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Introduction

The execution time of programs has been modeled, or measured, or calculated, in a variety of 
ways.  This paper is concerned with measurements of time that are part of a formal semantics of 
programs.  A semantics can enable us to calculate the execution time of programs quite precisely.  
This is necessary for applications known as real-time.  For other applications, a more abstract 
measure of time, called recursive time, is both sufficient and convenient.  More abstract still is 
the measure of time used in a total correctness semantics;  time is reduced to a single bit that 
distinguishes between finite and infinite execution time.  Continuing to the extreme, we find 
partial correctness, where time has been eliminated.  Between the extremes of real-time and 
partial correctness there are other points of interest, such as the quantified time of temporal logic, 
and the timed processes of ATP.

It is reasonable to retain several theories with different abstractions of time if they allow us to 
trade simplicity against accuracy.  We use a simple theory whenever we can, moving to a more 
complex theory when more accuracy is required.  But if one theory is both simpler and more 
accurate than another, requiring less formal labor to obtain more timing information, then the 
other theory should be discarded.  As we shall see, that is indeed the case.

Different abstractions of time can best be compared if they are all presented, as much as possible, 
within one semantic framework.  The framework used in this paper is characterized by the 
following principles.

•  We first decide what quantities are of interest, and introduce a variable for each such quantity.  
A variable may represent input to a computation, or output from a computation.

•  A specification is a binary expression whose variables represent the quantities of interest.  A 
specification is implemented on a computer when, for any values of the input variables, the 
computer generates (computes) values of the output variables to satisfy the specification.  In 
other words, we have an implementation when the specification is true of every computation.  
(Note that we are specifying computations, not programs.)

•  A program is a specification that has been implemented.

Suppose we are given specification  S .  If  S  is a program, we can execute it.  If not, we have 
some programming to do.  That means finding a program  P  such that  S⇐P  is a theorem;  this 
is called refinement.  Since  S  is implied by  P , all computer behavior satisfying  P  also satisfies  
S .  We might refine in steps, finding specifications  R ,  Q , ... such that  S⇐R⇐Q⇐...⇐P .

Notation

Here are all the notations used in this paper, arranged by precedence level.
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0. ⊤   ⊥   〈·〉   ( )   numbers   names
1. adjacency
2. superscript   subscript   underscore   ::
3. ×   /   div   !   ↓
4. +   –
5. =   ⧧   <   >   ≤   ≥
6. ¬
7. ∧
8. ∨
9. ⇒   ⇐
10. :=   if then else fi   while do od
11. ∀·   ∃·   Σ·   Π·   ;   ||   ☐   ◇   ❍
12. =   ⇒   ⇐
On level 0,  ⊤  is binary true,  ⊥  is binary false, and  〈v: D· b〉  is the function notation,  v  is the 
variable (parameter),  D  is the domain, and  b  is the body.  On level 2, superscripting, 
subscripting, and underscoring serve to bracket all operations within them.  Adjacency associates 
from left to right, so that  a b c  means  (a b) c .  The infix operators  /  –  associate from left to 
right.  The infix operators   ×   +   ∧   ∨   ;   ||   are associative (they associate in both directions).  
On levels 5, 9, and 12 the operators are continuing;  for example,  a = b = c  neither associates to 
the left nor associates to the right, but means  a = b  ∧   b = c .  On any one of these levels, a 
mixture of continuing operators can be used.  For example,  a ≤ b < c  means  a ≤ b  ∧   b < c .  
On level 10, the precedence does not apply to operands that are surrounded by the operator.  The 
operators   =   ⇒   ⇐   are identical to   =   ⇒   ⇐   except for precedence.

Partial Correctness

For simplicity, we'll start with partial correctness, which ignores time.  We can observe the initial 
state of memory, represented by variables  x ,  y , ..., whose values are provided as input.  We can 
also observe the final state of memory, represented by variables  xʹ ,  yʹ , ..., whose values are the 
result of a computation.  Specification  S  is implementable if and only if

∀x, y, ...· ∃xʹ, yʹ, ...· S
As specification language, we allow ordinary logic, arithmetic, notations that are specific to the 
application, and any other well-defined notations that the specifier considers convenient, 
including notations invented on the spot for the purpose.  We also include in our specification 
language the following notations.

ok   =   xʹ=x ∧ yʹ=y ∧ ...
x:= e   =   xʹ=e ∧ yʹ=y ∧ ...
if b then P else Q fi =   b∧P ∨ ¬b∧Q

=   (b⇒P) ∧ (¬b⇒Q)
P;Q   =   ∃xʹʹ, yʹʹ, ...·     (substitute  xʹʹ, yʹʹ, ... for  xʹ, yʹ, ... in  P )

∧  (substitute  xʹʹ, yʹʹ, ... for  x, y, ... in  Q )

The notation  ok  specifies that the final values of all variables equal the corresponding initial 
values.  A computer can satisfy this specification by doing nothing.  Let us take  ok  to be a 
program.  In the assignment notation,  x  is any state variable and  e  is any expression in the 
domain of  x .  Let us take assignments in which expression  e  does not use primed variables, 
and uses only those operators that are implemented, to be programs.  In the  if  notation, if  b  
does not use primed variables, and uses only those operators that are implemented, and  P  and  
Q  are programs, then let us take  if b then P else Q fi  to be a program.  The specification  P;Q  
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can be implemented by a computer that first behaves according to  P , then behaves according to  
Q , with the final values from  P  serving as initial values for  Q .  It therefore describes 
sequential execution.  If  P  and  Q  are programs, let us take  P;Q  to be a program.

