0 Let \(s \) and \(n \) be \(nat \) variables. Here is a refinement.
\[
\begin{align*}
s' &= s + 2^n - 1 \quad \iff \quad \text{if } n=0 \text{ then } ok \text{ else } n := n-1. \quad s := s + 2^n. \quad s' = s + 2^n - 1 \fi
\end{align*}
\]
(a)[12] Prove it.
(b)[3] Insert appropriate time increments according to the recursive measure, and write appropriate timing specifications.
(c)[6] Prove the timing refinement.

1[9] Let \(S \) be a bunch of strings. Using construction and induction, define \(T \) to be the bunch of all strings formed by joining together any number of any strings in \(S \) in any order. (Do not use the \(* \) operator; in effect, you are defining the \(* \) operator.)

2[12] Let \(i \) be an extended integer variable, and let \(t \) be an extended natural time variable. Let \(P \) be a specification such that
\[
\begin{align*}
P &\quad \iff \quad \text{if } i=0 \text{ then } ok \text{ else } i := i-1. \quad t := t+1. \quad P \fi
\end{align*}
\]
What solution for \(P \) does recursive construction give when we start with \(P_0 = t := \infty \)? (Find it, but you do not need to prove that it is a solution.)