R 1Y

ON THE DESIGN OF CONCURRENT PROGRAMS*

ERIC C.R. HEHNER

Computer Systems Research Group, University of Toronto

ABSTRACT

By developing a concurrent program from a sequential one in the form of recursive
refinement, we gain three benefits. The methodological benefit is that we proceed in
small steps from an understood sequential program. The correctness benefit is that the
program is starvation-free without appealing to a fair scheduler. The efficiency benefit
is that less mutual exclusion is required than with other concurrent programming
methods.

REsSUME

Trois avantages découlent du développement d’'un programme simultané & partir d’un
programme séquentiel. Du c6té méthodologique on peut s’éloigner A petits pas d’un
programme séquentiel bien établi. Du c6té exactitude, le programme ne sera jamais
affamé, et cela sans qu’on ait a avoir recours a un programmateur équitable. Du c6té
efficacité, cette méthode demande moins d’exclusions mutuelles que d’autres méthodes
de programmation simultanée.

INTRODUCTION

My concern is to find methods of programming that allow us to con-
struct programs in small, sure steps, with no large leaps of intuition re-
quired. For sequential programming, this has been the subject of many
texts and papers. It is now time to bring this concern to the design of
concurrent programs. I restrict myself to programs that accomplish
something, and terminate. Thus I exclude, for example, the dining
philosophers, and the view of operating systems in which processes con-
currently run forever.

There are two general approaches.
(1) Write a sequential program to accomplish the task. Then “‘optimize”’
the program by introducing concurrency where it is possible to do so.
(2) Write a set of equations that are ‘‘concurrently true’ of the desired
result, and that together define the result. Then make the program exe-
cutable by introducing sequence where it is needed.

The second of the approaches is called ‘‘data flow’’ programming, and
its second step may be performed automatically. This approach is
attractive, and is currently an interesting research area. In this paper I

*Received 15 October 1979; revised 19 March 1980.
289

INFOR, vol. 18, no. 4, November 1980




290 ERIC C.R. HEHNER

take the first approach, not because it is better, but because methods of
sequential programming are already well developed.

NOTATION

The connective *‘//” will be used for statements that may be executed
concurrently. “Concurrent process’” or ‘‘process’” will mean a statement
connected to another by ““//”’. For synchronization, P and V operations
on binary semaphores will be used. The statement repertoire is as
follows:

(a) assignment: x: = E
(b) selection: if B then S; else S, fi
if B then S fi
(c) loop: while B do S od
(d) sequence: S;;.S;
We use n, S; to stand for S1;.S2; ...; S, (this is a “for’’ construct).
i=1
(e) concurrency: S1//S:
This connective has higher precedence than ‘‘;”. Statement grouping
parentheses ‘“{‘‘ and ’}"’ may be used to alter the precedence. We use
n
//151 to stand for Si1//Ss//.../ /Sn.
i=
(f) synchronization: P(sem)
V(sem)
A semaphore is a binary variable whose value is initially 1, and that
is subject only to P and V operations. “P(sem)’’ means ‘‘wait until
the value of semaphore sem is 1, then change it to 0 without inter-
ference from concurrent P operations.” ‘“‘V(sem)’ means ‘‘change
the value of semaphore sem from 0 to 1.” If several P operations are
waiting for the same semaphore to become 1, then when it does, an
arbitrary one of the P operations will proceed and the others will
continue to wait.
(g) call: N
The name N is used in place of a statement (list) that is specified in
a refinement.
A refinement, which specifies the statement S that name N stands for,
has the syntax N:S. A program is a set of refinements. Declaration of
variables will be omitted.

THE ALGORITHM

I began the exercise with the final form of a concurrent program in mind,
taken from Dijkstra;® in this paper I shall use a structurally similar




DESIGN OF CONCURRENT PROGRAMS 291

example. One need not, of course, have the final form in mind in order to
begin the design. But I did, and I display it first because the final form
at which I actually arrived is surprisingly different from that at which I
was aiming, and I think the difference is instructive.

