223

Special Feature:

S

Computer Design
to Minimize
Memory Requirements

Eric C. R. Hehner
University of Toronto

Introduction

Language-directed machine design refers to the
effort to make computer instructions and struc-
tures appropriate for representing and executing
programs written in high-level languages. (Exten-
sive bibliographies are available.»»?) It has some-
times been taken to mean the design of computers
whose machine language is close to, or identical to,
a desired high-level language. This is most success-
ful when applied to machine-directed language like
Fortran,® or a low-redundancy language like APL,!
the advantage being the elimination of the need for
a compiler. But a well-designed high-level language
contains redundancy to serve as a check on the pro-
grammer’s intentions. And a compiler is useful to
check the consistency of the redundant informa-
tion, and to remove it prior to execution, although
unchecked redundancy should remain. Declarative
information, for example, may be checked and
removed. while range checks may remain.

The language that is best for programming is
not necessarily the language that is best for execu-
tion, but neither are they independent. If the ma-

* chine is well designed, a compiler can concentrate
. on analyzing the source program, rather than on

synthesizing the object program from inappropriate

- instructions. And the space occupied by the object

program will be as close as possible to the mini-
mum required to represent the execution informa-

3 August1976

Matching the instructions and their representa-

tions to the distributions of usage can save

75% of the space taken by contemporary

machine representations. The gain in space
may be accompanied by a reduction in execution
time due to more efficient use of data paths.
Variable-length codes can also eliminate all
forms of overflow from machine-language, and
greatly reduce the probability of overflow

in data.

tion contained in the source program. As McKeeman'*
has expressed it, “. . . it is absurd to expect carefully
engineered, very fast, automatic desk calculators
[i.e., contemporary machines] to be very good for
implementing operating systems or compilers. We
are forced to manufacture the operations we want
out of sequences of hardware operations with the
obvious result that the programs become large. When
engineers begin to seek more efficient encodings for
commonly used sequences of instructions, progress
toward the modern computér may begin.”

For the most part, language-directed machine
designs have come from. the experience and in-
tuition of individual designers. Wortman? introduced
a method to this process by basing the design of
a machine on a statistical analysis of the source
language for which it was intended. This paper
follows Wortman's approach. Although we can sug-
gest no substitute for inspiration in the initial
choice of an jnstruction set, we shall suggest a
method of algorithmically improving a given instruc-
tion set.

The other purpose of this paper is to present
ways of encoding instructions and data to fit the
information being represented. It is common knowl-
edge, formalized in 1949 by Shannon,® that one can
make the best use of memory and data pathsg by
using a variety of instruction and data sizes, encod-
ing frequently-used instructions and data in fewer
bits at the expense of longer codes for infrequent
ones. We shall find how much variability is appro-
priate, and how to take advantage of it.

65

The benefits we expect are, in summary:

1. The compiler-writer's task becomes much
easier; he need not spend so much thought on
how to synthesize the actions he wants from
the operations provided.

2. Space requirements are reduced in two ways:
(a) simpler compilers require less space; and
(b) the compiled programs require less space.
In fact, if a compiler is itself a program com-
piled from a high-level source language, then
sayéngs (a) and (b) above apply independently
toit. .

3. If execution speed is limited by the speed with
which information moves through some data
path (g.g., between primary and secondary
memories, or between memory and processor),
then time will be reduced by packing informa-
tion more densely, thus making more efficient
use of available bandwidth.

4. Overflow is a problem that results from
choosing a fixed-length encoding for an infinite,
large; or expandable class of values. Variable-
length encodings, in-addition to saving space
and time, have the benefit of eliminating all
forms of overflow. With a variable-length
operation encoding, one more operation can
always be added to the machine. With a
variable-length address field, the machine lan-
guage does not limit the memory that can be
added, nor the address space that a program
can occupy. Limits will, of course, be imposed
externally by economics, but as economic con-
ditions change, these limits are free to be
changed without changing the machine lan-
guage. For any given amount of memory, there
is a limit to the size of integers or floating-
point numbers that can be represented; avail-
able memory is an easily justified limit, but a
restrictive encoding is not.

