
2020 August 5 SN Computer Science v.1 p.308 0

Epimenides, Gödel, Turing:
an Eternal Gölden Twist [0]

Eric C.R. Hehner

Department of Computer Science, University of Toronto
hehner@cs.utoronto.ca

Abstract: The Halting Problem is a version of the Liar's Paradox. We examine
specifications for dependence on the agent that performs them. We look at the
consequences for the Church-Turing Thesis and for the Halting Problem.

Epimenides

An ancient Cretan named Epimenides is reported to have said “All Cretans are liars.” [5].
This is supposed to be self-contradictory, but it misses the mark. If there is any other Cretan,
and that Cretan is a truth-teller, then Epimenides' sentence is simply false: Epimenides is a liar,
but not all Cretans are liars. Saint Paul missed the point completely, taking Epimenides'
statement at face value, and elaborating: “It was one of themselves, one of their own prophets,
who said, “Cretans were never anything but liars, dangerous animals, and lazy”: and that is a
true statement.” [1]. I will refer to the simpler sentence

This sentence is false.
as the Liar's Paradox. If that sentence is true, then, according to the sentence, it is false. If it is
false, then it is true. That simple sentence is self-contradictory.

I give the sentence a name, say L for Liar.
L: L is false.

 As a mathematical formula, it becomes
L = (L=false)

As an equation in unknown L , it has no solution, because the equation is false regardless of
whether L is true or false . As a definition or specification of L it is called “inconsistent”.
(I am using italic true and false for the binary values representing truth and falsity.)

A slightly more complicated version presents the inconsistency as two sentences.
The next sentence is true.
The previous sentence is false.

Naming the first sentence B and the second G , as mathematical formulas, they become
B = (G=true)
G = (B=false)

These two equations in the two unknowns B and G have no solution: there is no assignment
of binary values to B and G that satisfies the two equations. They are inconsistent. If you
look at either one of the sentences alone, there is no inconsistency. It may make sense to say
that the next sentence is true, and it may make sense to say that the previous sentence is false.
But together they are inconsistent.

Let me complicate this inconsistency by adding a parameter, so B can say whether any
sentence is true, not just sentence G . To reduce contention over truth and falsity, I will stick
with mathematical sentences, otherwise known as binary expressions (allowing subexpressions
of any type, including functions). To pass sentences as data, we need to encode them in some
way. The easiest encoding is as a text (character string). Now B becomes a function from
texts to binary values, and the pair of sentences become

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 1

B (t) = true if text t represents a binary expression with value true ;
 false otherwise

G = “ B (G) = false ”

I have made two definitions: B and G . Since G is just a text, there cannot be anything
wrong with its definition; it represents the binary expression B (G) = false . But the definition
of B , no matter how carefully worded, no matter how clear it sounds, conceals an
inconsistency. I am not concerned with computing B ; I just want to define a mathematical
function. The parameter allows us to show a large number of examples, like B (“0=0”) = true
and B (“0=1”) = false , which are not problematic. They may fool us into believing that the
definition of B makes sense. But they are irrelevant. The inconsistency is revealed by applying
B to G . If B (G) = true , then G represents a false expression, so B (G) should be false .
If B (G) = false , then G represents a true expression, so B (G) should be true . The
inconsistency is the same as in the unparameterized, unencoded version of the Liar's Paradox.

Gödel

The Liar's Paradox is about truth. Gödel used the same self-contradictory construction to talk
about provability [6]. He used a numeric, rather than text, encoding of sentences, and he used
the name Bew (short for “Beweisbar”, which is German for “Provable”) for a function similar
to B . The sentence encoded by G is popularly called “the Gödel sentence”. With our
notations and encoding, B and G become

B (t) = true if text t represents a provable binary expression;
 false otherwise

G = “ B (G) = false ”

What is the value of B (G) ? If we suppose B (G) is true , then G represents a false
sentence, and in a consistent logic, no false sentence is provable, so B (G) should be false .
If we suppose B (G) is false , then G represents a true sentence, and in a complete logic, all
true sentences are provable, so B (G) should be true . Gödel concluded that if a logic is
expressive enough to define B , then the logic is either inconsistent or incomplete.

Most of Gödel's paper [6] is devoted to showing how to define Bew . His definition was
equivalent to programming a prover, using a functional language, namely the logic of Principia
Mathematica [14] (hence the name of his paper). That was an amazing piece of work. But
Gödel needn't have gone to so much trouble. Bew is defined to apply to all sentence encodings.
But there is only one sentence encoding he wants to apply it to. For a single sentence, we don't
need a sentence encoding. Define

B = true if G is a provable binary expression;
 false otherwise
G = (B=false)

What is the value of B ? If we suppose B is true , then G is a false sentence, and in a
consistent logic, no false sentence is provable, so B should be false . If we suppose B is
false , then G is a true sentence, and in a complete logic, all true sentences are provable, so
B should be true . We can conclude from this simpler construction that if a logic is expressive
enough to define B , then the logic is either inconsistent or incomplete.

Even this simpler construction includes one more definition than necessary. We could define

B = true if B=false is a provable binary expression;
 false otherwise

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 2

If we suppose B is true , then B=false is a false sentence, and in a consistent logic, no false
sentence is provable, so B should be false . If we suppose B is false , then B=false is a
true sentence, and in a complete logic, all true sentences are provable, so B should be true .
If a logic is expressive enough to define B , then the logic is either inconsistent or incomplete.

Turing

Epimenides talked about truth; Gödel talked about provability; Turing talked about
computability using the same sort of arguments [12]. For my examples, I will use the Pascal
programming language, but the choice of language is irrelevant; any other programming
language would do just as well. I'll start with a procedure named twist that is closely
analogous to the Liar's Paradox.

procedure twist;
begin

if (execution of twist terminates) then twist
end

I have not finished writing procedure twist ; what remains is to replace the informal binary
expression (execution of twist terminates) with either true or false , whichever one is
appropriate. The problem in doing so is that the informal binary expression refers to itself in a
self-contradictory manner: if the execution of procedure twist terminates, it should be
replaced with true , creating a procedure whose execution does not terminate; if the execution
of twist does not terminate, it should be replaced with false , creating a procedure whose
execution does terminate. This is not a programming problem, not a computability problem,
not a lack of expressiveness of Pascal. The problem is that the informal binary expression is an
inconsistent specification. One might protest:

Either execution of twist terminates, or it doesn't. If it terminates, use true ; if it
doesn't, use false . How can there possibly be an inconsistency?

