inconsistent when we ask for a program written in Pascal 
to perform it [10][11].

Now let's ask for a program written in Python to perform (15).  Can this Python program be 
written?  Since Pascal programs cannot call Python programs, we cannot rule it out by a twisted 
self-reference.  I present two possible answers to the question.

Answer O:  Specification (15) is objective, like specification (12).  But unlike (12), it is an 
inconsistent specification, no matter what language we use.  If we could write a Python program 
to compute halting for all Pascal programs, we could translate it into Pascal (or interpret it by a 
Pascal program), and because (15) is objective, the translation (or interpretation) would also 
compute halting correctly for all Pascal programs.  But there is no Pascal program to compute 
halting for all Pascal programs.  So there is no program in any language to compute halting for 
all Pascal programs.

Answer S:  Specification (15) is subjective.  Like specification (13), (15) refers to programming 
language Pascal.  When programmed in Pascal there is a twisted self-reference;  when 
programmed in Python there is no self-reference.  There is a Python program to compute 
halting for all Pascal programs.  Because (15) is subjective, its translation to Pascal (or 
interpretation in Pascal) does not compute halting for all Pascal programs.  Perhaps the Python 
program says correctly that  twist 's execution terminates, and its translation to Pascal (or 
interpretation in Pascal), which we call  halts , says incorrectly that  twist 's execution does not 
terminate, and that is why  twist 's execution terminates.
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Answer O has been almost unanimously accepted by computer scientists, but its acceptance is 
premature because (15) has never been shown to be objective, and Answer S has never been 
ruled out.  I favor Answer S for the weak reason that I cannot see any inconsistency in asking 
for a Python program to compute halting for all Pascal programs.  (Writing the Python program 
would prove consistency.  A logician says that's building a model;  the logician's modeling 
language might be some version of set theory.)

Halting Problem, Location-Based

The preceding discussion of halting is language-based.  Here is a similar discussion that is 
location-based.  First a trivial example.
(16) Is this sentence written on page 1?
If (16) is written on page 1, the correct answer is “yes”;  if it is written on page 2, the correct 
answer is “no”.  Although the answer depends on the location of the question, the answer does 
not depend on the agent answering, so it is an objective specification.  We can create a 
subjective specification by creating a question that depends on the location of the agent 
answering.

There are some people in location A, and some other people in different location B.  The 
question is:
(17) Can a person in location A correctly answer “no” to this question?
Anyone in location A who answers “no” to (17) contradicts themself.  But Ingrid, who is 
standing in location B, can correctly answer “no” to (17) without self-contradiction.  When 
Ingrid walks over to location A, she can no longer correctly answer “no” to (17).  The question 
refers to Ingrid when Ingrid is at A;  the question did not refer to Ingrid when Ingrid was at B.  
Even though she is the exact same person, with the same reasoning power, in either location, a 
correct answer in one location becomes incorrect in the other.

Suppose there are two identical disconnected computers C and D, and all programs are written 
in Pascal, and all programs can run on either computer.  Both computers have enough memory 
so that memory limitation is not an issue.  (Two computers are necessarily in different 
locations.)
(18) Given a text  p  representing a Pascal program that requires no input, loaded on 

computer C, report   true  if execution of  p  terminates, and  false  if execution of  p  
does not terminate.

The agent that performs specification (18) must be a Pascal program running on either C or D.  
Once again, I exclude distributed computing so that I can identify the agent, and once again I 
assume there is a dictionary of function and procedure definitions on each computer.

First, let's ask for a Pascal program running on computer C to perform (18), and let's call it  
halts .  If there is such a program, then we can write another program, let's call it  twist , exactly 
as before, and we can load this program onto computer C.  As before,  twist  calls  halts  to 
report on  twist , and then  twist  does the opposite;  so whatever  halts  reports, it is wrong.  
Specification (18) is inconsistent when we ask for a Pascal program running on computer C to 
perform it.

Now let's ask for a Pascal program running on computer D to perform (18).  Can this program 
be written?  Since programs on C cannot call programs on D (the computers are disconnected), 
we cannot rule it out by a twisted self-reference.  As in the language-based case, we have the 
same two possible answers to the question:  Answer O and Answer S. 

