
2016-11-8 0

Diagonalize Then Reduce
Eric Hehner

Department of Computer Science, University of Toronto, hehner@cs.utoronto.ca

Twisted Self-Reference

There is a standard argument, appearing in many textbooks, in a variety of different notations, that is supposed to
prove that the Halting Problem is incomputable. It considers a procedure, let's call it twist , whose only action is

if halts (“twist”) then infiniteloop else terminate fi
where halts is a function that determines whether execution of a program terminates, infiniteloop is an infinite
loop, and terminate terminates. If halts says that execution of twist is terminating, then it's nonterminating; and
if halts says that execution of twist is nonterminating, then it's terminating. Whatever halts reports for twist , it
is wrong; there cannot be a halting program. I will call this argument the “twisted self-reference” proof. In the
paper Epimenides, Gödel, Turing: an Eternal Gölden Twist, I argue that the twisted self-reference proof does not
prove that halting is incomputable; rather it proves that the specification “Write a program in language L that
determines whether execution of any program in language L terminates.” is inconsistent, or self-contradictory.

Diagonalize Then Reduce

There is another argument, which I will call “diagonalize-then-reduce”, that is supposed to prove that the Halting
Problem is incomputable without using any self-reference. Here is a version of it.

Choose a programming language. All programs in that language are finite sequences of characters, although not all
finite sequences of characters are programs in that language. Execution of a program may read a sequence of
characters as input, and may write a sequence of characters as output. Reading does not have to precede writing;
they can be mixed. The input sequence may be empty, or a finite number of characters, or an infinite number of
characters. Likewise the output sequence. Execution may terminate, or it may run forever.

Let C be a finite character set, and let C* be the set of all finite sequences of characters. Define the mathematical
function D (not a program) called “diagonal” as follows.

D: C* → {“red”, “blue”}
D(p) = “red” if p is a program and execution of p on input p writes “blue” and then terminates
 “blue” otherwise

D(p) = “red” when
• p is a program, and execution of p on input p writes “blue” and terminates; p may or may not read its entire

input

D(p) = “blue” when
• p is a program, and execution of p on input p writes nothing and terminates; p may or may not read its entire

input
• p is a program, and execution of p on input p writes anything other than “blue” and terminates; p may or

may not read its entire input
• p is a program, and execution of p on input p reads its entire input and waits forever for more input, regardless

of what is written
• p is a program, and execution of p on input p does not terminate, regardless of what is read or written
• p is a not a program

Let prog be a program. Does prog implement D ? Implementation means:
• For all p in C* , if D(p) = “red” then execution of prog on input p writes “red” and terminates.
• For all p in C* , if D(p) = “blue” then execution of prog on input p writes “blue” and terminates.

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca
http://www.cs.utoronto.ca/~hehner/EGT.pdf

Eric Hehner 2016-11-81

However, if execution of prog on input prog writes “red” and terminates, then D(prog) = “blue” , not “red” .
And if execution of prog on input prog writes “blue” and terminates, then D(prog) = “red” , not “blue” . So
prog does not implement D . Since prog was an arbitrary program, D is incomputable.

Define the mathematical function H (not a program) called “halting” as follows.

H: C* → {“yes”, “no”}
H(p) = “yes” if p is a program and execution of p on input p terminates

 “no” otherwise

This halting function reports the halting status for each program p on only a single input p . H(p) = “yes” includes
the possibility that p is a program and execution of p does not read the entire input p . H(p) = “no” includes the
possibility that p is a program and execution of p reads the entire input p and waits forever for more input.

Assume (for contradiction) that H is computable. Then H is implemented by some program halts . If the
programming language is sufficiently expressive (Turing-Machine equivalent), as every general-purpose
programming language is, we can compute D(p) as follows.

Read the input and save it as p . Execute halts on input p , but don't output. If the output from executing
halts on p would be “no” , output “blue” . If the output from executing halts on p would be “yes” ,
execute program p on input p , but don't output. If the output from executing p on p would be “blue” ,
output “red” . If the output from executing p on p would be anything other than “blue” , output “blue” .

We thus compute D . But D is incomputable. Therefore H is incomputable.

Discussion

We began by choosing a programming language; call it L. Mathematical function D is defined by diagonalizing
over the programs of language L. The definition of mathematical function D is not self-referential, and it is
consistent. We then ask whether D is implemented by a program in L; let's call it prog . Program prog must
implement D , which is defined over programs in L, including prog , with a twist so that D differs from prog .
Program prog is defined with a twisted self-reference; its specification is inconsistent; there is no such program.
But we cannot conclude that D is incomputable, because we have not asked whether D can be implemented in a
programming language other than the one over which D is defined.

Consider the question “Can an L program correctly answer “no” to this question?”. It is easy to write an L program
whose execution prints “yes”, but that answer says that “no” is the correct answer. There is another L program that
prints “no”, but that answer says that no L program can do what it is doing (printing “no” in answer to the question).
There is no program in language L that answers the question correctly. But there is a program in language M that
answers that same question correctly: it prints “no”, saying that no L program can correctly answer the question.
Due to the twisted self-reference, the task is impossible for an L program. But it is not incomputable; it can be
answered by an M program. Symmetrically, the question “Can an M program correctly answer “no” to this
question?” cannot be correctly answered by an M program, but it can be correctly answered by an L program.

Likewise function D cannot be computed by an L program due to the twisted self-reference. But that does not
prevent D from being computed by an M program. The conclusion that D is incomputable is unwarranted.