From these definitions, many useful laws of programming can be proven.  Here are a few.  Note 
that  P ,  Q ,  R , and  S  can be any specifications, not just programs.

ok; P   =   P; ok   =   P Identity Law
P; (Q; R)   =   (P; Q); R Associative Law
if b then P else P fi   =   P Idempotent Law
if b then P else Q fi   =   if ¬b then Q else P fi Case Reversal Law
P   =   if b then b ⇒ P else ¬b ⇒ P fi Case Creation Law
P∨Q; R∨S   =   (P; R) ∨ (P; S) ∨ (Q; R) ∨ (Q; S) Distributive Law
if b then P else Q)∧R fi   =   if b then P∧R else Q∧R fi Distributive Law

and all other operators in place of  ∧  including sequential execution:
(if b then P else Q fi; R   =   if b then P; R else Q; R fi
x:= if b then e else f fi   =   if b then x:= e else x:= f fi Functional-Imperative Law
x:= e; P   =   (for  x  substitute  e  in  P ) Substitution Law

For this paper, we need only the four programming notations we have introduced, but we need 
one more way to create programs.  Any implementable specification  S  is a program if a program  
P  is provided such that  S⇐P  is a theorem.  To execute  S , just execute  P .  One can imagine a 
library of specifications that have become programs by being provided with implementations.  
Furthermore, recursion is allowed:  within  P , we can use specification  S  as a program.  A 
computer executes  S  by behaving according to program  P , and whenever S  is encountered 
again, the behavior is again according to  P .

To illustrate, here is a small problem.  If  !  is the factorial function, then  (a+b)! / (a!×b!)  is the 
number of ways to partition  a+b  things into  a  things and  b  things.  In natural variables  x ,  a , 
and  b , the specification is

xʹ  =  (a+b)! / (a!×b!)
There are many ways to refine this specification.  One of them is

xʹ  =  (a+b)! / (a!×b!)   ⇐   x:= 1;  xʹ  =  x × (a+b)! / (a!×b!)
which is proven by one application of the Substitution Law.  The right side uses a new 
specification that requires refinement.

xʹ  =  x × (a+b)! / (a!×b!)   ⇐
if a=0 ∨ b=0 then ok
else x:= x/a/b×(a+b–1)×(a+b);  a:= a–1;  b:= b–1;  xʹ  =  x × (a+b)! / (a!×b!) fi

The proof uses three applications of the Substitution Law and some simplification.  The right 
side uses the specification we are refining recursively.  We have not used any new, unrefined 
specifications, so we are done.

If  !  is not an implemented operator, then  x:= (a+b)! / (a!×b!)  is not a program.  Whether it is or 
not, we may still refine it, to obtain the following solution.

x:= (a+b)! / (a!×b!)   ⇐
if a=0 ∨ b=0 then x:= 1
else a:= a–1;  b:= b–1;  x:= (a+b)! / (a!×b!);

a:= a+1;  b:= b+1;  x:= x/a/b×(a+b–1)×(a+b)  fi
The occurrence of  x:= (a+b)! / (a!×b!)  on the right side is a recursive call.

Note that we have loops in the refinement structure, but no looping construct in our programming 
notations.  This avoids a lot of semantic complications. 
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Real-Time

To talk about time, we just add a time variable  t .  We do not change the theory at all;  the time 
variable is treated just like any other variable, as part of the state.  The interpretation of  t  as time 
is justified by the way we use it.  In an implementation, the other variables  x ,  y , ...  require 
space in the computer's memory, but the time variable  t   does not;  it simply represents the time 
at which execution occurs.

We use  t  for the initial time, the time at which execution starts, and tʹ  for the final time, the time 
at which execution ends.  To allow for nontermination we take the domain of time to be a 
number system extended with an infinite number  ∞ .

Time cannot decrease, therefore a specification  S  with time is implementable if and only if
∀x, y, ..., t· ∃ xʹ, yʹ, ..., tʹ·  S ∧ tʹ≥t

For each initial state, there must be at least one satisfactory final state in which time has not 
decreased.

To obtain the real execution time, just insert time increments as appropriate.  Of course, this 
requires intimate knowledge of the implementation, both hardware and software;  there's no way 
to avoid it.  Before each assignment  x:= e  insert  t:= t+u  where  u  is the time required to 
evaluate and store  e .  Before each conditional  if b then P else Q fi  insert  t:= t+v  where  v  is 
the time required to evaluate  b  and branch.  Before each call  S  insert  t:= t+w  where  w is the 
time required for the call and return.  For a call that is implemented in-line, this time will be zero.  
For a call that is executed last in a refinement, it may be just the time for a branch.  Sometimes it 
will be the time required to push a return address onto a stack and branch, plus the time to pop 
the return address and branch back.  We could place the time increase after each of the 
programming notations instead of before;  by placing it before, we make it easier to use the 
Substitution Law.