An array a[l], ..., a[n] is to be sorted in ascending order by concurrent
processes S, ..., S,—1. Each process S; is associated with a pair of array
elements a[z], a[z 4+ 1], and is responsible for the order of the pair. A
process repeatedly checks the order of its pair, swapping the values, if
necessary, to put them in order. Each process must continue until all
pairs are in order because disorder in any pair may propagate to any
other pair. For the purpose of controlling termination, we have boolean
variables %, ..., h,_1, one for each process. ‘“‘h; = true’’ indicates the
need for process .S; to check the order of its pair, and hence the need for
all processes to continue. The #; are initially all true, and finally all false.
Formally, the system maintains the invariant

Vi€ [l..n—1]:h; Vali] < a[t + 1].

Except for the placement of necessary P and I operations, the program
is as follows.
[program 0]

1

n-1

sort: /_/ fo = true =/ Sy
1=1

S,: while 3j:%,
do if %, then if a[d] > alz + 1]

then swap;;
hi1: = true; h;: = false; by 1: = true
else 7;: = false
fi

fi
od

The quantifier takes j over the range [1 .. # — 1]. In process S; the assign-
ment ‘“‘&;_1: = true’’ is missing; in process.S,_; the assignment “‘k;y1: =
true’’ is missing. The refinement of “‘swap,’”’ is obvious.

In the absence of interference from other processes, we can see that
(a) the invariant is made true by the initial assignments.
(b) it is maintained by the body of the loop. Thus it is never destroyed.
(c) the termination condition and invariant imply the desired result: a
sorted array.
To show termination, still in the absence of interference, we need a
measure of computational progress. One such measure is #7° 4 2##S
where #7 is the number of true %;, and #S is the maximum number of
correcting swaps that can be made to sort the array. Clearly, this measure




292 ERIC C.R. HEHNER

is finite, integer-valued, and bounded below by 0. Clearly, it is decreased
by each of the alternatives in the inner if statement, and therefore by
the body of the loop if #; is true. But when £, is false, no progress is made;
this is a ‘‘busy-wait"’ loop. It is not possible to have 3j:k; A —h; for all
processes S;, so not all processes can simultaneously be busy-waiting.
Under the assumption that those processes not busy-waiting are pro-
ceeding at a non-zero rate, the system as a whole makes progress towards
termination.

To prevent interference, i.e., to ensure that the preceding arguments
hold in the presence of concurrent computation, we infcroduce one sema-
phore sema; for each array element a[z], and one semaphore sem# for the
collection of all the %;. The program becomes
[program 1]

n-1 n-1

sort: // h;: = true; // S;
i=1 i=1

Si: P(sembh);
while 3;: %,
do V(sembh);
if 7, then P(sema;); P(sema;.1);
if afz] > afz 4+ 1]
then swap,;
P(semh); hy_1: = true; h;: = false;
hi: = true; V(semh)
else P(semh); h;: = false; V(semh)
fi; V(sema,); V(sema 1)
fi; P(semh)
od; V(semh)

It is essential for correctness that the critical regions (between a P and
corresponding V) contain as much as they do (by removing the assign-
ment “%;: = false” from the first alternative of the inner if, the grain
can be made finer). It is important for efficiency that they contain no
more. If, for example, the critical region for setting the three ks also
contains the swap, the algorithm is quadratic even with # — 1 processors,
instead of the hoped-for linear algorithm.

Now no process interferes with (the proof of) any other (proof left
to the reader). The system is free from deadlock (proof to be given later),
but the danger of starvation is present. Consider two processes that are
busy-waiting. If the implementation grants precedence to their alternat-
ing P(semk) operations, all other processes are blocked. This is, of
course, unfair; in a fair implementation, e.g., one that schedules waiting
P operations as first-come-first-served, starvation will not occur.



DESIGN OF CONCURRENT PROGRAMS 293

I do not consider a program to be correct if it relies on the fairness of
a scheduler. I take this to be analogous to the sequential program, taken
from Dijkstra® in guarded-command notation:

2o —on: = true s = 1
dogo_on—x:=x+1

[l go__on — go__on: = false
od

which, for termination, relies on the fairness of a daemon in selecting
guards (a true guard must not go forever unselected). Dijkstra’s semantics
allow, and his programming methods produce, only programs that are
immune to even a malicious daemon. The semantics of the above program
make it equivalent to “‘abort’”’; I demand the same for a concurrent
program in which deadlock or starvation is a possibility. (See Dijkstra®,
ch. 9 and p. 214, and Hoare,® p. 676.)