Variability of instruction lengths

Let us assume that all instructions are address-
able, and that the addressable unit of instruction
storage is b bits. To avoid wasting space by align-
ment of instructions to the addressable unit, the
various instruction sizes must all be multiples of &
bits. Let us assume that each instruction is com-
posed of independently encoded fields (e.g., opera-
tion, register, offset, immediate operand), and that
the average number of fields per instruction is f
(typically f = 2-4). This means that the various
code lengths of a given field must differ from one
another by multiples of b bits (otherwise one could
compose an instruction whose length is not a multiple
of b bits). Essentially, b bits is the basic character
or unit of encoding. The smaller b is, the more able
we are to choose encodings that match the distri-
butions of usage, and therefore save space. On the
other hand, addressing to a finer unit of storage
costs bits on each branch address. This tradeoff
should determine the optimum addressable unit of

66

storage for instructions, and optimum variability in
instruction lengths. . Z

The following argument, though rough, gives u

an indication of the optimum value of b. The waste -
(or redundancy) in an encoding is the differe:nce ,
between the number of bits taken by the encoding,
and the information content being encoded (for
mathematical definitions, see Hehner®). Huffman®
has proved that in a minimum-space encoding the
waste ts limited to one character of encoding per
message. In our context, this means that the waste,
in a “best” encoding, is limited to b bits per field.
Let us assume that the actual waste is proportional
to b, with proportionality factor w. (For a variety
of frequency distributions, we found typically 0.1 =
w = 0.5.) Then the wasted space in an average in-
struction is fbw bits. Changing the unit of variability
from 26 bits to b bits changes the waste per instruc-
tion from 2fbw to fbw bits, a saving of fbw bits.
_ Let the relative frequency of branch instructions
be x (in one sample® x = 0.1). Changing the address-
able unit from 26 bits to b bits adds an average
of 1 bit per branch address, or x bits per instruction.
Therefore, in the instruction stream, an addressable
unit of b bits is preferable to an addressable unit of 2b
bits if fbw > x, i.e., if b > x/(fw). Typically, the
right side of this inequality has a value in the range
0.05-0.5, indicating that, for instruction lengths, bit-
variability is preferable to any coarser unit.

The above conclusion is based on the assumption
that the waste in each field of an instruction is pro-
portional to the upper bound on the waste in a
minimum-space encoding of the field. But for some
fields, such as addresses and immediate data, a
minimum-space encoding is either impossible to find,
or impractical, and we are left to our coding ingenu-
ity. When that is inconsistent for changing &, w will
not be constant. When our Ingenuity is weak, w will
be large (> 1) strengthening the conclusion that &
should be as small as 1 bit,

To confirm this conclusion, we chose a large, well-
known compiler® (4420 lines of source, 60K bytes of
object code), and allowed ourselves the freedom of
bit-variability in its encoding. Some of the results
of our experiments' are reported in the following
sections.

Operations

Given a set of operations, and a sample of pro-
grams compiled into sequences of these operations,
we can find the frequency of use of each operation,

“and hence encode them according to an algorithm

given by Huffman.” This encoding will minimize
the space required for operations over all possible
encodings, under the assumption that the operations
appear with independent probabilities. By including
a zero-frequency nonoperation in the set, we obtain
an open-ended code, allowing future expansion, at
a cost of one bit on the least frequent operation.

It has been observed, however, that in sequences
of operations compiled from high-level source lan-
guages, operations do not appear with independent
probabilities.?*!* There are several ways to take ad-

COMPUTER

=

_vantage of the dependencies; the two presented here
are'iterative pairing and conditional coding.
" Iterative pairing works as follows: one pair of
operations is chosen, and a new operation is invented
to replace that pair wherever it occurs in a sequence
of operations (except where the second is the target
of some branch). This process is repeated some num-
ber of times; at each stage the pair chosen may in-
clude operations invented at previous stages. Finally,
we use an open-ended minimum-space encoding for
the resulting operation set. The object is to choose
pairs such that the new operation set can be en-
coded much more densely than the original. We
could choose, at each stage, the pair that makes
the most improvement at that stage; but this com-
putation is quite complex, and it may not result in
as much improvement over several iterations as
some other sequence of choices. In practice, choosing
the most frequent pair is easy, and it seems to work
well. In our sample, increasing the operation set
from 47 to 178 operations decreased the space re-
quired for operations to less than half of the space
required before pairing, and to less than one quarter
of the original 8-bit fixed-length encoding.