But I hope the inconsistency is clear enough that no-one will protest.

As we did with the Liar's Paradox, let's present the same inconsistency as two declarations.

const halts = { true if execution of twist terminates, false otherwise };

procedure twist;
begin

if halts then twist
end

The value of constant halts is missing. In place of the value there is a comment to specify
what the value should be. If execution of procedure twist terminates, then the value should be
true . If execution of procedure twist does not terminate, then the value should be false . So
there is no problem in programming the value of halts after we determine whether the
execution of twist terminates. If we suppose it does, then halts=true , and so we see that
execution of twist does not terminate. If we suppose it does not, then halts=false , and so we
see that execution of twist does terminate.

Procedure twist has been written in its entirety. Syntactically, it is a procedure; to determine
that halts is being used correctly within twist , we need only the type of halts , not the value,
and we have the type. Semantically, it is a procedure; to determine the meaning of twist we
need only the specification of halts , not its implementation, and we have the specification.
(That important programming principle enables a programmer to use pieces of programs written
by other people, knowing only their specifications, not their implementations. It also enables a

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 3

programmer to change the implementation of part of a program, but still satisfying the
specification, without knowing where and why the part is being used.) So there is nothing
wrong with the definition of twist . The problem is that we cannot write the value of halts to
satisfy its specification. This is not a programming problem, not a computability problem, not a
lack of expressiveness of Pascal. The problem is that the specification of halts is inconsistent.
One might protest:

Either execution of twist terminates, or it doesn't. If it terminates, use true ; if it
doesn't, use false . How can there possibly be an inconsistency?

The inconsistency cannot be seen by looking only at halts or only at twist . Each refers to the
other, and together they are inconsistent.

Let me complicate this inconsistency by adding a parameter so halts can say whether
execution of any parameterless Pascal procedure terminates, not just twist . To pass procedures
as data, we need to encode them in some way, and the easiest encoding is as a text. (Whenever
programs are presented as input data to a compiler or interpreter, they are presented as texts.)
We could pass the whole procedure as text, but it is simpler to pass just the procedure name as
text, and to assume there is a dictionary of function and procedure definitions that is accessible
to halts , so that the call halts ('twist') allows halts to look up 'twist' and 'halts' in the
dictionary, and retrieve their texts for analysis. For later reference, call this version of halts
and twist the “intermediate” version:

function halts (p: string): boolean;
{ return true if p represents a parameterless Pascal procedure whose execution terminates; }
{ return false otherwise }

procedure twist;
begin

if halts ('twist') then twist
end

To determine that twist is syntactically a Pascal procedure, we need only the header for halts ,
not the body, and we have the header. To determine the semantics of twist , we need only the
specification of halts , not its implementation, and we have the specification.

As before, we cannot write the body of halts to satisfy the specification. No matter how
carefully worded it is, no matter how clear it sounds, the specification conceals an
inconsistency. The inconsistency is revealed by applying halts to 'twist' . If
halts ('twist') = true , then execution of twist is nonterminating, so halts ('twist') should be
false . If halts ('twist') = false , then execution of twist is terminating, so halts ('twist') should
be true . This is still not a programming problem, not a computability problem, not a lack of
expressiveness of Pascal. It is still the same inconsistency that was present in the
unparameterized, unencoded version, and the same inconsistency that was present in the twist
procedure. One might protest:

Either execution of a procedure represented by p terminates, or it doesn't. If it
terminates, halts (p) should return true ; if it doesn't, halts (p) should return false .
How can there possibly be an inconsistency?

Now the protest starts to sound more plausible because the parameter allows us to show a large
number of examples which are not problematic. For example, if we define stop and go as

procedure stop; begin end
procedure go; begin go end

then
halts ('stop') = true
halts ('go') = false

These nonproblematic examples may fool us into believing that the specification of halts

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 4

makes sense. But they are irrelevant. Procedure twist shows us the inconsistency.

There is one last complication: a second parameter so halts can say whether execution of any
Pascal procedure with an input parameter terminates.

function halts (p, i: string): boolean;
{ return true if p represents a Pascal procedure with one text input parameter }
{ whose execution terminates when given input i ; return false otherwise }

procedure twist (s: string);
begin

if halts (s, s) then twist (s)
end

This is now a modern version of Turing's Halting Problem. Turing's argument is as follows.

Assume that halts is computable, and that it has been programmed according to its
specification. Does execution of twist ('twist') terminate? If it terminates, then
halts ('twist', 'twist') returns true , and so we see from the body of twist that execution
of twist ('twist') does not terminate. If it does not terminate, then halts ('twist', 'twist')
returns false , and so we see from the body of twist that execution of twist ('twist')
terminates. This is inconsistent. Therefore function halts cannot have been
programmed according to its specification; halts is incomputable.

The two parameters (p, i) make a two-dimensional space, and point ('twist', 'twist') is on its
diagonal, which is why the argument is sometimes called a “diagonal argument”. But any text
would do equally well as a value for the second parameter, and the second parameter adds
nothing to Turing's argument.

The surprise, and a main point of this paper, is that the computability assumption is unnecessary
to the argument. Without assuming that halts is computable, I ask what the specification of
halts says the result of halts ('twist', 'twist') should be. If the specification says the result
should be true , then the semantics of twist ('twist') is nontermination, so halts ('twist', 'twist')
should be false . If the specification says the result should be false , then the semantics of
twist ('twist') is termination, so halts ('twist', 'twist') should be true . This is inconsistent.
Therefore halts cannot be programmed according to its specification. But the problem is not
incomputability; it is inconsistency of specification [10][11]. It is the same inconsistency that
was present in all previous versions, before I added the complications of parameters and
encodings. It is just the Liar's Paradox in fancy clothing. In fact, Turing's argument could have
been applied to the simplest version of twist with equal (in)validity.

procedure twist;
begin

if (execution of twist terminates) then twist
end

Assume that the expression (execution of twist terminates) is computable, and that it
has been programmed according to its specification. Does execution of twist terminate?
If it terminates, then (execution of twist terminates) is true , and so we see from the
body of twist that its execution does not terminate. If it does not terminate, then
(execution of twist terminates) is false , and so we see from the body of twist that its
execution terminates. This is inconsistent. Therefore the expression (execution of twist
terminates) cannot have been programmed according to its specification; it is
incomputable.