Answer O:  Specification (18) is objective.  It is an inconsistent specification, no matter what 
computer we use.  There is no program on any computer to compute halting for programs on 
computer C. 
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Answer S:  Specification (18) is subjective.  There is a Pascal program on computer D, and 
again let's call it  halts , to compute halting for all Pascal programs on computer C.  We can 
carry the  halts  program from D to C and run it there.  But when we run it on C, it does not 
compute halting for all Pascal programs on C.  This is quite counter-intuitive.  When  halts  
applies to  twist , and  twist  calls  halts , it matters whether the  halts  that applies (the first 
occurrence of  halts  in this sentence) is the same instance as the  halts  that is called (the second 
occurrence of  halts  in this sentence).  In one case, there is a twisted self-reference, and in the 
other, there isn't, and that can affect the computation.

Normally, a program running on one computer will give the same answers to the same 
questions, with equal validity, as the exact same program running on another computer.  This 
seems obvious, perhaps because it is true for objective specifications.  But it is not always true 
for subjective specifications.  The halting specification (18) is a twisted self-reference if the 
program answering it is on computer C, but not a self-reference if the program answering it is 
on computer D.  So it seems probable that halting is subjective.  Even if the program answering 
it is the exact same one on C and on D, a correct answer from the program running on D may be 
incorrect from the same program running on C.  Furthermore, the same program running on C 
and D, with the same input, can give different answers to a question that refers to the location of 
the program.

Turing's Proof

Turing's proof that halting is incomputable appears on page 247 of [12].  The key paragraph is 
below.  To help the modern reader, I have added the square bracketed words.  Also, Turing used 
the word “machine” for the combination of hardware and software, and he used the words 
“universal machine” for the combination of interpreter program and computer.  The first 
sentence is the assumption that halting is computable.  The last sentence concludes that there 
was a self-contradiction (inconsistency), and therefore halting cannot be computed.

Let us suppose that there is a such a process; that is to say, that we can invent a machine 
D [diagonal] which, when supplied with the S.D [standard description] of any 
computing machine M will test this S.D and if M is circular [nonterminating] will mark 
the S.D with the symbol "u" [unsatisfactory] and if it is circle-free [terminating] will 
mark it with "s" [satisfactory]. By combining the machines D and U [universal machine, 
or interpreter] we could construct a machine H [halting program] to compute the 
sequence beta' [a sequence that differs from the diagonal with U]. ... Now let K be the 
D.N [description number, or code] of H. What does H do in the Kth section of its 
motion? [What happens when H works on the representation of H?] It must test whether 
K is satisfactory, giving a verdict "s" or "u". Since K is the D.N of H and since H is 
circle- free, the verdict cannot be "u". On the other hand, the verdict cannot be "s". For 
if it were, then in the Kth section of its motion H would be bound to compute the first 
R(K-1)+1 = R(K) figures [R(n) is the number of terminating programs among the first n 
programs] of the sequence computed by the machine with K as its D.N and to write 
down the R(K)th as a figure of the sequence computed by H. The computation of the 
first R(K)-1 figures would be carried out all right, but the instructions for calculating the 
R(K)th would amount to "calculate the first R(K) figures computed by H and write 
down the R(K)th". This R(K)th figure would never be found. I.e., H is circular, contrary 
both to what we have found in the last paragraph and to the verdict "s". Thus both 
verdicts are impossible and we conclude that there can be no machine D. 

Turing's proof does not appear to refer to a programming language, but implicitly it does.  It 
talks about the standard description of a computing machine, which is a number that encodes a 
program.  And Turing Machine programs can be numbered because they are in a language, the 
Turing Machine language, that has syntactic rules that enable us to enumerate programs.  And 
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then a diagonal program D is assumed to be in that same enumeration, so it's in the same 
language, and the halting program H is constructed from D, so it's also in the same language.  
The proof fails to recognize the language dependence.  It also fails to recognize location 
dependence by assuming there's only one computer.  Turing's proof proves that there cannot be 
a program in the Turing Machine programming language, running on a Turing Machine, that 
determines halting for all programs in that same language running on that same machine.  The 
possibility of computing halting for all programs in a set (language or location) by using a 
program outside the set (different language or different uncallable location) was not considered.