Any specification can talk about time:  tʹ = t+e  specifies that  e  is the execution time;  tʹ ≤ t+e  
specifies that  e  is an upper bound on the execution time;  and  tʹ ≥ t+e   specifies that  e  is a 
lower bound on the execution time.

In the partition example, suppose that the  if , the assignment, and the call each take time  1 .  Let  
↓  be the “minimum” operator.  Inserting time increments, we can easily prove

tʹ  =  t + 5×(a↓b) + 3   ⇐   t:= t+1;  x:= 1;  t:= t+1;  tʹ  =  t + 5×(a↓b) + 1
tʹ  =  t + 5×(a↓b) + 1   ⇐

t:= t+1;
if a=0 ∨ b=0 then ok
else t:= t+1;  x:= x/a/b×(a+b–1)×(a+b);  t:= t+1;  a:= a–1;  t:= t+1;  b:= b–1;

t:= t+1;  tʹ  =  t + 5×(a↓b) + 1  fi
So the execution time is  5×(a↓b) + 3 .  The Law of Refinement by Parts says that we can conjoin 
specifications that have similar refinements, so without any further proof we have

xʹ  =  (a+b)! / (a!×b!)  ∧  tʹ  =  t + 5×(a↓b) + 3   ⇐
t:= t+1;  x:= 1;  t:= t+1;  xʹ  =  x × (a+b)! / (a!×b!)  ∧  tʹ  =  t + 5×(a↓b) + 1

xʹ  =  x × (a+b)! / (a!×b!)  ∧  tʹ  =  t + 5×(a↓b) + 1   ⇐
t:= t+1;
if a=0 ∨ b=0 then ok
else t:= t+1;  x:= x/a/b×(a+b–1)×(a+b);  t:= t+1;  a:= a–1;  t:= t+1;  b:= b–1;

t:= t+1;  xʹ  =  x × (a+b)! / (a!×b!)  ∧  tʹ  =  t + 5×(a↓b) + 1  fi 
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When we place a time increment  t:= t+e  in a program, the expression  e  can depend on the 
values of variables;  it doesn't have to be a constant.  If we cannot say precisely what the time 
increment is, perhaps we can say what its bounds are:  a ≤ tʹ–t ≤ b .

Recursive Time

To free ourselves from having to know implementation details, we allow any arbitrary scheme 
for inserting time increments  t:= t+u  into programs.  Each scheme defines a new measure of 
time.  In the recursive time measure, each recursive call costs time  1 , and all else is free.  This 
measure neglects the time for straight-line and branching programs, charging only for loops.

In the recursive measure, our earlier example becomes
tʹ  =  t + a↓b   ⇐   x:= 1;  tʹ  =  t + a↓b

tʹ  =  t + a↓b   ⇐
if a=0 ∨ b=0 then ok
else x:= x/a/b×(a+b–1)×(a+b);  a:= a–1;  b:= b–1;  t:= t+1;  tʹ  =  t + a↓b fi

Since implication is reflexive, we can refine any specification by itself.  For example,
xʹ=2   ⇐   xʹ=2

With this refinement,  xʹ=2  is a program that claims  x will have the final value  2 , but it doesn't 
say when.  Now let's add time.  If we specify that execution time is finite, say  tʹ = t+n , and 
insert the time increment before the recursive call we find that

xʹ=2  ∧  tʹ = t+n   ⇐   t:= t+1;  xʹ=2  ∧  tʹ = t+n
is not a theorem.  The only implementable specification we can refine this way is  tʹ=∞ :

xʹ=2  ∧  tʹ=∞   ⇐   t:= t+1;  xʹ=2  ∧  tʹ=∞
This specification says that execution takes forever.

In the partition example, suppose now that  a  and  b  are integer variables.  We can prove the 
following specification of execution time

(0≤a≤b ∨ b<0≤a  ⇒  tʹ = t+a)
∧ (0≤b≤a ∨ a<0≤b  ⇒  tʹ = t+b)
∧ (a<0 ∧ b<0  ⇒  tʹ=∞)

Total Correctness

In a total correctness semantics, the only question asked about time is whether it is finite or 
infinite.  Since we only want to know one bit of information about time, we might consider using 
a binary abstraction.  Let  s   mean “execution starts at a finite time” and  sʹ  mean “execution 
ends at a finite time”.  The programming notations can remain as they were, satisfying the same 
axioms and laws, except that  s  replaces  t .  This sort of total correctness semantics has been 
suggested in [Hehner84] and in [Hoare92].  But there's a problem:  we can no longer insert a 
time increment into a recursion.  We have nothing to correspond to the tick of a clock.  So we 
cannot account for the passage of time in a recursive refinement.