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 5

But there are only two possibilities for programming (execution of twist terminates) ; they are
true and false . Calling this choice “incomputable” says that one of them is correct but no
computer program can determine which one. In fact, neither of them is correct, and that is
called “an inconsistent specification”.

Turing's argument can be applied to any property of program execution. For example,

procedure twist1;
begin

if (execution of twist1 prints 'A') then print ('B') else print ('A')
end

Termination of execution of twist1 is not in question: when (execution of twist1 prints 'A')
is replaced with either true or false , whichever is appropriate, execution of twist1
terminates. The question is whether 'A' or 'B' is printed. Turing's argument says that the
property “prints 'A' ” is incomputable, and so is every property of program execution (except
for the trivial “always true ” and “always false ” properties) [9]. But the problem is not
incomputability; the problem is inconsistency of specification.

Turing's argument can even be applied to a completely meaningless property of program
execution. For example, “calumation” is a meaningless word. Suppose Calumate is a
procedure whose execution has the calumation property, and DoNotCalumate is a procedure
whose execution does not have the calumation property.

procedure twist2;
begin

if (execution of twist2 calumates) then DoNotCalumate else Calumate
end

Turing's argument says that the meaningless property calumation is incomputable.

Underdetermination

The Liar's Paradox, the Gödel sentence, and Halting Problem are all examples of inconsistency,
which is also known as overdetermination. Here, “determination” means determining a
solution. If there is no solution, we have overdetermination; if there is more than one solution,
we have underdetermination. An example is the sentence

This sentence is true.
Whereas the Liar's Paradox can be neither true nor false, the sentence just written can be either
true or false. Giving the sentence the name U for underdetermined, it becomes the formula

U = (U=true)
As an equation in unknown U , it has two solutions: both true and false . As a specification
of U , it is consistent, but does not determine U .

Here is an example of the underdetermination of Gödel's provability specification.

B (t) = true if text t represents a provable binary expression;
 false otherwise

H = “ B (H) = true ”

That is the same specification of B as before. Now we ask: What is the value of B (H) ? If
we suppose B (H) = true , then H represents the sentence true=true , which is provable, so
B (H) should be true , as supposed. If we suppose B (H) = false , then H represents the
sentence false=true , which is not provable, so B (H) should be false , as supposed. The

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 6

specification of B is both overdetermined (for G) and underdetermined (for H).

Here is an example of the underdetermination of Turing's halting specification.

function halts (p, i: string): boolean;
{ return true if p represents a Pascal procedure with one text input parameter }
{ whose execution terminates when given input i ; return false otherwise }

procedure straight (s: string);
begin

if not halts (s, s) then straight (s)
end

That is the same halts specification as before; it says that the halts function will tell us
whether the execution of a procedure terminates. What does it say about straight ? If we
suppose that halts ('straight', 'straight') = true , we see from the body of straight that its
execution terminates, as supposed, so that is a solution. If we suppose that
halts ('straight', 'straight') = false , we see from the body of straight that its execution does not
terminate, as supposed, so that is also a solution. That is another inadequacy of the halts
specification. The specification sounds just right: neither overdetermined nor underdetermined.
But we are forced by the examples to admit that the specification is not as it sounds. In at least
one instance (twist), the halts specification is overdetermined, and in at least one instance
(straight), the halts specification is underdetermined.

Objective and Subjective Specifications

I now want to consider specifications of behavior, or activity, in general. I include human
behavior, computer behavior, and other behavior. To keep the examples simple, I will use
specifications that say what the output, or final state, of the behavior should be. And I will use
specifications that relate input, or initial state, to output, or final state. The conclusions apply
also to specifications that say what the interactions during the behavior should be, but my
examples will not be that complicated.

A specification may have the form of a question, for example “What is two plus two?”. Or it
may have the form of a command, for example “Tell me what is two plus two.”. The question
and the command are equivalent because they invoke the same behavior. A specification may
describe the desired behavior, for example, “saying what is two plus two”.

A specification is objective if the specified behavior does not vary depending on the agent that
performs it. For examples:
(0) Given a natural number, what is its square?
(1) What is the number of words in this question?
(2) What is the name of the first Turing Award winner?
For all three questions, the correct answer does not depend on who or what is answering.

A specification is subjective if the specified behavior varies depending on the agent that
performs it. For examples:
(3) What is your name?
(4) What is your IP address?
The correct answer to question (3) depends on whom you ask. In this paper, “subjective” does
not mean that the answer is a matter of disagreement, debate, doubt, or dishonesty. If we ask
Alice what her name is, the answer “Alice” is correct, and all other answers are wrong. If we
ask Bob the same question, the correct answer is different. Question (4) is similar to question
(3), but applies to a computer rather than a human.

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 7

Subjectively and Objectively Inconsistent

Now consider this example:
(5) Lift Bob.
I am not interested in the variety of lifting techniques; I am interested only in the specified
result: the agent lifts Bob. If we ask Hercules, who is very strong, to lift Bob, he can do so
without difficulty. If we ask Alice, who is much smaller than Bob, she is not strong enough.
The result is different, depending on who is trying to lift Bob. So it may seem that (5) is
subjective. But the definition of subjective specification says “the specified behavior varies
depending on the agent”. When we ask Alice to lift Bob, we are asking for the same behavior
(lifting Bob) as when we ask Hercules. So it may seem that (5) is objective. But suppose we
ask Bob to lift Bob. He cannot do so, but not due to lack of strength. He cannot do so because
the specification does not make sense when we ask Bob to lift himself. The specification makes
sense for some agent (anyone other than Bob), and makes no sense for some agent (Bob). For
that reason, (5) is subjective. If we restrict the set of agents to exclude Bob, then (5) is
objective.

(6) Can Carol correctly answer “no” to this question?
Let's ask Carol. If she says “yes”, she's saying that “no” is the correct answer for her, so “yes”
is incorrect. If she says “no”, she's saying that she cannot correctly answer “no”, which is her
answer. We are assuming for this and all subsequent questions that the only acceptable answers
are “yes” and “no”, and in this case, both answers are incorrect. Carol cannot answer the
question correctly. Now let's ask Dave. He says “no”, and he is correct because Carol cannot
correctly answer “no”. So (6) is subjective because it is a consistent, satisfiable specification for
some agent (anyone other than Carol), and an inconsistent, unsatisfiable specification for some
agent (Carol).