Other Proofs

There are several proofs that purport to prove that halting is incomputable [8].  The differences 
among them are superficial;  at their core, they are all twisted self-references.  The proof by 
Robert Boyer and J Moore [2] is distinguished by their claim that it is completely formalized 
and verified using an automated prover, ACL.  ACL is a constructive logic in which all 
recursions must be well-founded to ensure termination.   They define the bounded halting 
program  B (p, n)  saying whether execution of  p  terminates within  n  steps, but they cannot 
define the halting program ( nat  is the natural numbers)

H (p)   =   ∃n: nat· B (p, n)
in ACL because they lack quantification over an infinite domain.  In place of Turing Machine 
operations, they use LISP programs, which are defined by writing a bounded  EVAL  function to 
interpret LISP.  When execution of  p  runs past  n  steps,  EVAL (p, n)  returns the result  
BTM .  So “execution of  p  fails to halt” becomes

∀n: nat·  EVAL (p, n)  =  BTM
which cannot be expressed in ACL due to the unbounded quantification, but which can be 
proven by induction for any choice of nonterminating  p .  The gap between a constructive 
prover and an essentially classical (nonconstructive) theorem is filled with convincing but 
informal reasoning, so the proof is sound but not fully formal.

In place of a numeric encoding of programs, they use a textual encoding, as does this paper.  
And they define function  CIRC  exactly the same as the definition of  twist  in this paper, but in 
LISP rather than Pascal.

CIRC (A)
     ( IF ( HALTS (QUOTE (CIRC A))

( LIST ( CONS (QUOTE A)
A ) )

A )
(LOOP)
T )

The theorem they prove, paraphrased roughly, says:  If a program named  HALTS  behaves like 
the halting function (returning  T  for programs that halt and  F  for those that don't), then  
HALTS  applied to  CIRC  returns  BTM .  This is inconsistent, therefore there is no LISP 
function to compute halting for all LISP functions.  The same conclusion applies to any 
programming language.  But again, the possibility of computing halting for all programs in a set 
by using a program outside the set was not considered.

Here is another proof that appears in textbooks without mentioning a dependence on a 
programming language.

[start of proof]  All programs are finite sequences of characters, although not all finite sequences 
of characters are programs.  Execution of a program may read characters as input, may write 
characters as output, and either terminates or computes forever. 
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Let  C  be a finite character set, and let  C*  be the set of all finite sequences of characters in  C .  
Define the mathematical function  H  (not a program) called “the halting function” as follows.

H: C*×C* → {true, false}

H (p, i)  =   true  if  p  is a program with one text input and execution of  p (i)  terminates;
    false  otherwise

If  p  is a program whose execution on input  i  terminates, then  H (p, i) = true , whether or not 
the entire input  i  is read.  If  p  is a program whose execution reads the entire input  i  and 
waits forever for more input, then  H (p, i) = false .  If  p  is not a program with one text input, 
then  H (p, i) = false .

Is there a program  twist  with one text input having the following behavior?  For all  p  in  C* ,
•  if  H (p, p) = false  then  execution of  twist (p)  terminates;
•  if  H (p, p) = true  then  execution of  twist (p)  does not terminate.
If execution of program  twist (twist)  terminates, then according to the definition of  H ,  
H  (twist, twist) =  true , not  false .  And if execution of program  twist (twist)  does not 
terminate, then according to the definition of  H ,  H (twist, twist) = false , not  true .  So there is 
no such  twist  program.

Assume (for contradiction) that  H  is computed by a program  halts .  Then we can write 
program  twist  as follows.  

Execute  halts (p, p)  but don't output.
If the output from executing  halts  on  p  would be  false , terminate execution.
If the output from executing  halts (p, p)  would be  true , loop forever.

But there is no such  twist  program.  Therefore there is no such  halts  program;  H  cannot be 
computed by a program.  [end of proof]

There are three criticisms of this proof.  The first is that it fails to distinguish between a program 
and a text encoding of the program.  Gödel and Turing both understood the importance of that 
distinction, although they used numeric encodings because the text (character string) data type 
had not yet been invented when they did their work.  To see the difference, consider the 
arithmetic expression  1+2  and the text  “1+2” .  The former is equal to  3 , but the latter is not 
equal to  3 , nor is it equal to  “3” .