The goal of this exercise, of which we now resume pursuit, is to see
how to develop a correct program based on the algorithmic idea presented
in this section.

THE DEVELOPMENT

The development of the concurrent sorting program begins with the
well-known sequential insertion sort. The sort is expressed as it may
result from the programming methods of Hehner,® except for the use
of the abbreviated ‘“‘for”” notation.

[program 2]
n—1

sort: : .S,
i=1

S;: if a[¢] > a[z + 1] then swap;; S;_; fi

In Sy, the call Sy is missing, or else we add the refinement Sy: skip. The
name ‘‘S;"’ means ‘“‘Put the pair ¢[z], e[z + 1] in order without destroying
the order of any pair a[j], a[j + 1] for j < 2.” ;

The object now is to replace ;" with ‘‘//” wherever possible. To do
this, we must remove from the program its dependence on the sequential
ordering. That dependence is expressed clearly in the inequality ‘‘j < 7"
at the end of the previous paragraph. Each .S; is obliged to put one pair in
order without destroying the order of pairs that have already been put in
order. The swap may destroy the order of pairs on either side, but we
were concerned to reinstate, by calling S,_;, only one of these. The
following program is correct even if sort calls the S; (sequentially) in
arbitrary order.




294 ERIC C.R. HEHNER

[program 3]
n-1

SOty Y,
i=1

S;: if a[t] > ali + 1] then swap;; Si1; Sy fi

In S; the call .Sy is missing and in .S,_; the call .S, is missing, or else we
add the refinements Sy : skip and S, : skip. The name ‘S, means ‘‘Put the
pair a[7], e[z + 1] in order without destroying the order of any pair.”
We can now make the transition to a concurrent program, supplying
the necessary protection against interference.

[program 4]

n-1

serte LS,

=
Si: P(sema;); P(sema;;1);
if a[7] > afz + 1] then swap;; V(sema,); V(sema;y1); Si—1//Si1
else V(sema,); V(semay 1)
fi

[t is clear that the program is free from interference. That the program
is free from deadlock is proved as follows. Assume that some process is
blocked (waits forever) at one of its P operations, say P(sema ;), because
of deadlock. This implies that some other process (possibly another in-
carnation of the ‘‘same’’ process) has already performed the operation
P(sema;) but is blocked from performing V(sema;). The text of the
program tells us that this other process is blocked at P(sema;.1). Re-
peating the argument, this implies that some process is blocked at
P(sema i), etc. But there are only # semaphores, hence we have a
contradiction. (This proof applies also to the previous concurrent
program.)

It follows from the rules of program composition used to produce it
that the program is free from starvation. One process calls another only
after making progress — here the computational progress of a correcting
swap. Thus no non-terminating loops are formed. No matter how unfair
a scheduler may be, a waiting process has to wait at most until all com-
peting processes have terminated. (I take this to be further confirmation
of the thesis of Hehner.®)

Before we compare this solution with the original solution, we make
one further transformation based on the idempotence of .S; with respect
to the order of its pair. Though we have not given a formal mathematical
semantics for the concurrent connective, we shall nonetheless define
idempotence formally in terms of it.




DESIGN OF CONCURRENT PROGRAMS 295

Definition
Statement S is idempotent with respect to predicate P if

wp(S//S, P) = wp(S, P),
where wp is the weakest precondition predicate transformer.®

Informally, a statement is idempotent with respect to the result that it
is intended to establish if calling it twice (concurrently) is no different
from calling it once. Calling S; once puts a[z], a[z + 1] in order; a second
call, in the absence of intervening computation, does nothing.

