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Twisted Self-Reference

There is a standard argument, appearing in many textbooks, in a variety of different notations, that is supposed to 
prove that the Halting Problem is incomputable.  It considers a procedure, let's call it  twist , whose only action is

if halts (“twist”) then infiniteloop else terminate fi
where  halts  is a function that determines whether execution of a program terminates,  infiniteloop  is an infinite 
loop, and  terminate  terminates.  If  halts  says that execution of  twist  is terminating, then it's nonterminating;  and 
if  halts  says that execution of  twist  is nonterminating, then it's terminating.  Whatever  halts  reports for  twist , it 
is wrong;  there cannot be a halting program.  I will call this argument the “twisted self-reference” proof.  In the 
paper Epimenides, Gödel, Turing: an Eternal Gölden Twist, I argue that the twisted self-reference proof does not 
prove that halting is incomputable;  rather it proves that the specification “Write a program in language L that 
determines whether execution of any program in language L terminates.” is inconsistent, or self-contradictory.

Diagonalize Then Reduce

There is another argument, which I will call “diagonalize-then-reduce”, that is supposed to prove that the Halting 
Problem is incomputable without using any self-reference.  Here is a version of it.

Choose a programming language.  All programs in that language are finite sequences of characters, although not all 
finite sequences of characters are programs in that language.  Execution of a program may read a sequence of 
characters as input, and may write a sequence of characters as output.  Reading does not have to precede writing;  
they can be mixed.  The input sequence may be empty, or a finite number of characters, or an infinite number of 
characters.  Likewise the output sequence.  Execution may terminate, or it may run forever.

Let  C  be a finite character set, and let  C*  be the set of all finite sequences of characters.  Define the mathematical 
function  D  (not a program) called “diagonal” as follows.

D: C* → {“red”, “blue”}
D(p) = “red”  if  p  is a program and execution of  p  on input  p  writes “blue” and then terminates
  “blue”  otherwise

D(p) = “red”  when 
• p  is a program, and execution of  p  on input  p  writes  “blue”  and terminates;  p  may or may not read its entire 

input

D(p) = “blue”  when
• p  is a program, and execution of  p  on input  p  writes nothing and terminates;  p  may or may not read its entire 

input
• p  is a program, and execution of  p  on input  p  writes anything other than  “blue”  and terminates;  p  may or 

may not read its entire input
• p  is a program, and execution of  p  on input  p  reads its entire input and waits forever for more input, regardless 

of what is written
• p  is a program, and execution of  p  on input  p  does not terminate, regardless of what is read or written
• p  is a not a program

Let  prog  be a program.  Does  prog  implement  D ?  Implementation means:
• For all  p  in  C* , if  D(p) = “red”  then  execution of  prog  on input  p  writes  “red”  and terminates.
• For all  p  in  C* , if  D(p) = “blue”  then  execution of  prog  on input  p  writes  “blue”  and terminates.
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However, if execution of  prog  on input  prog  writes  “red”  and terminates, then  D(prog) = “blue” , not  “red” .  
And if execution of  prog  on input  prog  writes  “blue”  and terminates, then  D(prog) = “red” , not  “blue” .  So  
prog  does not implement  D .  Since  prog  was an arbitrary program,  D  is incomputable.

Define the mathematical function  H  (not a program) called “halting” as follows.

H: C* → {“yes”, “no”}
H(p)  =  “yes”  if  p  is a program and execution of  p  on input  p  terminates

  “no”  otherwise

This halting function reports the halting status for each program  p  on only a single input  p .  H(p) = “yes”  includes 
the possibility that  p  is a program and execution of  p  does not read the entire input  p .  H(p) = “no”  includes the 
possibility that  p  is a program and execution of  p  reads the entire input  p  and waits forever for more input.

Assume (for contradiction) that  H  is computable.  Then  H  is implemented by some program  halts .  If the 
programming language is sufficiently expressive (Turing-Machine equivalent), as every general-purpose 
programming language is, we can compute  D(p)  as follows.  