One solution to the problem is to abandon recursive refinement, and to invent a loop construct;  a 
well-known syntax is  while b do S od .  If we are to make use of our theory for programming 
(and surely that is its purpose), we must define  while b do S od  for arbitrary specifications  S , 
not just for programs.  That is necessary so that we can introduce a loop and show that we have 
done so correctly, separately from the refinement of its body.  There are essentially two ways to 
do it:  as a limit of a sequence of approximations, or as a least (pre)fixed-point. 
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The limit of approximations works like this.  Define
W0   =   ⊤
Wn+1   =   if b then S;  Wn else ok fi

Then
while b do S od   =   ∀n· Wn

As an example, we will find the semantics of
while x+1 do x:= x div 2 od

in one integer variable  x .  We find
W0 =   ⊤
W1 =   if b then x:= x div 2;  true else ok fi

=   x=1 ⇒ xʹ=1
W2 =   if b then x:= x div 2;  x=1 ⇒ xʹ=1 else ok fi

=   1≤x<4 ⇒ xʹ=1
Jumping to the general case, which we could prove by induction,

Wn =  1≤x<2n ⇒ xʹ=1
And so

while x+1 do x:= x div 2 od
= ∀n·  1≤x<2n ⇒ xʹ=1
= 1≤x ⇒ xʹ=1

In effect, we are introducing recursive time in disguise.  Wn  is the strongest specification of 
behavior that can be observed before time  n , measured recursively.
The other way to define while-loops is as a least fixed-point.  There are two axioms.  The first

while b do S od   =   if b then S;  while b do S od else ok fi
says that a while-loop equals its first unrolling.  Stated differently,  while b do S od  is a solution 
of the fixed-point equation (in unknown  W )

W   =   if b then S;  W else ok fi
The other axiom

∀σ, σʹ· W  =  if b then S;  W else ok fi   ⇒   ∀σ, σʹ· W  ⇒  while b do S od
(where  σ  is the state variables) says that  while b do S od  is as weak as any fixed-point, so it is 
the weakest (least strong) fixed-point.

The two axioms we have just seen are equivalent to the following two axioms.
while b do S od  ⇒  if b then S;  while b do S od else ok fi
∀σ, σʹ· W  ⇒  if b then S;  W else ok fi   ⇒   ∀σ, σʹ· W  ⇒  while b do S od

The first of these says that a while-loop refines (implements) its first unrolling;  it is a prefixed-
point.  The second says that  while b do S od  is as weak as any prefixed-point, so it is the 
weakest prefixed-point.  Though equivalent to the former definition, this definition has an 
advantage.  From the prefixed-point definition it is easy to prove the fixed-point formulas, but the 
reverse proof is quite difficult.  These (pre)fixed-point definitions introduce a form of induction 
especially for while-loops, a kind of while-loop arithmetic, in place of the arithmetic of a time 
variable.

The limit of approximations definition and the (pre)fixed-point definition agree when the body of 
a loop uses only programming notations, but they sometimes disagree when the body is an 
arbitrary specification.  A famous example, in one integer variable  x , is

while x⧧0 do if x>0 then x:= x–1 else xʹ≥0 fi od
According to the limit of approximations, this while-loop equals

x≥0 ⇒ xʹ=0
According to the (pre)fixed-point, it equals

xʹ=0
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They differ on whether we should consider a computation to be terminating in the absence of any 
time bound.

A total correctness semantics makes the proof of invariance properties difficult, or even 
impossible.  For example, we cannot prove

xʹ≥x   ⇐   while b do xʹ≥x od
which says, quite reasonably, that if the body of a loop doesn't decrease  x , then the loop doesn't 
decrease  x .  The problem is that the semantics does not allow us to separate such invariance 
properties from the question of termination.  In the recursive time semantics, in place of

S   ⇐   while b do P od
we write

S   ⇐   if b then P;  t:= t+1;  S else ok fi
and the proof of the invariance property

xʹ≥x   ⇐   if b then xʹ≥x;  t:= t+1;  xʹ≥x else ok fi
is easy.

In practice, neither the limit of approximations nor the (pre)fixed-point definition is usable for 
programming.  Instead, programming is split into partial correctness and termination argument.  
To prove

x≥1 ⇒ xʹ=1   ⇐   while x⧧1 do x:= x div 2 od
we prove partial correctness, which is

x≥1 ⇒ xʹ=1   ⇐   if x⧧1 then x:= x div 2;  x≥1 ⇒ xʹ=1 else ok fi
For termination we use a “variant” or “bound function” or “well-founded set”.  In this example, 
we show that for  x>1 ,  x  is decreased but not below  0  by the body  x:= x div 2  of the loop.  
The bound function is again recursive time in disguise.  We are showing that execution time is 
bounded by  x .  Then we throw away the bound, retaining only the one bit of information that 
there is a bound, so there is no incentive to find a tight bound.  In the example, showing that  x  is 
a variant corresponds to the proof of

x≥1 ⇒ tʹ–t≤x   ⇐   if x⧧1 then x:= x div 2;  t:= t+1;  x≥1 ⇒ tʹ–t≤x else ok fi
This linear time bound is rather loose;  for about the same effort, we can prove a logarithmic time 
bound:

x≥1 ⇒ tʹ ≤ t + log x   ⇐ if x⧧1 then x:= x div 2;  t:= t+1;  x≥1 ⇒ tʹ ≤ t + log x
else ok fi

In any case, we can express the termination proof in exactly the same form as the partial 
correctness proof (though occasionally time must be measured by a tuple of numbers, rather than 
just a single number).