(7) Can any man correctly answer “no” to this question?
Let's ask Ed, who is a man. Suppose Ed says “no”. Ed is saying that no man can correctly
answer “no”, and Ed, a man, is answering “no”, so Ed is saying that his answer is incorrect.
Suppose Ed says “yes”. Ed is saying that some man, let's call him Frank, can correctly answer
“no”. But if Frank answers “no”, he is saying that his own answer is incorrect. So Frank
cannot say “no” correctly. So Ed's “yes” answer is incorrect. And the same goes for every man.
But Gloria, who is not a man, can correctly say “no”. Specification (7) is subjective because it
is a consistent, satisfiable specification for some agent (anyone who is not a man), and an
inconsistent, unsatisfiable specification for some agent (any man).

(8) Can anyone correctly answer “no” to this question?
If we ask Harry and he says “no”, he is saying that his answer is incorrect. If he says “yes”, he
is saying that someone, let's say Irene, can correctly answer “no”. But if Irene answers “no”,
she is saying that her answer is incorrect. So Harry can neither say “no” nor “yes” correctly.
And the same goes for anyone else we ask. The correct answer to the question is therefore
“no”, but no-one can correctly say so (oops, I just did). I meant: no-one who is a possible
agent can say so. I exclude myself from the set of possible agents just so that I can tell you that
no possible agent can correctly answer “no”. Specification (8) is objectively inconsistent.

Specifications (6), (7), and (8) are examples of twisted self-reference. The self-reference occurs
when the specification talks about the agent who will perform the specification. The twist, in
these examples, is the word “no”. If we replace “no” with “yes” in these three specifications,
then everyone can correctly answer “yes” to all of them, making them objectively consistent.

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 8

Church-Turing Thesis

If a specification can be computed by any one of:
• a Turing Machine (a kind of computer) [12]
• the lambda-calculus (a mathematical formalism) [3]
• general recursive functions (another mathematical formalism) [4][7]
then it can be computed by all of them; they all have the same computing power. The Church-
Turing Thesis [13] says that each of these formalisms compute all that is computable. In a more
modern version, the Church-Turing Thesis says that if a specification can be computed, then it
can be computed by a program in any programming language. All programming languages
provide the same computing power; each is equivalent to a Turing Machine.

Church and Turing were thinking of specifications of mathematical functions, like (0). It seems
reasonable to me that the Church-Turing Thesis can be extended to all objective specifications.
But its extension to subjective specifications comes up against a problem.

Reconsider subjective specification (7), but replace “man” with “Pascal program”. (We define
“Pascal program” in such a way that the question whether p is a Pascal program is decidable.
And likewise for any other programming language.)
(9) Can any Pascal program correctly answer “no” to this question?
It's easy to write a Pascal program that prints “no”. If that is the answer to (9), it is saying that
there isn't a Pascal program that correctly answers “no” to the question, so in particular, the
Pascal program that prints “no” doesn't give the correct answer. It's just as easy to write a
Pascal program that prints “yes”. If that program is the answer to (9), it says that “no” is the
correct answer, so the Pascal program that prints “yes” doesn't give the correct answer either. In
fact, the correct answer to (9) is “no”, but no Pascal program can correctly say so. We can write
a program in Python (which is another programming language) that prints “no” in answer to (9),
and that answer is correct. No matter whether the agents are people or programs, the result is
the same: one agent can satisfy the specification, but another can't.

The Church-Turing Thesis, in the version stated earlier, does not apply to subjective
specifications. Specification (9) can be computed by a Python program, but not by a Pascal
program.

A consequence of the Church-Turing Thesis is that any program in any programming language
can be translated to a program in any other programming language. We'll look at program
translation in a moment, but first, here is a non-programming example to illustrate the
translation problem.
(10) Is this question in French?
The correct answer is “no”. The question is easily translated into French.
(11) Cette question est-elle en français?
The correct answer is now “oui”. Before translation, when the question is put to someone who
understands the language the question is in, it invokes one behavior: saying “no”. After an
accurate translation, when the question is put to someone who understands the language the
question is now in, it invokes a different behavior: saying “oui”. Specifications (10) and (11)
refer to a language, and changing the language of the question affects the answer.

Similarly, when we write a program to compute a subjective specification, then translate it to
another language, it may invoke different behavior. This can occur when the specification
refers to a programming language. First, here's an objective specification that refers to a
programming language.
(12) Is text p a Pascal program?
Every compiler answers the question whether its input text is a program in the language that it
compiles. Whether we write the program that computes (12) in Pascal or in Python, for the

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 9

same input p we should get the same answer. Specification (12) is objective, and the Church-
Turing Thesis applies. Now replace the input with a self-reference.
(13) Is the program answering this question a Pascal program?
There are two ways to write a Python program to compute (13). The hard way is to give the
program access to its own text, perform the lexical analysis and parsing and type checking and
so on, just as a compiler would do, and then print the answer, which will be “no”. The easy
way is just to print “no” because that's the right answer. Now we translate our Python program
to Pascal. If we programmed the hard way, the translated program accesses its own text, does
the analysis, and prints the correct answer, which is “yes”. If we programmed the easy way, the
translated program prints “no”, which is incorrect. Specification (13) is subjective, and the
Church-Turing Thesis does not apply. Either the translation prints the correct answer by
exhibiting different printing behavior, or the translation exhibits the same printing behavior and
the answer is incorrect.

Yet another consequence of the Church-Turing Thesis is that in any programming language, you
can write an interpreter for programs in any other programming language. To pass a program as
data to an interpreter, the program must be encoded, and the standard encoding is as text. Or
we can pass just the program name as text, and provide a dictionary of program definitions, so
that the name can be looked up and the full text retrieved.

Suppose we have an interpreter for Python programs written in Pascal. When the Python
program that computes (13) the easy way, by just printing “no”, is interpreted, the result is that
“no” is printed. Is this answer correct? One might argue that the program answering the
question is the Python program, and that the interpreter, written in Pascal, is just the execution
mechanism. By this argument, the answer is correct. Or one might argue that the program
being executed is the interpreter, and the Python program is just its text input. By this
argument, the answer is incorrect. So the correct answer is unclear.