Read the input and save it as  p .  Execute  halts  on input  p , but don't output.  If the output from executing  
halts  on  p  would be  “no” , output  “blue” .  If the output from executing  halts  on  p  would be  “yes” , 
execute program  p  on input  p , but don't output.  If the output from executing  p  on  p  would be  “blue” , 
output  “red” .  If the output from executing  p  on  p  would be anything other than  “blue” , output  “blue” .

We thus compute  D .  But  D  is incomputable.  Therefore  H  is incomputable.

Discussion

We began by choosing a programming language;  call it L.  Mathematical function  D  is defined by diagonalizing 
over the programs of language L.  The definition of mathematical function  D  is not self-referential, and it is 
consistent.  We then ask whether  D  is implemented by a program in L;  let's call it  prog .  Program  prog  must 
implement  D , which is defined over programs in L, including  prog , with a twist so that  D  differs from  prog .  
Program  prog  is defined with a twisted self-reference;  its specification is inconsistent;  there is no such program.  
But we cannot conclude that  D  is incomputable, because we have not asked whether  D  can be implemented in a 
programming language other than the one over which  D  is defined.

Consider the question “Can an L program correctly answer “no” to this question?”.  It is easy to write an L program 
whose execution prints “yes”, but that answer says that “no” is the correct answer.  There is another L program that 
prints “no”, but that answer says that no L program can do what it is doing (printing “no” in answer to the question).  
There is no program in language L that answers the question correctly.  But there is a program in language M that 
answers that same question correctly:  it prints “no”, saying that no L program can correctly answer the question.  
Due to the twisted self-reference, the task is impossible for an L program.  But it is not incomputable;  it can be 
answered by an M program.  Symmetrically, the question  “Can an M program correctly answer “no” to this 
question?” cannot be correctly answered by an M program, but it can be correctly answered by an L program.

Likewise function  D  cannot be computed by an L program due to the twisted self-reference.  But that does not 
prevent  D  from being computed by an M program.  The conclusion that  D  is incomputable is unwarranted.

We have done the diagonalization;  now comes the reduction.  Mathematical function  H  is defined as the halting 
function for programs in language L.  Its definition is not self-referential, and it is consistent.  The final paragraph 
says:  if we could compute halting, then we could compute  D .  But we can't compute  D .  So we can't compute 
halting;  halting is incomputable.  To be more precise, the final paragraph means:  if we could write an L program to 
compute halting for all L programs, then we could write an L program to compute  D .  But we can't write an L 
program to compute  D .  So we can't write an L program to compute halting for all L programs.  We cannot 
conclude that halting is incomputable.  We can conclude only that the specification “Write an L program to compute 
halting for all L programs.” is inconsistent.  That conclusion does not prevent halting for language L from being 
computed by a program in a language other than L. 
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Appendix in reply to a challenge, added 2016-11-13

My “Discussion” section contains the statement “But we cannot conclude that  D  is incomputable, because we have 
not asked whether  D  can be implemented in a programming language other than the one over which  D  is 
defined.”.  A friend suggested the following argument, concluding that  D  cannot be implemented in any 
programming language.

Define mathematical function  D  as follows:  for all programs  p  in language L,  D(p) ≠ p(p) .  Function  D  differs 
from all programs in L on at least one input.  Therefore  D  is not computed by any program in L.  Let  C  be a 
program in language M that computes  D :  for all programs  p  in L,  C(p) = D(p) .  Then there is an equivalent 
program  B  in L:  for all programs  p  in  L ,  B(p) = C(p) .  Now calculate:

C(B) use definition of  C
= D(B) use definition of  D
≠ B(B) use definition of  B
= C(B)
Hence  C(B) ≠ C(B) , which is a self-contradiction.  Conclusion:  there is no program in M that computes  D .

