Let \(x \) and \(y \) be integer variables. Find the exact precondition for \(x' = y \) to be refined by \(y := 1 \).

\[
\forall x', y'. x' = y \iff (y := 1)
\]

\[
\forall x', y'. x' = y \iff x' = x \land y' = 1
\]

\(x = y \)

Let \(x \) and \(y \) be integer variables. Prove \(x + y = 5 \) is an invariant for
\[
x := x + 1. \quad y := y - 1
\]

\[
(x + y = 5 \Rightarrow x' + y' = 5) \iff (x := x + 1. \quad y := y - 1)
\]

\(x = y \)

The notation \(\textbf{do } P \textbf{ while } b \textbf{ od} \) has been used as a loop construct that is executed as follows. First, \(P \) is executed; then \(b \) is evaluated, and if its value is \(\top \), then execution is repeated, and if its value is \(\bot \), then execution is finished. Let \(m \) and \(n \) be integer variables. Prove
\[
m := m + n - 10. \quad n := 10 \iff \textbf{do } m := m - 1. \quad n := n + 1 \textbf{ while } n \neq 10 \textbf{ od}
\]

Apparently, we are not talking about time in this question; we don't have variable \(t \). So we can't talk about termination or nontermination, because those are timing issues.

I prove
\[
m := m + n - 10. \quad n := 10 \iff \textbf{do } m := m - 1. \quad n := n + 1 \textbf{ if } n \neq 10 \textbf{ then } m := m + n - 10. \quad n := 10 \textbf{ else } \textbf{ ok fi}
\]

starting with the right side.
\[
m := m - 1. \quad n := n + 1. \quad \textbf{if } n \neq 10 \textbf{ then } m := m + n - 10. \quad n := 10 \textbf{ else } \textbf{ ok fi}
\]

replace \(n := 10 \) and \(\textbf{ ok fi} \)
\[
m := m - 1. \quad n := n + 1. \quad \textbf{if } n \neq 10 \textbf{ then } m := m + n - 10. \quad m' = m \land n' = 10 \textbf{ else } m' = m \land n' = n \textbf{ fi}
\]

substitution law in \(\textbf{ then part } \)
\[
m := m - 1. \quad n := n + 1. \quad \textbf{if } n \neq 10 \textbf{ then } m' = m + n - 10 \land n' = 10 \textbf{ else } m' = m \land n' = n \textbf{ fi}
\]

substitution law twice
\[
\textbf{if } n \neq 10 \textbf{ then } m' = m + n - 10 \land n' = 10 \textbf{ else } m' = m + n - 10 \land n' = 10 \textbf{ fi}
\]

\(\textbf{ case idempotent } \)
\[
m' = m + n - 10 \land n' = 10 \textbf{ definition of assignment and sequential composition}
\]
\[
m := m + n - 10. \quad n := 10
\]

If we were talking about time, we couldn't leave the specification as
\[
m := m + n - 10. \quad n := 10
\]

because, by the recursive measure, that takes no time, and the implementation
\[
\textbf{ do } m := m - 1. \quad n := n + 1 \textbf{ while } n \neq 10 \textbf{ od}
\]

is a loop with time \((n < 10 \Rightarrow t' = t + 10 - n) \land (n \geq 10 \Rightarrow t' = \infty) \).
Let L be a list-of-integers variable, $L: [*int]$. Here is a \texttt{for}\text{-}loop that changes all the negative items of L to 0 , and otherwise leaves L unchanged.

\texttt{for n:= 0;..#L do if L i < 0 then L := i \rightarrow 0 \mid L else ok fi od}

State formally what must be proven in order to prove that this program is correct. You do not need to prove it; you just need to say what must be proven.

TYPO - Sorry about that. Announced in the test: the \texttt{for}\text{-}loop should be

\texttt{for i:= 0;..#L do if L i < 0 then L := i \rightarrow 0 \mid L else ok fi od}

§ Define F_i as

$$F_i \equiv \#L = \#L \land (\forall j: 0,..i \cdot L' j = L j) \land (\forall j: i,..\#L \cdot L' j = (L j)^{0})$$

Then F_0 specifies the problem. We must prove

$$F_i \iff i: 0,..\#L \land (\text{if } L i < 0 \text{ then } L := i \rightarrow 0 \mid L \text{ else ok fi. } F(i+1))$$

and

$$F(\#L) \iff \text{ok}$$