Conditional coding is a generalization of a tech-
nique introduced by Foster and Gonter." For a given
operation, say LOAD, every operation has a certain

- probability of following it, so the operation set can
be given minimum-space encoding in the context
following LOAD. Similary, in the context following
each of the other operations, the operation set can
be given a minimume-space encoding. In general, the
encodings following different operations will be dif-
ferent, so that the interpretation of an operation code
will depend on the interpretation of the preceding
operation code. (Once again, the target of a branch
requires special consideration.) For even better

results, the encoding of an operation can depend on

the preceding pair, or n-tuple, of operations.

The mechanism needed to implement this scheme
is remarkably simple. It consists mainly of a shift
register that contains an unconditional representa-
tion of the context. This context and the current
operation code together specify both the current
operation and the length of the current code. Then
the new context is shifted into the context register,
and the proper amount of the instruction stream is
consumed. The target of a branch must be en-
coded in a standard context, rather than in the con-
text of the preceding operations, and the branch
instruction must cause this standard context to be
placed in the context register. A branch of dis-
tance zero can be used to establish a standard
context whenever needed.

When we tried this on our sample, the results
were as follows: encoding operations in the context
of 1, 2, and 3 preceding operations reduced the
space required for operations by 43, 53, and 56%
respectively, or to 2.1, 1.7, and 1.6 bits per opera-
tion code, on the average.

The former technique, iterative pairing, is a method
of improving the set of operations, whereas the
latter, conditional coding, is just a coding technique.
Both take advantage of interinstruction dependen-

August 1976

cies to match the machine-language representation
of a program more closely to its information con-
tent. They relied on the fact that there is only
a small number of different operations on a com-
puter. The other portions of instructions—addresses
and immediate data—are large, conceptually infinite,
classes, so other techniques are needed.

Constants

Constants in the source program may take the

form of immediate data in the machine-language
program. This is common for small integers but
uncommon for other numbers (large integers,
floating-point numbers) or for character strings,
which do not fit into the fixed-size space allotted
to immediate data in most instruction formats.
But with variable-length instructions, any constants
may sit in the instruction stream, avoiding the need
for indirection.
_ The use of variable-length encodings for integers
1s not new; the encodings used, however, have been
decimal sign-and-magnitude, which is neither very
compact nor very good for arithmetic. And the
arithmetic algorithms used have been digit-serial,
which is rather slow. But the encodings need not
be decimal, nor sign-and-magnitude, and the arith-
metic unit can be designed to handle as many bits
in parallel for variable-length as for fixed-length
encodings. The Burroughs B1700, for example,
has an arithmetic unit that is 24 bits wide, and
can be used iteratively (for long operands), and
fractionally (for short operands).!?

To test the effect of variable-length encodings on
the space required for the integer constants in our
sample, we tried several schemes, including a
two’s complement scheme,'* and the binary sign-
and-magnitude scheme of the appendix. These en-
codings gave similar results: integer constants re-
quired, on the average, 5.5 bits each. The success
of these encodings depends on the fact that small
integer constants, especially 0 and 1, are more
common than large ones.

Floating-point numbers can be represented simply
by pairs of integers, and can be added to a
machine in either of two ways: by adding new
operations to operate on the new number type,
or by representing all numbers as the more com-
plicated type. The latter alternative becomes very
attractive when only two extra bits are required
to represent a zero exponent.

Data addresses

A form of data address that is generally recog-
nized as being suitable for programs compiled from
block-structured languages is called “lexic-level,
order-number pairs.” To design a suitable encoding,
we must discern the patterns of use. One pattern

. is that small lexic-levels and order-numbers are more

common than large ones. Even if the use of lexic-
levels within a program is uniform, and even if the
use of order-numbers within each block is uniform,
the above observation will still hold for the follow-

67

Ing reason: Since level- and order-numbering begin
at 0, every program has a lexic-level 0, and every
block that contains local storage has in it an item
with order-number 0, but progressively fewer pro-
grams and blocks have brogressively higher levels
and order numbers. Therefore, the encoding given
above for integer constants is suitable for this form
of data address. The result for our sample was an
average address length of 7.3 bjts.

Branch addresses

The regularity in branch addresses that allows
us to take advantage of more than one address
length _has been observed by several people.®
It is simply that short jumps are more common
than long ones. Therefore, by expressing branch
addre§ses relative to the Instruction pointer, the
encoding used above for integer constants becomes
appropriate also for branch addresses. Transfer be-
tween separately placed instruction sequences re-
quires some other mechanism, such as a CALL and
RETURN instruction. But within an instruction
sequence, relative addressing has the advantage for
coding, as well as another advantage: relocatability
without base registers.