A total correctness formalism introduces all the formal machinery necessary to calculate time 
bounds, but in a disguised and unusable way.  A proof of total correctness necessarily requires 
finding a time bound, then throws it away.  Of all the abstractions of time, total correctness gives 
least benefit for effort.  Furthermore, from Gödel and Turing we know that a complete and 
consistent theory in which termination can be expressed is impossible.  Any total correctness 
theory will therefore be incomplete in its treatment of termination.

Temporal Logic

An interesting abstraction of time is offered by temporal operators such as  ☐  (always),  ◇  
(sometime, eventually), and  ❍  (next).  We want  ☐P  to mean that  P  is true at all times during 
a computation, and   ◇P  to mean that  P  is true at some time during a computation.  Until now, 
we have assumed that only the initial and final states are observable, but for temporal operators 
we want intermediate states to be observable too.  We keep  t  and  tʹ  for the initial and final 
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execution time, but state variables  x ,  y , ... are now functions of time.  The value of  x  at time  t  
is  x t .  An expression such as  x+y  is also a function of time;  its argument is distributed to its 
variable operands as follows:  (x+y)t = x t + y t .  The programming notations are redefined as 
follows.

ok   =   tʹ=t
x:= e   =   tʹ = t+1  ∧  x tʹ = e t  ∧  y tʹ = y t  ∧  ...
P;Q   =   ∃tʹʹ: t≤tʹʹ≤tʹ· (substitute  tʹʹ for  tʹ  in  P ) ∧ (substitute  tʹʹ for  t  in  Q )
if b then P else Q   =   b t ∧ P  ∨  ¬ b t ∧ Q

We can now talk about intermediate states.  For example,
x:= x+3;  x:= x+4

= tʹ=t+2 ∧ x(t+1) = x t + 3  ∧  x(t+2) = x t + 7  ∧  y t = y(t+1) = y(t+2)
As before, any implementable specification  S  is a program if a program  P  is provided such that  
S⇐P  is a theorem.  Recursion is allowed if it is preceded by the passage of time.  An assignment 
is assumed to take time  1 , but that is easily changed if one wants a different measure of time.

Before defining the temporal operators, here is a nice way to look at quantifiers:  a quantifier is 
an operator that applies to functions.  The quantifiers  Σ  and  Π  apply to functions that have a 
numeric result, and the quantifiers  ∀   and  ∃   apply to functions that have a binary result (a 
function with a binary result is called a predicate).  If  f  is a function with numeric result, then  
Σf  is the numeric result of applying  f  to all its domain elements and adding up all the results.  
Similarly  Πf  is the numeric result of applying  f  to all its domain elements and multiplying all 
the results.  If  p  is a predicate, then  ∀p  is the binary result of applying  p  to all its domain 
elements and conjoining all the results.  Similarly  ∃p  is the binary result of applying  p  to all its 
domain elements and disjoining all the results.  For the sake of tradition, when a quantifier is 
applied to a function written as  〈v: D· b〉 , the  〈  〉   brackets are omitted.  For example, the 
application of  Σ   to  〈n: nat· 1/2n〉  is written  Σn: nat· 1/2n , and the application of  ∀   to  
〈r: rat· r<0 ∨ r=0 ∨ r>0〉  is written  ∀r: rat· r<0 ∨ r=0 ∨ r>0 .

This treatment of quantifiers allows us to write the Generalization and Specialization Laws as 
follows:  if  x  is in the domain of  p , then

∀p   ⇒   p x   ⇒   ∃p
A quantification such as  ∀x· f x  can be written more briefly as  ∀f .  With composition of 
operators, we can write deMorgan's Laws this way:

¬∀p   =   ∃¬p
¬∃p   =   ∀¬p

Let  S  be a specification.  The extension of  S , written  S  and pronounced “ S  extended”, is 
defined as follows.

S   =   〈tʹʹ:  t≤tʹʹ≤tʹ· (substitute  tʹʹ  for  t  in  S )〉
Whatever  S  may say about time  t ,  S  says about any time from  t  to  tʹ .  Now we define

☐S  =   ∀S
◇S  =   ∃S
❍S   =   S(t+1)

These definitions give us something close to Interval Temporal Logic [Moszkowski86].  We can 
prove deMorgan's Laws

¬☐S   =   ◇¬S
¬◇S   =   ☐¬S

and other identities of ITL, such as
◇S   =   ⊤; S

But we still have a time variable.  We can say that  x  is constant like this:  ☐ x t = x tʹ .  We can 
prove
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❍S  =  tʹ=t+1; S  =  tʹ≥t+1 ∧ (substitute  t+1  for  t  in  S )

In Interval Temporal Logic, time is discrete.  With the definitions of  ☐  and  ◇  given above, 
time can be discrete or continuous.  If it is continuous, we might like to strengthen assignment as 
follows:

x:= e   =   tʹ=t+1  ∧  x tʹ = e t  ∧  (☐ y tʹ = y t)  ∧  ...
so that unaffected variables remain continuously constant, while  x  is unknown during the 
assignment and known to have its newly assigned value only at the end.  With continuous time, 
the  ❍  operator no longer means “next”, and is not particularly useful.  If time is discrete, we 
can say that  x  never decreases like this:  ☐ x(t+1) ≥ x t .  If time is discrete and  tʹ=∞ , we can 
prove the fixed-point equations

