1. What is the smallest bunch satisfying the given equation. Express your answer formally. No proof needed.

(a) [3] \(B = 0, 2 \times B + 1 \)

(b) [3] \(B = 2, B \times B \)

2. [12] Let \(i \) be an extended integer variable, and let \(t \) be time, in the refinement

\[
P \iff \begin{cases}
 \text{if } i = 0 \text{ then } \text{ok} \text{ else } i := i-1. \quad t := t+1. \end{cases} \quad P \fi
\]

Using recursive construction starting with \text{ok}, find a solution for \(P \). You do not need to verify that it is a solution.

3. [6] The notation \(\text{do } P \text{ while } b \text{ od} \) has been used as a loop construct that is executed as follows. First \(P \) is executed; then \(b \) is evaluated, and if \(b \) is \(\top \), execution is repeated, and if \(b \) is \(\bot \), execution is finished. Define \(\text{do } P \text{ while } b \text{ od} \) by ordinary construction and induction axioms. You can ignore time.

4. Let \(a \), \(c \), and \(x \) be natural variables. Variables \(a \) and \(c \) are implementer's variables, and \(x \) is a user's variable for the operations

\[
\begin{align*}
\text{start} & \equiv a := 1. \quad c := 0 \\
\text{double} & \equiv a := a \times 2. \quad c := c + 1 \\
\text{ask} & \equiv x := c
\end{align*}
\]

Operation \(\text{start} \) starts variable \(a \) at \(1 \). Then repeated use of operation \(\text{double} \) doubles it some number of times. Variable \(c \) counts how many times \(a \) is doubled. Operation \(\text{ask} \) asks how many times \(a \) has been doubled since the last \(\text{start} \) operation. Reimplement this theory replacing the old implementer's variable \(a \) with nothing.

(a) [6] What is the data transformer? Prove it is a data transformer.

(b) [12] Using your data transformer, transform \(\text{double} \).