A major problem confronts the user of a machine
with more than one length of branch address:
During instruction assembly, how much space should
be reserved for a forward branch? Richards® has
given a solution for two sizes that is nonlinear in the
number of branches, and for more sizes the problem
appears to require a combinatoric solution. The cause
of this complexity, however, is simply the notorious
go to. If we restrict ourselves to disciplined con-
trol structures such asif ... then ... else ..., while
... do...,and repeat ... until ..., the solution be-
comes linear in the number of branches. If code
is generated ‘‘from inside to outside,”” then the
restriction to structured programming ensures that
branch addresses at each stage can be calculated
knowing only the size of inner structures. This is
compatible with the order that reductions are per-
formed during a “bottom-up” parse, and the order
of code generation required for certain optimizations.

Here is where we pay for the gains described
in the preceding sections: if instruction lengths
are completely variable, then we must express the
length of a jump in bits, rather than bytes or words,
and this tends to lengthen branch addresses. In our
sample, the average branch address required 14
bits. Fortunately, as the next section shows, the

loss is much less than the gain.

~ Evaluation of instruction encodings

Putting together the above results, we reduced
the space required for a machine-language repre-
sentation of our sample to one quarter of the
original IBM 360 machine language version. This
gain could be attributed about equally to the more
appropriate instruction set, and to the more appro-
priate encodings of the fields within instructions.

68

Variabilty of data lengths

If we are given the distribution f of the lengths
of storage spaces allotted to variables, then we can
find the appropriate addressable unit for data in a
manner similar to that for instructions. As was the
case there, assuming that all variables are to be
addressable, a coarse addressable unit saves space
in the address field, and costs space in the addressed
item.

Let the addressable unit of data, and therefore
the effective degree of variability in data lengths,
be & bits. Then the average number of addressable
units per variable is

a= > [smlfe),
s=1

where the rounding-up operation ensures address-
ability. Using the representation of the appendix
for addresses, and assuming that the probability of
referencing a variable is independent of the variable,
the average space per address is approximately

n
d = (1n) Z 2 log, (o)
=1

~ 2 log, (na) for large n

where n is the total number of variables.

Suppose there are, on the average, x data ad-
dresses per data item. For branch addresses we have
x <1 since most instructions are not the object of
any branch. But all useful variables are referred
to at least once, so for data addresses x = 1.
In one sample® x = 104, The total space for
addresses and variables, per variable, is

S = xd + qab,

with units

(space/vbl) = (addresses/vbl)*(space/address)
+ (addressable units/vbl)
*(space/addressable unit).

Given f and x, we choose b to minimize S. It can
be seen that the value of b that minimizes S is
independent of n.

If the form of variable declaration specifies the
space to be allocated to each variable, as in PL/I,
then the distribution f, as well as the addressing
frequency x, are easily tabulated from a sample of
programs. Unfortunately, most PL/I programmers
are well aware of the architecture of their machines,
and their declarations tend to reflect this knowledge,
rather than the problem requirements. So an analysis
will simply confirm the appropriateness of their
machine architecture for their programs. Pascal

COMPUTER

SR

VA T b e A I

i

" declarations can provide the same information, but
in a form that is independent of representation——py
limiting the values of variables to a specified finite
‘range. -

In many languages, a declaration specifies only
the type, not the range, of a variable. In the absence
“of more information, all variables of a given type are

 allocated equal space. Then S is minimized when b

“ is that space, independent of x. In our sample,
* some declarations gave some space information, but
- it was heavily influenced by the machine architecture;
. other declarations gave only type information. We
- therefore allocated equal space to all variables of a

type. As we see in the next section, the space

- appropriate for integer and character data types

turned out to be equal. ,

Space allocation for data

Variables present us with a problem that con-
stants do not—namely, their values vary. If we

- know only the types of variables, then whatever

representation of their values we choose, what-
ever space we allocate for them, we may find that
one of them is being assigned a value that won’t fit
in the space provided (or for which there is no
representation). When this happens, the usual “solu-
tion” is to shout “overflow” and give up, or worse,
to overwrite the following data item. To minimize
these undesirable occurrences, we usually allocate
much more space than is required on the average,
and consequently use space inefficiently. If we know
the range of values of each variable, we can allocate
the maximum space required for any value. This
solves the overflow problem, but most of the time it
is a great waste of space.