☐S   =   S ∧ ☐❍S
◇S   =   S ∨ ◇❍S

Temporal logic considers time to be too holy to speak its name;  it replaces  ∀t ,  ∃t , and  t+1  by  
☐ ,  ◇ , and  ❍ .  We need quantifiers for many purposes, and we quantify over many things.  
The temporal operators  ☐  and  ◇   replace the usual quantifiers  ∀   and  ∃   only for 
quantifications over time, and then only in some cases.  We needed  ∃   over time to define 
sequential execution (chop in Interval Temporal Logic).  With two sets of symbols to do similar 
jobs, we are burdened with learning two sets of similar laws.  By treating quantifiers as 
operators, and by defining extensions, we make the usual quantifiers just as convenient for time 
as the temporal operators.  On the other hand, if extensions are used only in combination with 
quantifiers, we might still prefer to write  ☐S  and  ◇S  than to write  ∀S  and  ∃S .  (Underscore 
is a poor notation anyway.)

As noted already, the “next” operator is useless for continuous time;  in a practical sense, it is 
also inadequate for discrete time.  Arithmetic operations on the time variable are a convenient 
and familiar way to express specifications concerning quantities of time.  To be limited to a 
successor operator is too constraining.

Concurrency

A computation is sometimes modeled as a sequence of states, or state transitions.  The index (or 
position) of a state (or transition) in a sequence is an abstraction of the time of its occurrence.  In 
some models, an increasing index means increasing time;  in others, it means nondecreasing 
time.  A sequence of computations is easily composed into a single computation just by joining.  
But composition of parallel computations is not so obvious.

Suppose computation is a sequence of actions, and an increasing index represents nondecreasing 
time.  Then two adjacent actions in the sequence may perhaps occur at the same time.  So it 
seems we have a possibility to represent concurrency.  But how do we distinguish concurrent 
actions from sequential adjacent actions?  An answer that has often been given is the following:  
if a specification allows two actions to occur adjacently in either order, then they are concurrent.  
This answer has been well criticized for confusing nondeterminacy (disjunction) with 
concurrency.  Saying that two actions occur sequentially in either order is not the same as saying 
they occur concurrently.

This abstraction of time, as an index in a sequence, leads to another well-known problem.  If 
parallel processes are represented as an interleaving of actions, we stretch time;  a longer 
sequence is needed to represent the same time.  Perhaps we do not mind, but many people have 
been concerned to say that time must not be stretched too far:  a finite time (for one process) 
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must not require an infinite sequence.  This is the issue of fairness, and it suffers the same 
criticisms as a total correctness formalism.

Concurrency is basically conjunction.  To say that  P  and  Q  are concurrent is to say that  P  and  
Q  both describe the computation.  In [Hoare81], parallelism is distinguished from 
communication between processes;  the parallelism is disjoint, and it is exactly conjunction.  
When memory is shared, there is a problem:  conjunction is not always implementable, even 
when both conjuncts are.  For example,  x:= 2 || x:= 3  asks for two, contradictory actions at the 
same time (it does not ask for two actions sequentially in either order).  We may dismiss this 
example, saying that anyone who asks for the impossible should not expect to get it.  But here is 
a less easily dismissed example:  x:= x+1 || y:= y+1 .  The left process says not only that  x  is 
increased, but also that  y  is unchanged.  The right process says that  y  is increased and  x  is 
unchanged.  Again, they contradict each other.  What we want, of course, is that  x  and  y  are 
increased, and all other variables are unchanged.

In a semantics that does not measure time, and hides intermediate states, such as the partial 
correctness and total correctness semantics shown earlier, there is another problem.  In such a 
semantics,

x:= x+1;  x:= x–1   =   ok
And so, with no escape,

(x:= x+1;  x:= x–1)  ||  y:= x
= ok || y:= x

According to the first line, it may seem that  yʹ = x+1  is a possibility:  the right  process  y:= x  
may be executed in between the two assignments  x:= x+1  and  x:= x–1  in the left process.  
According to the last line, this does not happen;  the final value of  y  is the initial value of  x .  
No process may see or affect the intermediate states of another process.  Intermediate state arises 
in the definition of sequential execution;  it is the means by which information is passed from 
one program to a sequentially later program.  It was not invented for passing information 
between parallel processes, and cannot be used for that purpose.

Useful concurrency is still possible in a semantics that does not measure time and hides 
intermediate states.  Information can be passed between processes by communication primitives 
designed for the purpose.  For one such definition, see [Hehner93].

For parallel processes to co-operate through shared memory, they must make their intermediate 
states visible to each other, and make their times explicit.  The semantics in the section on 
temporal logic does exactly that.  We need two more auxiliary ideas.  First, we define  wait  as an 
easily implemented specification whose execution takes an arbitrary amount of time, and leaves 
all other variables unchanged during that time.

wait   =   tʹ≥t  ∧  ☐ x t = x tʹ ∧ y t = y tʹ ∧ ...
As in the definition of assignment, we must know what the state variables are in order to write 
the right side of this equation.  We have been assuming throughout this paper that we always 
know what our state variables are in any specification.  To make it explicit, we can adopt a 
notation similar to that used in [Morgan90].  Let  α::P  be specification  P  with state variables  α  
and  t .  For example,

x,y::(x:= y+z)   =   tʹ = t+1  ∧  x tʹ = (y+z) t  ∧  y tʹ = y t
Here,  x ,  y  and  t  are the state variables;  z  is an ordinary variable, or parameter of the 
specification.  That was the second auxiliary idea.  Now we define parallel composition as 
follows.