The transformation is as follows. For idempotent process .S;, introduce
boolean variable %; that is initially false to indicate that .S; has not yet
been called. Replace calls of .S; (as many as desired) with

if — £, then &;: = true; S; fi
and begin the refinement of S; with
h;: = false.
A would-be caller, finding that S; has already been called and is waiting
to be executed, does not call S;. (We are now assuming that the setting
and testing of a single boolean variable are indivisible operations.) Our
final solution follows.
[program 5]
n-1

n-1

serts h - —false -/ /E 1Sy
d=1 =1’

IS;: if —h,; then h;: = true; S; fi
Si: hy: = false; P(sema;); P(sema;r1);
if afz] > o[t + 1] then swap;; V(sema,); V(semai1); ISi_1//LS: 1
else V(sema;); V(sema 1)
fi

This program need not be proven correct, or understood as a whole; the
proof and understanding of the previous version [program 4], and
separately of the transformation, are sufficient.

The transformation based on idempotence is sometimes an optimiza-
tion. In this program, it is not clear that an advantage has been gained,
and therefore the simpler version [program 4] is preferred. We have made
it only for the purpose of comparison in the next section. It is an im-
portant optimization when the second, redundant execution of an
idempotent statement would be expensive.

COMPARISON OF THE TWwo STYLES

In this comparison, the iterative style is represented by [program 1],
hereafter referred to as the “‘original’”’ program, and the recursive re-




296 ERIC C.R. HEHNER

finement style is represented by [program 5], hereafter referred to as the
“final” program. The two important differences are in the grain of
concurrency, and in the busy-waiting. Let us dispose of two superficial
differences first.

(1) The first line of the final program can be optimized to

n-1 n-1

sort: // hy = true; // S,
i=1 i=1

the same as in the original program.
(2) In the original program, the statements ‘‘h,:: = true’’ and
“hiu1: = true’ can be replaced by S; ; and LS;;; respectively, where

IS;: if — h,; then h;: = true fi.

(3) The difference in the grain of concurrency is to some extent a
difference in the styles, and to some extent merely a difference in the
particular representatives. It is essential to the iterative style that in the
original program, when testing “Jj:h,”’, the h, are prevented from
changing. By contrast, in the final program, testing one /; does not
exclude another from changing. This difference is to the credit of the
style of the final program.

The critical region for the testing and swapping of array elements is
larger in the original program: there it includes also the assignments
to three ks. This difference is not to the credit of either style. The original
could be finer-grained ; for example, this critical region can be replaced by

P(sema;); P(sema;i1) ;
if a[7] > ali + 1]
then swap;; V(sema;); V(sema;i1);
P(semh); h;_1: = true; hyy: = true; V(sembh)
else P(semh); h;: = false; V(semh); V(sema,); V(sema;1)
fi
but the mathematical proof is then beyond my ability.*

A finer grain of concurrency is not always more efficient. In the final
program, we can save a would-be caller of S; from making a superfluous
call by moving the statement “%;: = false’” inside the critical region.
The coarser grain is more efficient! If P and V operations are not too
expensive, we may introduce semaphores sem#; and revise the final
program’s second line as

IS;: P(semh,); if — h, then k;: = true; V(semh,); S,
else V(semk;)
fi

*Dijkstra® has proven correct except for starvation a structurally identical program
using # auxiliary boolean arrays and an invariant defined as the minimal solution of a
pair of equations.



DESIGN OF CONCURRENT PROGRAMS 297

to prevent other would-be callers from making superfluous calls. This
coarser grain is not required for correctness, but it may improve the
efficiency.

(4) The ‘‘real work” of process S; is to test the order of one pair of
elements and, if necessary, swap them. In both the original and final
programs this is done repeatedly, but the two programs differ (and this
is their main difference) in how they control the repetition. In the original
program, control is in a busy-wait loop until either there is some real
work to do, or the process can terminate. It must not be thought that
this busy-waiting harmlessly occupies an otherwise unoccupied processor ;
that thought would be mistaken for two reasons. (a) We must not assume
that we have one processor for every process. The connective ‘‘//"
specifies what concurrency is allowable so that an implementation can
make the best use of the number of processors available, however many
or few that may be.* (b) Even if there are many processors, when one
process tests the expression of its while loop, it excludes other processes
from changing the ks (and, unfortunately, from testing them), thus
slowing them down. Starvation is just the extreme case of this inefficiency.

In the final program, a process does not test whether there is real
work for it to doj; it is called only when there is real work. After doing
the work, it terminates; if there is more work later, it will be called again
later. This is more straightforward, and more efficient.