For large variables, such as character strings
and arrays with variable dimensions, the storage

roblem has sometimes been solved by the use of
fixed-length descriptors, which give the length and
location of the value in 2 “free area,” with periodic
or continual space reclamation (garbage collection).
In one respect this is an improvement, in that over-
flow occurs only when all variables simultaneously
have values such that their total length exceeds
the free area. With a proper encoding of values, i.e.,
one that gives long codes only to uncommon values,
the probability of overflow is greatly reduced.

The descriptor scheme has a drawback that pre-
vents its general adoption for all data. The space
overhead for an extra address, and the time overhead
for an extra memory access and for storage manage-
ment, may be small relative to large data items, but
they are enormous relative to small ones. A complete
trace of all values of all integer variables and array
elements during an execution of our sample program
revealed that the value of an integer variable re-
quired, on the average, 6.5 bits according to our
encodings. They seem, therefore, to be too small for
the indirect ‘‘descriptor’’ mechanism. Surprisingly,
the average length of character string variables
turned out to be two characters, so they also seem
too small for descriptors, most of the time. (Character

August 1976

string constants were longer—14.6 characters on
the average.)

The solution is to allow the number of levels of
indirection to vary, being zero for values which fit
into a few bits, and one or more for longer values.
That way we can keep the space allotted to each
variable to a minimum, and pay for indirection only
when it is needed to avoid overflow. One bit per
variable can be reserved to indicate whether the
value is currently short and present, or long and in
the free area.

Evaluation of data encodings

How much space should each variable be allocated?
How large should the free area be, and what should
the addressable unit within the free area be? And
how does the cost of this scheme compare to the
cost of standard *‘fixed-length" allocations of space?

For our evaluation, we chose the space/time pro-
duct as our cost function. Space includes the initial
space per variable, and the free area. Time is meas-
ured in memory references required to load and store
the values of variables, and memory references
required to perform garbage collection. To evaluate
the last factor, garbage collection, we made the con-
servative assumption that values consume space
until the free area is exhausted, with no attempt to
fit values into available spaces that are interspersed
with occupied spaces; a smarter algorithm may give
better results. Some recent work'®!" has shown that
the garbage collection process can take place con-
currently with the main (garbage producing) pro-
cess; the running cost of the two processes together
should therefore be less than the sum of their sepa-
rate costs. Our results do not incorporate these
improvements.

For integer data, we found that an initial space
per variable of 16 bits, free space equal to 2.8 bits
per variable, addressable unit within the free area
of 8 bits, and data path width of at least 16 bits,
gave the same cost as the standard fixed-length
scheme that allocates 22 bits per variable, with a
data path width of at least 22 bits.

Contemporary machines often give integer data
more than 22 bits. Their running costs are higher,
according to our cost function, than the variable-
length scheme described above. If a machine gives us
a variety of fixed-length number sizes, we must
choose among them, and overflow occurs if the value
of any one variable requires more space than it was
allocated. But for less cost, the variable-length
scheme frees us from choosing a number size,
and overflow occurs only when all variables
simultaneously have values such that the total
length of all values in the free area exceeds the free
area.

For character data, we found that an inijtial
space per variable of 2 characters, free area equal
to 9.4 characters per variable addressable to the
character, and data path width of 8 characters,
gave the same cost as the fixed-length scheme that
allocates 33 characters per variable,

69

2

If each character is 8 bits, then our initial space
per variable and the addressable unit within the
free area are, by coincidence, the same for character
strings and integers. In each case, the inijtial space
is the minimum required to address the free area.

Conclusion

It is foolish to provide what is easy instead of
what is wanted. For example, concatenation of
variable-length character strings is a common opera-
tion. In some programming languages and computing
environments, yet it is exceedingly rare in the
operation set of computers, Of course, provision of
this operation is difficult, involving memory manage-
ment. But the problem does not 80 away by ignoring
it. In fact, it grows: it must be solved by each com-
piler writer, or worse, by each programmer who
wants concatenation. And their solutions are bound
to execute more slowly and require much more
memory than a hardware or firmware operation,

Many factors go into the choice of representation
of machine languages; this paper is concerned with
only one of them, and is by no means a com-
plete analysis. We have shown that matching the
Instructions and their representations to the distri-
butions of usage can save 75% of the space taken
by contemporary machine representations. At the
same time, we make more efficient use of data paths,
and perhaps reduce execution time. We can also
eliminate all forms of overflow from machine-
language, and greatly reduce the probability of
overflow in data. B

Appendix

This appendix contains a variable-length binary sign-and-
magnitude number scheme. The number of leading 0's (after
the minus sign if present) tells how many bits follow con-
stituting the value.