There are some minor problems with this argument.  To pass a program as data to a function or to another program, 
you need to encode it (as a number or character string).  That problem is trivial to fix, and I'll ignore it.  Another 
problem is that if execution of program  p  does not terminate on input  p , then  p(p)  is undefined.  That problem 
may seem to be fixed by saying that  D(p)  can be any result for that case, although there are problems with that fix;  
but I'll ignore that problem too.  Another problem is that  D(p) ≠ p(p)  does not say what the value of  D(p)  is;  only 
what it isn't.  That problem is fixed by choosing a specific result for  D(p)  except when  p(p)  is also that result, and 
for that case choosing one other result.  Equivalently, we restrict programs to those with a binary result, and define  
D  to have a binary result.  So I'll ignore that problem too.

When we arrive at the contradiction  C(B) ≠ C(B) , we are compelled to withdraw some assumption we made 
leading to the contradiction.  The assumption chosen is:  “ C  is a program in M that computes  D ”.  But there is 
another candidate.  The statement “there is an equivalent program  B  in L” contains a hidden assumption that I think 
is wrong.  I'll explain in a moment.

Here's the same argument as above, but I simplify by getting rid of the function's parameter, making it a constant.

Define mathematical constant  D  as the correct answer to the question “Can an L program correctly answer “no” to 
this question?”.  If an L program can correctly answer “no”, then  D=“yes” .  If an L program cannot correctly 
answer “no”, leaving “yes” as the correct answer, then  D=“no” .  Constant  D  is defined such that if an L program 
says  B , then  B  is not the correct answer:  D≠B .  Assume there is a program in M that gives the correct answer  C ;  
then  C=D .  Then there is an equivalent program  B  in L that gives the same answer:  B=C .  Now calculate:

C use definition of  C
= D use definition of  D
≠ B use definition of  B
= C
Hence  C≠C , which is a self-contradiction.  Conclusion:  there is no program in M that correctly answers  D .

The conclusion is wrong;  there is a program in M that answers correctly:  it prints “no”.  Where does the argument 
go wrong?  The argument says “there is an equivalent program  B  in L that gives the same answer:  B=C ”.  Indeed 
there is a program in L that prints the same answer “no”, but when a program in L prints “no”, it's incorrect.

Likewise in the previous argument where  D  is a function with a parameter.  If there is a program  C  in M that 
computes  D , then yes, there is an “equivalent” program in L which, for each input, gives the same output.  But that 
L program doesn't compute  D .

I put the word “equivalent” in quotation marks because I think it is ambiguous.  It might mean “for each input gives 
the same output”;  let's call that extensional equivalence.  Or it might mean “satisfies the same specification”;  let's 
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call that “intensional equivalence”.  Most of the time, intensional and extensional equivalence are the same thing.  
They may differ when there's a self-reference.  The above proofs pivot on the word “equivalence”.

In the simplified version where  D  is a constant, the calculation  C=D≠B=C  uses an intensional step:  D≠B .  D  is 
defined to differ from  B .  A reasonable person might say:  first show me  B , then we can define  D  to be the other 
answer.  That would be an extensional definition.  But we cannot show  B  because both answers are incorrect when 
said by an L program.  So  D  is not defined extensionally.  It is defined intensionally as differing from  B , whatever  
B  is.

Likewise in the version where  D  is a function with a parameter.  The calculation  C(B)=D(B)≠B(B)=C(B)  uses an 
intensional step:  D(B)≠B(B) .  D(p) is defined to differ from  p(p) , and so  D(B)≠B(B) .  A reasonable person might 
say:  first show me  B(B) , then we can define  D(B)  to be the other answer.  That would be an extensional definition.  
But we cannot show  B(B) .  So  D(B)  is not defined extensionally.  It is defined intensionally as differing from  
B(B) , whatever  B(B)  is.

When we come to the self-contradiction, the assumption that I would flag as being wrong is the hidden assumption 
that intensional definitions are equivalent to extensional definitions.  Normally they are equivalent, but in the 
presence of a self-reference, they may not be equivalent, and in this case, they are not equivalent.
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