1+2 = 3
“1+2” ≠ “3”

In the formal methods community, we treat programs as mathematical expressions.  For 
example,

x:= 2; y:= 3     =     y:= 3; x:= 2
because execution of the program on the left has exactly the same effect as execution of the 
program on the right.  But

“x:= 2; y:= 3”    ≠    “y:= 3; x:= 2”
because they are different texts.  Although the proof fails to distinguish, fortunately it does no 
harm;  we just need to reword the proof.  For example, “if  p  is a program” becomes “if  p  is a 
text representing (or encoding) a program”.  The proof achieves an economy of expression by 
not distinguishing between a program and the text representing the program.

The second criticism of the proof is the failure to recognize its dependence on a programming 
language.  When  H  is defined using the phrase “if  p  is (a text representing) a program”, we 
need to know the rules of program formation;  in other words, we need to know the 
programming language.  And since we apply  H  to  twist , we are assuming that  twist  is in that 
same language.  When we program  twist , it calls  halts , so we are assuming  halts  is callable 
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from  twist .  The conclusion should have been that  H  cannot be computed by a program in the 
language over which  H  is defined.

The last criticism of the proof is that it's unnecessarily complicated.  H  and  twist  and  halts  do 
not need input parameters;  they could be defined for only the one input they are applied to in 
the proof.

Oracles, Translations, and Interpreters

The Halting Problem is this:  there is a mathematical halting function that says, for each Pascal 
program, whether its execution terminates;  but there is no Pascal program to implement this 
mathematical function.  (Substitute Turing Machine language, or any other programming 
language, for Pascal.)  The reason, according to standard theoretical computer science, is the 
limited power of computation, compared to the (unlimited?) power of mathematics.  There is a 
field of research called hypercomputation that studies computation strengthened by magical 
powers.  There are many journal articles and books on the subject.  This field was begun by 
Turing in [13];  he strengthened the power of computation by adding an oracle to determine 
halting.  It works as follows, except that I refer to the Pascal language instead of the Turing 
Machine language, and I am using text parameters instead of numeric parameters.  

[start]  Let  H (p, x)  be the mathematical halting function.  Parameter  p  is a text representing a 
Pascal procedure with one text parameter  x .
•  H (p, x)  =  true  if execution of the procedure represented by  p  on input  x  terminates 
•  H (p, x)  =  false  if execution of the procedure represented by  p  on input  x  
                                does not terminate 

Fortify Pascal with  oracle  defined such that  oracle ('H', 'twistO', x)  =  H ('twistO', x) , and 
simultaneously fortify  H  to apply to fortified Pascal procedure  twistO , defined as

procedure twistO (x: string); begin if oracle ('H', 'twistO', x) then twistO (x) end  [end]

As we have seen many times, there is an inconsistency:  the specifications of  H  and  oracle  
together are inconsistent.  If we blame the inconsistency on the specification of  H , then there is 
no mathematical halting function, so we cannot conclude that “the halting function” is 
incomputable.  So it is commonly agreed to blame the inconsistency on the specification of  
oracle , and conclude that  oracle  cannot be programmed in Pascal.  It is further commonly 
concluded that the reason  oracle  cannot be programmed is that computation power is limited, 
and cannot compute functions defined using more powerful mathematics.

As we have done before, we can see the inconsistency more clearly if we get rid of the 
parameters.

[start]  Let  H  be the mathematical binary value such that
•  H=true  if execution of Pascal procedure  twistO  terminates 
•  H=false  if execution of Pascal procedure  twistO  does not terminate 

Fortify Pascal with  oracle  defined as  oracle=H , and simultaneously fortify  H  to apply to 
fortified Pascal procedure  twistO , defined as

procedure twistO; begin if oracle then twistO end  [end]

The definitions of  H  and  oracle  together are inconsistent.  We can eliminate  oracle , and 
fortify Pascal with the mathematical halting function:
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[start] Let  H  be the mathematical binary value such that
•  H=true  if execution of fortified Pascal procedure  twistH  terminates 
•  H=false  if execution of fortified Pascal procedure  twistH  does not terminate 

Fortify Pascal with  H .

procedure twistH; begin if H then twistH end   [end]

And the inconsistency remains.  The proof of inconsistency is similar to the Liar's Paradox;  it 
does not use the supposed power advantage of mathematics over computation (whatever that 
might mean).