Suppose we interpret the Python program that computes (13) the hard way. Which text, the
Python program or the interpreter in Pascal, gets analyzed? Again, the correct answer is
unclear.

If p is a Python program, we can express its interpretation in Pascal as interpret ('p') . The
language of interpret ('p') is Pascal, and 'p' is a Pascal text (the Python text would be "p").
Therefore I adopt the view that the program being executed is the interpreter, while
acknowledging that the other answer also has merit. This makes interpretation the same as
executing a translation. Interpretation is therefore similarly limited to programs that satisfy
objective specifications. Given a program that computes a subjective specification, its
interpretation may produce behavior that differs from execution of the given program.

The same choice, whether to preserve the behavior or to preserve the specification, can occur
without translation or interpretation, simply by renaming. For example,
(14) Given a text p representing a program, determine whether a call to the determining

program appears within p .
Let's name the determining program DoYouCallMe . Given program p , it searches within p
for a calling occurrence of DoYouCallMe , reporting “yes” if one is found, and “no” if not.
Now let's rename the determining program DoYouCallMe2 . If we just change the name of the
program without changing what it is searching for, this name change preserves behavior, but the
program no longer satisfies the specification (14). If we change both the program name and
what it is searching for, the program still satisfies the specification (14), but its behavior
changes: given the same input, DoYouCallMe and DoYouCallMe2 may give different
answers. If a program has access to its own name, then changing its name automatically
changes what it is searching for; the result still satisfies (14), but has different behavior.

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 10

For objective specifications, I accept the Church-Turing Thesis that we can translate/interpret a
program from any language to any other language preserving both the specification and the
behavior. For subjective specifications we may not be able to preserve both. As we saw for
specification (13), we may be able to choose which one we preserve. As we saw for
specification (9), it may not be possible to preserve the specification. When a program's
behavior depends on the language the program is written in, it may not be possible to preserve
the behavior. This last statement might be best explained by making the programming language
explicit. If program p is written in Python, and on input x computes output y , write
p (Python, x) = y . Translating p to Pascal, or writing an interpreter in Pascal, write
p (Pascal, x) = z . Even though the input to p remains the same x , the output can change from
y to z because the language has changed from Python to Pascal.

Halting Problem, Language-Based

Turing's Halting Problem is usually presented as applying to programs having an input.
Without loss of generality and without changing the character of the problem, I consider halting
for programs with no input; input to a program can always be replaced by a definition of a
sequence of values, call it input , within the program.
(15) Given a text p representing a Pascal program that requires no input, report true if

execution of p terminates, and false if execution of p does not terminate.
The input p represents a Pascal program. The agent that performs specification (15) must be a
program, written in a programming language, running on a computer. I am excluding
distributed computations so that I can identify the agent.

As we saw earlier in the “intermediate” version of halts and twist , we cannot write a Pascal
program to satisfy specification (15). When programmed in Pascal, specification (15) is another
twisted self-reference. The self-reference is indirect: halts applies to twist , and twist calls
halts . The twist is supplied by twist . If halts reports that twist 's execution will terminate,
then twist 's execution is a nonterminating loop. If halts reports that twist 's execution will
not terminate, then twist 's execution terminates. Whatever halts reports about twist , it is
wrong. Therefore specification (15) is inconsistent when we ask for a program written in Pascal
to perform it [10][11].

Now let's ask for a program written in Python to perform (15). Can this Python program be
written? Since Pascal programs cannot call Python programs, we cannot rule it out by a twisted
self-reference. I present two possible answers to the question.

Answer O: Specification (15) is objective, like specification (12). But unlike (12), it is an
inconsistent specification, no matter what language we use. If we could write a Python program
to compute halting for all Pascal programs, we could translate it into Pascal (or interpret it by a
Pascal program), and because (15) is objective, the translation (or interpretation) would also
compute halting correctly for all Pascal programs. But there is no Pascal program to compute
halting for all Pascal programs. So there is no program in any language to compute halting for
all Pascal programs.

Answer S: Specification (15) is subjective. Like specification (13), (15) refers to programming
language Pascal. When programmed in Pascal there is a twisted self-reference; when
programmed in Python there is no self-reference. There is a Python program to compute
halting for all Pascal programs. Because (15) is subjective, its translation to Pascal (or
interpretation in Pascal) does not compute halting for all Pascal programs. Perhaps the Python
program says correctly that twist 's execution terminates, and its translation to Pascal (or
interpretation in Pascal), which we call halts , says incorrectly that twist 's execution does not
terminate, and that is why twist 's execution terminates.

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 11

Answer O has been almost unanimously accepted by computer scientists, but its acceptance is
premature because (15) has never been shown to be objective, and Answer S has never been
ruled out. I favor Answer S for the weak reason that I cannot see any inconsistency in asking
for a Python program to compute halting for all Pascal programs. (Writing the Python program
would prove consistency. A logician says that's building a model; the logician's modeling
language might be some version of set theory.)

Halting Problem, Location-Based

The preceding discussion of halting is language-based. Here is a similar discussion that is
location-based. First a trivial example.
(16) Is this sentence written on page 1?
If (16) is written on page 1, the correct answer is “yes”; if it is written on page 2, the correct
answer is “no”. Although the answer depends on the location of the question, the answer does
not depend on the agent answering, so it is an objective specification. We can create a
subjective specification by creating a question that depends on the location of the agent
answering.

There are some people in location A, and some other people in different location B. The
question is:
(17) Can a person in location A correctly answer “no” to this question?
Anyone in location A who answers “no” to (17) contradicts themself. But Ingrid, who is
standing in location B, can correctly answer “no” to (17) without self-contradiction. When
Ingrid walks over to location A, she can no longer correctly answer “no” to (17). The question
refers to Ingrid when Ingrid is at A; the question did not refer to Ingrid when Ingrid was at B.
Even though she is the exact same person, with the same reasoning power, in either location, a
correct answer in one location becomes incorrect in the other.

Suppose there are two identical disconnected computers C and D, and all programs are written
in Pascal, and all programs can run on either computer. Both computers have enough memory
so that memory limitation is not an issue. (Two computers are necessarily in different
locations.)
(18) Given a text p representing a Pascal program that requires no input, loaded on

computer C, report true if execution of p terminates, and false if execution of p
does not terminate.