ONE MORE EXAMPLE

In the first example, we developed a concurrent sorting program from a
sequential insertion sort. In this example, we begin with a sequential
bubble sort.

An insertion sort, in the worst case, makes the following sequence of
calls:

S

S S1;

S3; S2;91;
S4; S3;5.52; 51

for an array of five elements.{ In order to allow progress along all rows

*Some language designers have suggested a sequential programming construct called
“‘coroutines.” I prefer to consider coroutines as an implementation of multiple processes
on a single processor. In general, the implementation becomes more concurrent and less
coroutine-like when more processors are available.

TAccording to Knuth,® it is this pattern of comparisons that defines an insertion
sort, and not whether movement of elements is by swapping or otherwise.




208 ERIC C.R. HEHNER

concurrently, we augmented this pattern. A bubble sort makes the follow-
ing sequence of calls:

S15S2; 53554
S1; 825553
S1;S2;

S1

for an array of five elements. Our starting sequential program is

[program 6]
n—1

SOnEs 51
j=1

S;: if a[Z] > a[z + 1] then swap; fi;

In order to allow progress along all rows concurrently, we augment this
pattern by extending each row to the end. As before, we accomplish this
in two steps. First we write a sequential program in which j can take
values from 1 to » — 1 in any order.

[program 7]
n—1

sort: = ;= S
j=1

Si: if a[7] > a[z + 1] then swap; fi;
Sip1

In S,_; the call S, is missing, or else we add the refinement S, : skip. Now
we proceed to concurrency, placing the P and V operations as required.

[program 8]
n—1

sort: // {P(semay); Si}
=1

Si: P(semay1);
if af[z] > a[< + 1] then swap; fi;
V(sema;); Sii1

This second example serves both a positive and a negative purpose.
It is a second illustration that a starvation-free concurrent program can
be developed from a sequential program expressed in recursive refinement
form. It is also a warning that the placement of synchronization to
preserve the sequential proof from concurrent interference can be
difficult. We have not addressed that issue; instead we refer the reader
to Lamport(” and Owicki and Gries.®



DESIGN OF CONCURRENT PROGRAMS 299

CONCLUSION

Sequential and concurrent programming are usually placed in different

worlds: one begins a problem knowing which kind of program to produce,

and uses different programming methods and notations for each kind.

There is usually no transition from one to the other.

This paper shows how, at least in some cases, a concurrent program
can be achieved in steps from a sequential one. Our sequential style is
recursive refinement, and as a result, our concurrent programs provide
the following benefits.

(a) The well-understood programming methods and proof techniques
for sequential programs allow us to begin with a complete, correct

_ program.

(b) The resulting concurrent program is starvation-free without appeal-
ing to a fair scheduler.

(c) Less synchronization is required, and as a result, the program is
more efficient. This is because some of the control has moved from
the testing of shared variables to the mutually recursive calling
structure.

The choice of synchronization primitives is not at issue. The use of
P and V allowed the above points to be made with a minimum of ex-
planation, but the points remain valid with other primitives.

REFERENCES

(1) E.W. Dijkstra, 4 discipline of programming. Englewood Heights, Prentice-Hall, nj:
1976.

(2) E.W. Dijkstra, “‘On making solutions more and more fine-grained.” Rept. EWD622,
May 1977.

(3) E.W. Dijkstra, “Finding the correctness proof of a concurrent program.” Rept.
EWD640a, 1977.

(4) E.C.R. Hehner, ‘‘do consider od: a contribution to the programming calculus.”
Acta Informatica, vol. 11, 1979, 287-304.

(5) C.A.R. Hoare, ‘““Communicating sequential processes.” cacM, vol. 21, no. 8,
August 1978, 666-677.

(6) D.E. Knuth, The art of computer programming, Vol. 3, Searching and sorting.
Reading, MA: Addison-Wesley, 1973.

(7) L. Lamport, “‘Proving the correctness of multiprocess programs.” 1EEE Transactions
on Software Engineering SE-3, no. 2, March 1977, 125-143.

(8) S. Owicki and D. Gries, ‘“An axiomatic proof technique for parallel programs I."”
Acta Informatica, vol. 6, 1976, 319-340.