Let us now repeat the argument, but replacing the mathematical function with a Python 
function.  With parameters,

[start]
def haltsPy (p, x):

"""return  True  if execution of the procedure represented by  p  on input  x  
     terminates;  return  False  otherwise"""

procedure twistT (x: string); begin if translate ('haltsPy', 'twistT', x) then twistT (x) end

where  translate ('haltsPy', 'twistT', x)  is the translation from Python to Pascal of  
haltsPy ('twistT', x) .  [end]

Without parameters,

[start]
def haltsPy:  """return  True  if execution of the Pascal procedure  TwistT  terminates;

            return  False  otherwise"""

procedure twistT; begin if translate ('haltsPy') then twistT end

where  translate ('haltsPy')  is the translation from Python to Pascal of  haltsPy ;  True  is 
translated to  true , and  False  is translated to  false .  [end]

In this example,  haltsPy  plays the same role as  H  played previously, and  translate  plays the 
same role as  oracle  played.  The proof of inconsistency is identical to previously.  The 
specifications of  haltsPy  and  translate  together are inconsistent.  But this time, inexplicably, 
the usual conclusion is opposite to previously:  haltsPy  is blamed, not  translate .  It is 
commonly concluded that we cannot program  haltsPy  because of the limited power of 
computation, but if we could, we could translate  haltsPy  preserving both the behavior (same 
results) and specification (it still tells us whether  twistT  halts).  These conclusions are 
unwarranted because the power of computation did not enter the argument, and we have seen 
that translation sometimes does not preserve both behavior and specification.

Using interpretation instead of translation, with parameters,

procedure twistI (x: string); begin if interpret ('haltsPy', 'twistI', x) then twistI (x) end

where  interpret ('haltsPy', 'twistI', x)  is the Pascal interpretation of the Python function  
haltsPy ('twistI', x) .

Without parameters, 
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procedure twistI; begin if interpret then twistI end

where  interpret  is the Pascal interpretation of the Python function  haltsPy .

The arguments, common conclusions, and my criticisms are the same for interpretation as for 
translation.

Conclusion

The Epimenides construction shows us that asking for a function whose result is  true  for all 
and only those texts representing true sentences in a sufficiently expressive language is both 
overdetermined (inconsistent) and underdetermined.  The Gödel construction shows us that 
asking for a function whose result is  true  for all and only those texts representing provable 
sentences in a sufficiently expressive language is both overdetermined (inconsistent) and 
underdetermined.  The Turing construction shows us that asking for a function, written in a 
programming language, whose result is  true  for all and only those texts representing 
procedures, written in that same language, whose execution terminates, is both overdetermined 
(inconsistent) and underdetermined.

A specification is objective if the specified behavior does not depend on the agent that performs 
it, and subjective if it does.  The Church-Turing Thesis applies to objective specifications, not to 
subjective ones.  If an objective specification can be implemented as a program in a 
programming language, it can translated to a program in any other programming language, 
preserving both the specification and the behavior.  If a subjective specification is implemented 
as a program in a programming language, it may not be possible to translate it to a program in 
another programming language, preserving both the specification and the behavior.

Let X and Y be two programming languages, or two computers, or two locations. It is 
inconsistent to ask for an X-program to compute halting for all X-programs due to a twisted 
self-reference.  Twisted self-reference is characteristic of subjective specifications.  So it may be 
consistent and satisfiable to ask for a Y-program to compute halting for all X-programs.  At least 
it has not yet been proven impossible.
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other papers on halting

Note added 2020-12-9

I translated
(10) Is this question in French?
to French as
(11) Cette question est-elle en français?
In (10), the words “this question” clearly refer to the question they are part of:  question (10).  It 
might be argued that in (11) the words “Cette question”, being a translation of “this question”, 
refer to the same question that “this question” refers to, which is question (10).  If so, then the 
answer to (11) is “non”, which is a translation of the answer to (10).

In any decent programming language, we can define a function recursively.  (Even the simplest 
arithmetic operations, such as counting, addition, and multiplication, must be defined 
recursively.)  In language M we can define function  f  such that the body of the definition calls  
f .  In the body,  f  refers to the function that it is part of.  When we translate from language M to 
language L, we again define  f  such that the body of the definition calls  f .  In the body,  f  
refers to the L-function that it is part of, not to the M-function that we are translating.  So, to be 
like program translation, I took the words “Cette question” to refer to the question they are part 
of, which is question (11).  As a result, the translated question (11) invokes a different behavior:  
saying “oui”, which is not the translation of the answer to (10).

http://www.cs.utoronto.ca/~hehner/halting.html