The agent that performs specification (18) must be a Pascal program running on either C or D.
Once again, I exclude distributed computing so that I can identify the agent, and once again I
assume there is a dictionary of function and procedure definitions on each computer.

First, let's ask for a Pascal program running on computer C to perform (18), and let's call it
halts . If there is such a program, then we can write another program, let's call it twist , exactly
as before, and we can load this program onto computer C. As before, twist calls halts to
report on twist , and then twist does the opposite; so whatever halts reports, it is wrong.
Specification (18) is inconsistent when we ask for a Pascal program running on computer C to
perform it.

Now let's ask for a Pascal program running on computer D to perform (18). Can this program
be written? Since programs on C cannot call programs on D (the computers are disconnected),
we cannot rule it out by a twisted self-reference. As in the language-based case, we have the
same two possible answers to the question: Answer O and Answer S.

Answer O: Specification (18) is objective. It is an inconsistent specification, no matter what
computer we use. There is no program on any computer to compute halting for programs on
computer C.

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 12

Answer S: Specification (18) is subjective. There is a Pascal program on computer D, and
again let's call it halts , to compute halting for all Pascal programs on computer C. We can
carry the halts program from D to C and run it there. But when we run it on C, it does not
compute halting for all Pascal programs on C. This is quite counter-intuitive. When halts
applies to twist , and twist calls halts , it matters whether the halts that applies (the first
occurrence of halts in this sentence) is the same instance as the halts that is called (the second
occurrence of halts in this sentence). In one case, there is a twisted self-reference, and in the
other, there isn't, and that can affect the computation.

Normally, a program running on one computer will give the same answers to the same
questions, with equal validity, as the exact same program running on another computer. This
seems obvious, perhaps because it is true for objective specifications. But it is not always true
for subjective specifications. The halting specification (18) is a twisted self-reference if the
program answering it is on computer C, but not a self-reference if the program answering it is
on computer D. So it seems probable that halting is subjective. Even if the program answering
it is the exact same one on C and on D, a correct answer from the program running on D may be
incorrect from the same program running on C. Furthermore, the same program running on C
and D, with the same input, can give different answers to a question that refers to the location of
the program.

Turing's Proof

Turing's proof that halting is incomputable appears on page 247 of [12]. The key paragraph is
below. To help the modern reader, I have added the square bracketed words. Also, Turing used
the word “machine” for the combination of hardware and software, and he used the words
“universal machine” for the combination of interpreter program and computer. The first
sentence is the assumption that halting is computable. The last sentence concludes that there
was a self-contradiction (inconsistency), and therefore halting cannot be computed.

Let us suppose that there is a such a process; that is to say, that we can invent a machine
D [diagonal] which, when supplied with the S.D [standard description] of any
computing machine M will test this S.D and if M is circular [nonterminating] will mark
the S.D with the symbol "u" [unsatisfactory] and if it is circle-free [terminating] will
mark it with "s" [satisfactory]. By combining the machines D and U [universal machine,
or interpreter] we could construct a machine H [halting program] to compute the
sequence beta' [a sequence that differs from the diagonal with U]. ... Now let K be the
D.N [description number, or code] of H. What does H do in the Kth section of its
motion? [What happens when H works on the representation of H?] It must test whether
K is satisfactory, giving a verdict "s" or "u". Since K is the D.N of H and since H is
circle- free, the verdict cannot be "u". On the other hand, the verdict cannot be "s". For
if it were, then in the Kth section of its motion H would be bound to compute the first
R(K-1)+1 = R(K) figures [R(n) is the number of terminating programs among the first n
programs] of the sequence computed by the machine with K as its D.N and to write
down the R(K)th as a figure of the sequence computed by H. The computation of the
first R(K)-1 figures would be carried out all right, but the instructions for calculating the
R(K)th would amount to "calculate the first R(K) figures computed by H and write
down the R(K)th". This R(K)th figure would never be found. I.e., H is circular, contrary
both to what we have found in the last paragraph and to the verdict "s". Thus both
verdicts are impossible and we conclude that there can be no machine D.

Turing's proof does not appear to refer to a programming language, but implicitly it does. It
talks about the standard description of a computing machine, which is a number that encodes a
program. And Turing Machine programs can be numbered because they are in a language, the
Turing Machine language, that has syntactic rules that enable us to enumerate programs. And

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 13

then a diagonal program D is assumed to be in that same enumeration, so it's in the same
language, and the halting program H is constructed from D, so it's also in the same language.
The proof fails to recognize the language dependence. It also fails to recognize location
dependence by assuming there's only one computer. Turing's proof proves that there cannot be
a program in the Turing Machine programming language, running on a Turing Machine, that
determines halting for all programs in that same language running on that same machine. The
possibility of computing halting for all programs in a set (language or location) by using a
program outside the set (different language or different uncallable location) was not considered.

Other Proofs

There are several proofs that purport to prove that halting is incomputable [8]. The differences
among them are superficial; at their core, they are all twisted self-references. The proof by
Robert Boyer and J Moore [2] is distinguished by their claim that it is completely formalized
and verified using an automated prover, ACL. ACL is a constructive logic in which all
recursions must be well-founded to ensure termination. They define the bounded halting
program B (p, n) saying whether execution of p terminates within n steps, but they cannot
define the halting program (nat is the natural numbers)

H (p) = ∃n: nat· B (p, n)
in ACL because they lack quantification over an infinite domain. In place of Turing Machine
operations, they use LISP programs, which are defined by writing a bounded EVAL function to
interpret LISP. When execution of p runs past n steps, EVAL (p, n) returns the result
BTM . So “execution of p fails to halt” becomes

∀n: nat· EVAL (p, n) = BTM
which cannot be expressed in ACL due to the unbounded quantification, but which can be
proven by induction for any choice of nonterminating p . The gap between a constructive
prover and an essentially classical (nonconstructive) theorem is filled with convincing but
informal reasoning, so the proof is sound but not fully formal.

In place of a numeric encoding of programs, they use a textual encoding, as does this paper.
And they define function CIRC exactly the same as the definition of twist in this paper, but in
LISP rather than Pascal.

CIRC (A)
 (IF (HALTS (QUOTE (CIRC A))

(LIST (CONS (QUOTE A)
A))

A)
(LOOP)
T)

The theorem they prove, paraphrased roughly, says: If a program named HALTS behaves like
the halting function (returning T for programs that halt and F for those that don't), then
HALTS applied to CIRC returns BTM . This is inconsistent, therefore there is no LISP
function to compute halting for all LISP functions. The same conclusion applies to any
programming language. But again, the possibility of computing halting for all programs in a set
by using a program outside the set was not considered.