0:11
1. 01 -1: 101
2:0010 -2: 10010
3:0011 -3: 10011
4: 000100 -4: 1000100
5: 000101 -5: 1000101
6: 000110 -6: 1000110
7:000111 -7:1000111
8: 00001000 -8: 100001000

This scheme is positively biased: it matches a distribution in
which a positive integer is twice as common as the corresponding
negative integer. When only non-negative integers are required,
zero may be represented by a single bit. When only positive
integers are required, the leading 0 is unnecessary.

Acknowledgment
This work has benefitted from discussions with several people,

particularly D. B. Wortman, J. J. Horning, W. M. McKeeman,
and R. N. S. Horspool.

References
1. P.S. Abrams, “An APL Machine,” Ph.D. thesis, Computer

Science Department, Stanford University, Palo Alto,
California, June 1970.

70

2. D.B. Wortman, “A Study of Language Dirccted Machine
Design,” Ph.D. thesis, Computer Science Department, : -
Stanford University, Palo Alto, California, 1972,

-

3. T. R. Bashkow, A. Sasson, and A. Kronfeld, “System :

- Design of a FORTRAN Machine,” IEEE Transactions

on Electronic Computers, Vol. EC-16 (4), August 19617,

Pp. 485-499.

4. W.M. McKeeman, “Langu}xge Directed Computer Design,” *

Proc. AFIPS 1967 FJCC, Vol. 31, AFIPS Press, Montvale,
New Jersey, pp. 413-417.

5. C. E. Shannon and W, Weaver, The Muathematical
Theory of Communication, University of Illinois Press,
Urbana, 1949, ‘

6. E.C.R. Hehner, “Information Content of Programs and
Operation Encoding,” JA CM (to appear).

D. A. Huffman, “A Method for the Construction of
Minimum Redundancy Codes.” Proc. I.H.2. Vol. 40 (9),
pp. 1098-1101, September, 1952,

4

8. W. G. Alexander and D. B. Wortman, “Static and
Dynamic Characteristics of XPL Programs,” Computer,
Vol. 8, No. 11, November 1975, pp. 41-46.

9. W. M. McKeeman, J. J. Horning, and D. B. Wortman,
A Compiler Generator, Prentice-Hall, Englewood Cliffs,
New Jersey, 1970.

10. E. C. R. Hehner, “Matching Program and Data Repre-
sentations to a Computing Environment,” Tech. Report
CSRG-44, Computer Systems Research Group, University
of Toronto, Ontario, November 1974. :

I1. C. C. Foster and R. H. Gonter, “Conditional Interpreta-
tion of Operation Codes,” IEEE Transactions on Com-
puters, Vol. C-20 (1), January 1971, pp. 108-111,

12. W. T. Wilner, “Design of the B1700," Proc. AFIPS
1972 FICC, Vol. 41, pp. 489-497.

13. E. C. R. Hehner and R. N, §, Horspool, *Variable-
length Radix Complement Number Representations,” to
appear.

14. H.J. Saaland L. J. Shustek, “*“Microprogrammed Imple-
mentation of Computer Measurement Techniques,” Pre-
prints, Fifth Annual Workshop on Microprogramming,
University of Illinois, September 1972, pp. 42-48.

15. D. L. Richards, “How to Keep the Addresses Short,”
CACM, Vol. 14 (5), p. 348, May 1971.

16. E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten,
and E. F. M. Steffens, “On-the-fly Garbage Collection:
An Exercise in Cooperation, private communication,
Oct. 1975.

17. G. L. Steele, Jr., “Multiprocessing Compactifying Gar-
bage Collection,” CACM, Vol. 18, No. 9, September
1975, pp. 495-508,

Eric C. R. Hehner is an assistant professor
in the Department of Computer Science at
the University of Toronto, and is also a mem-
ber of the Computer Systems Research Group.
He received his B.Sc. in mathematics and
physics from Carleton University in 1969,
his M.Sc. and Ph.D. degrees in computer
*, ~. science from the University of Toronto in
41970 and 1974 respectively. His current
- ~ research interests are programming language
design, compiler design, and machine design.

Dxéf. Hehri)er is at’member of the ACM and the IEEE
Computer Society.

kaiin ‘_, SEV “