We have done the diagonalization; now comes the reduction. Mathematical function H is defined as the halting
function for programs in language L. Its definition is not self-referential, and it is consistent. The final paragraph
says: if we could compute halting, then we could compute D . But we can't compute D . So we can't compute
halting; halting is incomputable. To be more precise, the final paragraph means: if we could write an L program to
compute halting for all L programs, then we could write an L program to compute D . But we can't write an L
program to compute D . So we can't write an L program to compute halting for all L programs. We cannot
conclude that halting is incomputable. We can conclude only that the specification “Write an L program to compute
halting for all L programs.” is inconsistent. That conclusion does not prevent halting for language L from being
computed by a program in a language other than L.

2016-11-8 Diagonalize Then Reduce 2

Appendix in reply to a challenge, added 2016-11-13

My “Discussion” section contains the statement “But we cannot conclude that D is incomputable, because we have
not asked whether D can be implemented in a programming language other than the one over which D is
defined.”. A friend suggested the following argument, concluding that D cannot be implemented in any
programming language.

Define mathematical function D as follows: for all programs p in language L, D(p) ≠ p(p) . Function D differs
from all programs in L on at least one input. Therefore D is not computed by any program in L. Let C be a
program in language M that computes D : for all programs p in L, C(p) = D(p) . Then there is an equivalent
program B in L: for all programs p in L , B(p) = C(p) . Now calculate:

C(B) use definition of C
= D(B) use definition of D
≠ B(B) use definition of B
= C(B)
Hence C(B) ≠ C(B) , which is a self-contradiction. Conclusion: there is no program in M that computes D .

There are some minor problems with this argument. To pass a program as data to a function or to another program,
you need to encode it (as a number or character string). That problem is trivial to fix, and I'll ignore it. Another
problem is that if execution of program p does not terminate on input p , then p(p) is undefined. That problem
may seem to be fixed by saying that D(p) can be any result for that case, although there are problems with that fix;
but I'll ignore that problem too. Another problem is that D(p) ≠ p(p) does not say what the value of D(p) is; only
what it isn't. That problem is fixed by choosing a specific result for D(p) except when p(p) is also that result, and
for that case choosing one other result. Equivalently, we restrict programs to those with a binary result, and define
D to have a binary result. So I'll ignore that problem too.

When we arrive at the contradiction C(B) ≠ C(B) , we are compelled to withdraw some assumption we made
leading to the contradiction. The assumption chosen is: “ C is a program in M that computes D ”. But there is
another candidate. The statement “there is an equivalent program B in L” contains a hidden assumption that I think
is wrong. I'll explain in a moment.

Here's the same argument as above, but I simplify by getting rid of the function's parameter, making it a constant.

Define mathematical constant D as the correct answer to the question “Can an L program correctly answer “no” to
this question?”. If an L program can correctly answer “no”, then D=“yes” . If an L program cannot correctly
answer “no”, leaving “yes” as the correct answer, then D=“no” . Constant D is defined such that if an L program
says B , then B is not the correct answer: D≠B . Assume there is a program in M that gives the correct answer C ;
then C=D . Then there is an equivalent program B in L that gives the same answer: B=C . Now calculate:

C use definition of C
= D use definition of D
≠ B use definition of B
= C
Hence C≠C , which is a self-contradiction. Conclusion: there is no program in M that correctly answers D .

The conclusion is wrong; there is a program in M that answers correctly: it prints “no”. Where does the argument
go wrong? The argument says “there is an equivalent program B in L that gives the same answer: B=C ”. Indeed
there is a program in L that prints the same answer “no”, but when a program in L prints “no”, it's incorrect.

Likewise in the previous argument where D is a function with a parameter. If there is a program C in M that
computes D , then yes, there is an “equivalent” program in L which, for each input, gives the same output. But that
L program doesn't compute D .

I put the word “equivalent” in quotation marks because I think it is ambiguous. It might mean “for each input gives
the same output”; let's call that extensional equivalence. Or it might mean “satisfies the same specification”; let's

Eric Hehner 2016-11-83

call that “intensional equivalence”. Most of the time, intensional and extensional equivalence are the same thing.
They may differ when there's a self-reference. The above proofs pivot on the word “equivalence”.

In the simplified version where D is a constant, the calculation C=D≠B=C uses an intensional step: D≠B . D is
defined to differ from B . A reasonable person might say: first show me B , then we can define D to be the other
answer. That would be an extensional definition. But we cannot show B because both answers are incorrect when
said by an L program. So D is not defined extensionally. It is defined intensionally as differing from B , whatever
B is.

Likewise in the version where D is a function with a parameter. The calculation C(B)=D(B)≠B(B)=C(B) uses an
intensional step: D(B)≠B(B) . D(p) is defined to differ from p(p) , and so D(B)≠B(B) . A reasonable person might
say: first show me B(B) , then we can define D(B) to be the other answer. That would be an extensional definition.
But we cannot show B(B) . So D(B) is not defined extensionally. It is defined intensionally as differing from
B(B) , whatever B(B) is.

When we come to the self-contradiction, the assumption that I would flag as being wrong is the hidden assumption
that intensional definitions are equivalent to extensional definitions. Normally they are equivalent, but in the
presence of a self-reference, they may not be equivalent, and in this case, they are not equivalent.

other papers on halting

http://www.cs.utoronto.ca/~hehner/halting.html