Here is another proof that appears in textbooks without mentioning a dependence on a
programming language.

[start of proof] All programs are finite sequences of characters, although not all finite sequences
of characters are programs. Execution of a program may read characters as input, may write
characters as output, and either terminates or computes forever.

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 14

Let C be a finite character set, and let C* be the set of all finite sequences of characters in C .
Define the mathematical function H (not a program) called “the halting function” as follows.

H: C*×C* → {true, false}

H (p, i) = true if p is a program with one text input and execution of p (i) terminates;
 false otherwise

If p is a program whose execution on input i terminates, then H (p, i) = true , whether or not
the entire input i is read. If p is a program whose execution reads the entire input i and
waits forever for more input, then H (p, i) = false . If p is not a program with one text input,
then H (p, i) = false .

Is there a program twist with one text input having the following behavior? For all p in C* ,
• if H (p, p) = false then execution of twist (p) terminates;
• if H (p, p) = true then execution of twist (p) does not terminate.
If execution of program twist (twist) terminates, then according to the definition of H ,
H (twist, twist) = true , not false . And if execution of program twist (twist) does not
terminate, then according to the definition of H , H (twist, twist) = false , not true . So there is
no such twist program.

Assume (for contradiction) that H is computed by a program halts . Then we can write
program twist as follows.

Execute halts (p, p) but don't output.
If the output from executing halts on p would be false , terminate execution.
If the output from executing halts (p, p) would be true , loop forever.

But there is no such twist program. Therefore there is no such halts program; H cannot be
computed by a program. [end of proof]

There are three criticisms of this proof. The first is that it fails to distinguish between a program
and a text encoding of the program. Gödel and Turing both understood the importance of that
distinction, although they used numeric encodings because the text (character string) data type
had not yet been invented when they did their work. To see the difference, consider the
arithmetic expression 1+2 and the text “1+2” . The former is equal to 3 , but the latter is not
equal to 3 , nor is it equal to “3” .

1+2 = 3
“1+2” ≠ “3”

In the formal methods community, we treat programs as mathematical expressions. For
example,

x:= 2; y:= 3 = y:= 3; x:= 2
because execution of the program on the left has exactly the same effect as execution of the
program on the right. But

“x:= 2; y:= 3” ≠ “y:= 3; x:= 2”
because they are different texts. Although the proof fails to distinguish, fortunately it does no
harm; we just need to reword the proof. For example, “if p is a program” becomes “if p is a
text representing (or encoding) a program”. The proof achieves an economy of expression by
not distinguishing between a program and the text representing the program.

The second criticism of the proof is the failure to recognize its dependence on a programming
language. When H is defined using the phrase “if p is (a text representing) a program”, we
need to know the rules of program formation; in other words, we need to know the
programming language. And since we apply H to twist , we are assuming that twist is in that
same language. When we program twist , it calls halts , so we are assuming halts is callable

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 15

from twist . The conclusion should have been that H cannot be computed by a program in the
language over which H is defined.

The last criticism of the proof is that it's unnecessarily complicated. H and twist and halts do
not need input parameters; they could be defined for only the one input they are applied to in
the proof.

Oracles, Translations, and Interpreters

The Halting Problem is this: there is a mathematical halting function that says, for each Pascal
program, whether its execution terminates; but there is no Pascal program to implement this
mathematical function. (Substitute Turing Machine language, or any other programming
language, for Pascal.) The reason, according to standard theoretical computer science, is the
limited power of computation, compared to the (unlimited?) power of mathematics. There is a
field of research called hypercomputation that studies computation strengthened by magical
powers. There are many journal articles and books on the subject. This field was begun by
Turing in [13]; he strengthened the power of computation by adding an oracle to determine
halting. It works as follows, except that I refer to the Pascal language instead of the Turing
Machine language, and I am using text parameters instead of numeric parameters.

[start] Let H (p, x) be the mathematical halting function. Parameter p is a text representing a
Pascal procedure with one text parameter x .
• H (p, x) = true if execution of the procedure represented by p on input x terminates
• H (p, x) = false if execution of the procedure represented by p on input x
 does not terminate

Fortify Pascal with oracle defined such that oracle ('H', 'twistO', x) = H ('twistO', x) , and
simultaneously fortify H to apply to fortified Pascal procedure twistO , defined as

procedure twistO (x: string); begin if oracle ('H', 'twistO', x) then twistO (x) end [end]

As we have seen many times, there is an inconsistency: the specifications of H and oracle
together are inconsistent. If we blame the inconsistency on the specification of H , then there is
no mathematical halting function, so we cannot conclude that “the halting function” is
incomputable. So it is commonly agreed to blame the inconsistency on the specification of
oracle , and conclude that oracle cannot be programmed in Pascal. It is further commonly
concluded that the reason oracle cannot be programmed is that computation power is limited,
and cannot compute functions defined using more powerful mathematics.

As we have done before, we can see the inconsistency more clearly if we get rid of the
parameters.

[start] Let H be the mathematical binary value such that
• H=true if execution of Pascal procedure twistO terminates
• H=false if execution of Pascal procedure twistO does not terminate

Fortify Pascal with oracle defined as oracle=H , and simultaneously fortify H to apply to
fortified Pascal procedure twistO , defined as

procedure twistO; begin if oracle then twistO end [end]

The definitions of H and oracle together are inconsistent. We can eliminate oracle , and
fortify Pascal with the mathematical halting function:

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 16

[start] Let H be the mathematical binary value such that
• H=true if execution of fortified Pascal procedure twistH terminates
• H=false if execution of fortified Pascal procedure twistH does not terminate

Fortify Pascal with H .

procedure twistH; begin if H then twistH end [end]

And the inconsistency remains. The proof of inconsistency is similar to the Liar's Paradox; it
does not use the supposed power advantage of mathematics over computation (whatever that
might mean).