α::P  ||  β::Q   =   α::(P; wait)  ∧  β::(Q; wait)
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If  P  and  Q  are programs, we do not need to state  α  and  β  because they can be determined 
syntactically from the variables that appear on the left of assignments.  Of course, to make use of  
||  for programming, we must define it for more than just program operands.

Here is a simple example in variables  x  and  y   just to see that it works.
(x:= 2;  x:= x+y;  x:= x+y) || (y:= 3;  y:= x+y)

= (tʹ = t+1  ∧  xtʹ=2;  tʹ=t+1  ∧  xtʹ = xt+yt;  tʹ=t+1  ∧  xtʹ = xt+yt)
∧ (tʹ = t+1  ∧  ytʹ = 3;  tʹ = t+1  ∧  ytʹ = xt+yt;  tʹ≥t  ∧  ☐ ytʹ=yt)

∨ (tʹ = t+1  ∧  xtʹ=2;  tʹ=t+1  ∧  xtʹ = xt+yt;  tʹ=t+1  ∧  xtʹ = xt+yt;  tʹ≥t  ∧  ☐ xtʹ=xt)
∧ (tʹ = t+1  ∧  ytʹ = 3;  tʹ = t+1  ∧  ytʹ = xt+yt)

= tʹ = t+3  ∧  x(t+1)=2  ∧  x(t+2) = x(t+1)+y(t+1)  ∧  x(t+3) = x(t+2)+y(t+2)
∧ tʹ ≥ t+2  ∧  y(t+1)=3  ∧  y(t+2) = x(t+1)+y(t+1)  ∧  (☐ ytʹ = y(t+2))

∨ tʹ ≥ t+3  ∧  (other conjuncts)
∧ tʹ = t+2  ∧  (other conjuncts)

= tʹ=t+3  ∧  x(t+1)=2  ∧  y(t+1)=3  ∧  x(t+2)=5  ∧  y(t+2)=5  ∧  x(t+3)=10  ∧  y(t+3)=5
In that example, for ease of calculation, we made the unrealistic assumption that every 
assignment takes exactly one time unit.  To be more realistic, we could suppose that assignment 
time depends on the operators within the assignment's expression, and possibly on the values of 
the operands.  We could also allow the time to be nondeterministic, perhaps with lower and 
upper bounds, by writing  a ≤ tʹ–t < b .  Whatever timing policy we decide on, whether 
deterministic or nondeterministic, whether discrete or continuous, the definitions and theory 
remain unchanged.  Of course, complicated timing leads quickly to very complicated semantic 
expressions that describe all possible interactions.  If we want to know only something, not 
everything, about the possible behaviors, we can proceed by implications instead of equations, 
weakening for the purpose of simplifying.  Programming goes the other way:  we start with a 
specification of desired behavior, and strengthen as necessary to obtain a program.

Here are some useful laws that can be proven from the definition of concurrent composition just 
given.  Let  b  be a binary expression and let  P ,  Q ,  R , and  S  be specifications.  Then

P || Q  =  Q || P symmetry
P || (Q || R)  =  (P || Q) || R associativity
P || ok  =  ok || P  =  P identity
P || Q∨R  =  (P || Q) ∨ (P || R) distributivity
P || if b then Q else R fi  =  if b then P||Q else P||R fi   distributivity
if b then P||Q else R||S fi  =  if b then P else R fi || if b then Q else S fi  distributivity

a Caution concerning Synchronization

In FORTRAN (prior to 1977) we could have a sequential composition of if-statements, but we 
could not have an if-statement containing a sequential composition.  In ALGOL the syntax was 
fully recursive;  sequential and conditional compositions could be nested, each within the other.  
Did we learn a lesson?  Apparently we did not learn a very general one:  we now seem happy to 
have a parallel composition of sequential compositions, but very reluctant to have a sequential 
composition of parallel compositions.

Suppose, for example, that we decide to have two processes, as follows.
(x:= x+y;  x:= x×y)

|| (y:= x–y;  y:= x/y)
The first modifies  x  twice, and the second modifies  y  twice.  Suppose we want to synchronize 
the two processes at their mid-points, between the two assignments, forcing the faster process to 
wait for the slower one, and then to allow the two processes to continue with the new, updated 
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values of  x  and  y .  The usual solution is to invent synchronization primitives to control the rate 
of execution of processes.  But synchronization is sequencing, and we already have an adequate 
sequencing primitive.  The solution should be

(x:= x+y  ||  y:= x–y);  (x:= x×y  ||  y:= x/y)
We just allow a sequential composition of parallel compositions.

an Aside concerning Specification

The specifications in this paper are binary expressions.  Traditionally, the presence or possibility 
of quantifiers turns a binary expression into a predicate;  in this paper, a predicate is a function 
with binary range, and the quantifiers  ∀  and  ∃  apply to predicates to produce a binary value.  
Thus  ∀x: int· x≤y  is a binary expression.