Let us now repeat the argument, but replacing the mathematical function with a Python
function. With parameters,

[start]
def haltsPy (p, x):

"""return True if execution of the procedure represented by p on input x
 terminates; return False otherwise"""

procedure twistT (x: string); begin if translate ('haltsPy', 'twistT', x) then twistT (x) end

where translate ('haltsPy', 'twistT', x) is the translation from Python to Pascal of
haltsPy ('twistT', x) . [end]

Without parameters,

[start]
def haltsPy: """return True if execution of the Pascal procedure TwistT terminates;

 return False otherwise"""

procedure twistT; begin if translate ('haltsPy') then twistT end

where translate ('haltsPy') is the translation from Python to Pascal of haltsPy ; True is
translated to true , and False is translated to false . [end]

In this example, haltsPy plays the same role as H played previously, and translate plays the
same role as oracle played. The proof of inconsistency is identical to previously. The
specifications of haltsPy and translate together are inconsistent. But this time, inexplicably,
the usual conclusion is opposite to previously: haltsPy is blamed, not translate . It is
commonly concluded that we cannot program haltsPy because of the limited power of
computation, but if we could, we could translate haltsPy preserving both the behavior (same
results) and specification (it still tells us whether twistT halts). These conclusions are
unwarranted because the power of computation did not enter the argument, and we have seen
that translation sometimes does not preserve both behavior and specification.

Using interpretation instead of translation, with parameters,

procedure twistI (x: string); begin if interpret ('haltsPy', 'twistI', x) then twistI (x) end

where interpret ('haltsPy', 'twistI', x) is the Pascal interpretation of the Python function
haltsPy ('twistI', x) .

Without parameters,

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 17

procedure twistI; begin if interpret then twistI end

where interpret is the Pascal interpretation of the Python function haltsPy .

The arguments, common conclusions, and my criticisms are the same for interpretation as for
translation.

Conclusion

The Epimenides construction shows us that asking for a function whose result is true for all
and only those texts representing true sentences in a sufficiently expressive language is both
overdetermined (inconsistent) and underdetermined. The Gödel construction shows us that
asking for a function whose result is true for all and only those texts representing provable
sentences in a sufficiently expressive language is both overdetermined (inconsistent) and
underdetermined. The Turing construction shows us that asking for a function, written in a
programming language, whose result is true for all and only those texts representing
procedures, written in that same language, whose execution terminates, is both overdetermined
(inconsistent) and underdetermined.

A specification is objective if the specified behavior does not depend on the agent that performs
it, and subjective if it does. The Church-Turing Thesis applies to objective specifications, not to
subjective ones. If an objective specification can be implemented as a program in a
programming language, it can translated to a program in any other programming language,
preserving both the specification and the behavior. If a subjective specification is implemented
as a program in a programming language, it may not be possible to translate it to a program in
another programming language, preserving both the specification and the behavior.

Let X and Y be two programming languages, or two computers, or two locations. It is
inconsistent to ask for an X-program to compute halting for all X-programs due to a twisted
self-reference. Twisted self-reference is characteristic of subjective specifications. So it may be
consistent and satisfiable to ask for a Y-program to compute halting for all X-programs. At least
it has not yet been proven impossible.

References

[0] The title of this paper pays homage to the wonderful book by Douglas R. Hofstadter:
Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books, 1979

[1] The Jerusalem Bible, Reader's Edition, Titus, chapter 1 verse 12
[2] R.S.Boyer, J S.Moore: a Mechanical Proof of the Unsolvability of the Halting Problem,

J.ACM v.31 n.3 p.441-458, 1984 July
[3] A.Church: the Calculi of Lambda Conversion, Princeton University Press, 1941
[4] S.B.Cooper: Computability Theory, Chapman&Hall, 2004
[5] Epimenides Paradox, Wikipedia, http://en.wikipedia.org/wiki/Epimenides_paradox
[6] K.Gödel: über Formal Unentscheidbare Sätze de Principia Mathematica und Verwandter

Systeme I, Monatshefte für Mathematik und Physik v.38 p.173-198, Leipzig, 1931
[7] K.Gödel, reported by S.C.Kleene: Introduction to Metamathematics, North-Holland, 1951
[8] E.C.R.Hehner: the Halting Collection, hehner.ca/HC.pdf
[9] H.G.Rice: Classes of Recursively Enumerable Sets and their Decision Problems,

Transactions of the American Mathematical Society v.74 p.358-366, 1953
[10] W.Stoddart: “the Halting Paradox”, FACS FACTS: the Newsletter of the Formal Aspects

of Computing Science Specialist Group, 2018 January
[11] W.Stoddart: Halting Misconceived, EuroForth 2017,

http://www.complang.tuwien.ac.at/anton/euroforth/ef17/papers/stoddart.pdf

http://www.cs.utoronto.ca/~hehner/HC.pdf
http://www.complang.tuwien.ac.at/anton/euroforth/ef17/papers/stoddart.pdf

2020 August 5 Epimenides, Gödel, Turing: an Eternal Gölden Twist 18

[12] A.M.Turing: on Computable Numbers with an Application to the Entscheidungsproblem,
Proceedings of the London Mathematical Society s.2 v.42 p.230-265, 1936;
correction s.2 v.43 p.544-546, 1937

[13] A.M.Turing: Systems of Logic based on Ordinals, p.8, Ph.D. thesis, Princeton University,
1939

[14] A.N.Whitehead, B.Russell: Principia Mathematica, Cambridge University Press, 1910

Acknowledgements

I thank Bill Stoddart for stimulating discussions, and an anonymous referee for causing me to
improve my paper.

other papers on halting

Note added 2020-12-9

I translated
(10) Is this question in French?
to French as
(11) Cette question est-elle en français?
In (10), the words “this question” clearly refer to the question they are part of: question (10). It
might be argued that in (11) the words “Cette question”, being a translation of “this question”,
refer to the same question that “this question” refers to, which is question (10). If so, then the
answer to (11) is “non”, which is a translation of the answer to (10).

In any decent programming language, we can define a function recursively. (Even the simplest
arithmetic operations, such as counting, addition, and multiplication, must be defined
recursively.) In language M we can define function f such that the body of the definition calls
f . In the body, f refers to the function that it is part of. When we translate from language M to
language L, we again define f such that the body of the definition calls f . In the body, f
refers to the L-function that it is part of, not to the M-function that we are translating. So, to be
like program translation, I took the words “Cette question” to refer to the question they are part
of, which is question (11). As a result, the translated question (11) invokes a different behavior:
saying “oui”, which is not the translation of the answer to (10).

http://www.cs.utoronto.ca/~hehner/halting.html