We could have used predicate expressions rather than binary expressions for specifications;  the 
difference is language level.  A predicate expression takes arguments by position, or address, 
whereas a binary expression is supplied values for variables by their names.  For example, in the 
predicate expression  〈x, y: int· x≤y〉 , the names  x  and  y  are local (bound) and of no global 
significance (not free).  We can supply  3  as first argument and  5  as second argument, as 
follows:

〈x, y: int· x≤y〉 3 5
In the binary expression  x≤y , the names  x  and  y  are nonlocal (free), and we can supply value  
3  for  x  and  5  for  y  as follows:

x:= 3; y:= 5; x≤y
according to the Substitution Law.  For the convenience of using variables' names rather than 
addresses, we have used binary expressions rather than predicates for specifications.

In the well-known theory called Hoare Logic, a specification is a pair of binary expressions.  We 
specify that variable  x  is to be increased as follows:

{x = X} S {x > X}
(The parentheses were originally around  S , but no matter.)  In Dijkstra's theory of weakest 
preconditions, it is similar:

x=X ⇒ wp S (x>X)
There are two problems with these notations:  X  and  S .  They do not provide any way of 
relating the prestate and the poststate, hence the introduction of  X .  We ought to write  ∀X , 
making  X  local, but customarily the quantifier is omitted.  This problem is solved in the Vienna 
Development Method, in which the same specification is

{true} S {xʹ > x}
The other problem is that the programming language and specification language are disjoint, 
hence the introduction of  S .  Again,  S  should be local, but the appropriate quantifier is not 
obvious, and it is customarily omitted.  In [Hehner84, Hoare92, Hehner93], the programming 
language is a sublanguage of the specification language.  The specification that  x  is to be 
increased is

xʹ > x
The same single-expression double-state specifications are used in Z, but refinement is rather 
complicated.  In Z,  S  is refined by  P  if and only if

∀σ· (∃σʹ· S) ⇒ (∃σʹ· P) ∧ (∀σʹ· S ⇐ P)
where  σ  is the state variables.  In Hoare Logic,  {P} S {Q}  is refined by  {R} S {U}  if and 
only if

∀σ· P  ⇒  R ∧ (Q ⇐ U)
In this paper,  S  is refined by  P  if and only if

∀σ, σʹ· S ⇐ P
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Since refinement is what we must prove when programming, it is best to make refinement as 
simple as possible.

One might suppose that any type of mathematical expression can be used as a specification:  
whatever works.  A specification of something, whether cars or computations, distinguishes those 
things that satisfy it from those that don't.  Observation of something provides values for certain 
variables, and on the basis of those values we must be able to determine whether the something 
satisfies the specification.  Thus we have a specification, some values for variables, and two 
possible outcomes.  That is exactly the job of a binary expression:  a specification (of anything) 
really is a binary expression.  If instead we use a pair of predicates, or a function from predicates 
to predicates, or anything else, we make our specifications in an indirect way, and we make the 
task of determining satisfaction more difficult.

One might suppose that any binary expression can be used to specify any computer behavior:  
whatever correspondence works.  In Z, the expression  ⊤  is used to specify (describe) 
terminating computations, and  ⊥   is used to specify (describe) nonterminating computations.  
The reasoning is something like this:   ⊥  is the specification for which there is no satisfactory 
final state;  an infinite computation is behavior for which there is no final state;  hence  ⊥  
represents infinite computation.  Although we cannot observe a “final” state of an infinite 
computation, we can observe, simply by waiting 10 time units, that it satisfies  tʹ ≥ t+10 , and it 
does not satisfy  tʹ < t+10 .  Thus it ought to satisfy any specification implied by  tʹ ≥ t+10 , 
including  ⊤ , and it ought not to satisfy any specification that implies  tʹ < t+10 , including  ⊥ .  
Since  ⊥   is not true of anything, it does not (truly) describe anything.  A specification is a 
description, and  ⊥  is not satisfiable, not even by nonterminating computations.  Since  ⊤  is true 
of everything, it (truly) describes everything, even nonterminating computations.  To say that  P  
refines  Q  is to say that all behavior satisfying  P  also satisfies  Q , which is just implication.  
The correspondence between specifications and computer behavior is not arbitrary.

Conclusions

The most striking conclusion of this paper is that a total correctness semantics is not worth its 
trouble.  It is a considerable complication over a partial correctness semantics in order to gain 
one bit of information of dubious value (since nontermination cannot be observed, a promise of 
termination without a time bound is worthless).  Partial correctness, with a time variable, 
provides more information at less cost.  (The pejorative term “partial correctness” should not be 
used, and was not used in [Hoare69].)

Another contribution of this paper is a new semantics for Interval Temporal Logic, based on a 
binary semantics of visible intermediate states, and using extensions.  This semantics allows 
arbitrary arithmetic on a time variable, using the temporal operators as convenient 
quantifications.

And finally, a compositional semantics of concurrency with shared variables is presented.
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