1[6] Express formally that in list L, there is a segment of length 10 containing all items that occur anywhere in list L.

§

\[\#L \geq 10 \land \exists i: 0...\#L-9 \land \forall j: 0...\#L \exists k: i..i+10 \land L[j]=L[k] \]

or

\[\#L \geq 10 \land \exists i: 0...\#L-9 \land L(0,..\#L): L(i..i+10) \]

2[10] Let x and y be real variables. Prove that if $y=x^2$ is true before

$x := x+1. \ y := y + 2xx - 1$

then it is true after.

§

Here is one solution.

(the exact precondition for $y' = x^2$ to be refined by ($x := x+1. \ y := y + 2xx - 1$))

\[\forall x', y'. \ y' = x^2 \iff (x := x+1. \ y := y + 2xx - 1) \]

expand final assignment

\[\forall x', y'. \ y' = x^2 \iff (x := x+1. \ x' = x \land y' = y + 2xx - 1) \]

substitution law

\[\forall x', y'. \ y' = x^2 \iff x'=x+1 \land y' = y + 2xx(x+1) - 1 \]

one-point law

\[y + 2xx(x+1) - 1 = (x+1)^2 \]

arithmetic

\[y = x^2 \]

Here is another solution.

(the exact postcondition for $y = x^2$ to be refined by ($x := x+1. \ y := y + 2xx - 1$))

\[\forall x, y. \ y = x^2 \iff (x := x+1. \ y := y + 2xx - 1) \]

expand final assignment

\[\forall x, y. \ y = x^2 \iff (x := x+1. \ x' = x \land y' = y + 2xx - 1) \]

substitution law

\[\forall x, y. \ y = x^2 \iff x'=x+1 \land y' = y + 2xx(x+1) - 1 \]

one-point law for y

\[\forall x. \ y' = 2xx(x+1) + 1 = x^2 \iff x'=x+1 \]

one-point law for x

\[y' = 2xx(x'-1+1) + 1 = (x'-1)^2 \]

arithmetic

\[y' = x^2 \]

Here is yet another solution.

\[y=x^2 \land (x := x+1. \ y := y + 2xx - 1) \]

expand final assignment

\[y=x^2 \land (x := x+1. \ x' = x \land y' = y + 2xx - 1) \]

substitution law

\[y=x^2 \land x'=x+1 \land y' = y + 2xx(x+1) - 1 \]

context

\[y=x^2 \land x'=x+1 \land y' = x^2 + 2xx(x+1) - 1 \]

simplify

\[y=x^2 \land x'=x+1 \land y' = (x+1)^2 \]

context

\[y=x^2 \land x'=x+1 \land y' = x^2 \]

specialization

\[\implies y' = x^2 \]

Here is even one more solution. This one works only because ($x := x+1. \ y := y + 2xx - 1$) is both implementable and deterministic.

\[x := x+1. \ y := y + 2xx - 1 \land y=x^2 \]

substitution law

\[x := x+1. \ y + 2xx - 1 = x^2 \]

substitution law again

\[y + 2xx(x+1) - 1 = (x+1)^2 \]

arithmetic

\[y = x^2 \]
Let \(n \) and \(s \) be natural variables. The program
\[
R \iff s:=0. \ Q \\
Q \iff \text{if } n=0 \text{ then } ok \text{ else } n:=n-1. \ s:=s+n. \ Q \text{ fi}
\]
adds up the first \(n \) natural numbers.

(a)[6] Define \(R \) and \(Q \) appropriately.

\[
\begin{align*}
R & \iff s' = n \times (n-1)/2 \quad \text{or} \quad R \iff s' = \Sigma i: 0..n \ i \\
Q & \iff s' = s + n \times (n-1)/2 \quad \text{or} \quad Q \iff s' = s + \Sigma i: 0..n \ i
\end{align*}
\]

(b)[18] Prove the two refinements.

\[
\begin{align*}
\text{Proof of } R \text{ refinement:} \\
& s:=0. \ Q \\
\iff & s:=0. \ s' = s + n \times (n-1)/2 \quad \text{expand } Q \\
\iff & s' = n \times (n-1)/2 \\
\iff & R
\end{align*}
\]

\[
\begin{align*}
\text{Proof of } Q \text{ refinement, first case:} \\
& n=0 \land ok \\
\iff & n=0 \land n'=n \land s'=s \\
\Rightarrow & s' = s + n \times (n-1)/2 \\
\iff & Q
\end{align*}
\]

\[
\begin{align*}
\text{Proof of } Q \text{ refinement, last case:} \\
& n+0 \land (n:=n-1. \ s:=s+n. \ Q) \\
\iff & n+0 \land (n:=n-1. \ s:=s+n. \ s' = s + n \times (n-1)/2) \quad \text{expand } Q \\
\iff & n+0 \land s' = s + (n-1) + (n-1) \times ((n-1)-1)/2 \\
\Rightarrow & s' = s + n \times (n-1)/2 \\
\iff & Q
\end{align*}
\]

4[18] Let \(L \) be a variable, \(L: [*\text{int}] \). Using the notations and methods of this course, write a program that changes all the negative items of \(L \) to 0, and leaves all the nonnegative items of \(L \) unchanged. Write all specifications and refinements formally, but you do not need to prove the refinements. Include recursive time.

\[
\begin{align*}
\text{§ Let the specification be } P, \text{ defined as} \\
& P \iff \#L'=\#L \land t'=t+\#L \land \forall i: 0..\#L \ (L'i = \text{max}(L) 0) \\
\text{Let } n \text{ be a variable, } n: \text{nat}, \text{ and let } Q \text{ be another specification, defined as} \\
& Q \iff \#L'=\#L \land t'=t+\#L-n \land \forall i: 0..n' \ (L'i = L) \land \forall i: n..\#L \ (L'i = \text{max}(L) 0)
\end{align*}
\]

The refinements are
\[
\begin{align*}
P & \iff n:=0. \ Q \\
Q & \iff \text{if } n=\#L \text{ then } ok \\
& \text{else if } Ln<0 \text{ then } L:=n\to 0 \mid L \text{ else } ok \text{ fi.} \\
& n:=n+1. \ t:=t+1. \ Q \text{ fi.}
\end{align*}
\]

The assignment \(L:=n\to 0 \mid L \) could also be written \(L \ n := 0 \), but it has to be changed to \(L:=n\to 0 \mid L \) before any proof. Here is a for-loop solution. Define \(F \) as
\[
F i k \iff \#L'=\#L \land \forall j: i..k \ (L'j = \text{max}(L) 0) \land \forall j: (0..i), (k..\#L) \ (L'j = Lj) \\
\land t'=t+k-i
\]

Then
\[
\begin{align*}
P & \iff F 0 (\#L) \\
F 0 (\#L) & \iff \text{for } n:=0;..\#L \text{ do } F n (n+1) \text{ od} \\
F n (n+1) & \iff \text{if } Ln<0 \text{ then } L:=n\to 0 \mid L \text{ else } ok \text{ fi.} \ t:=t+1
\end{align*}
\]
In this question, the syntax \texttt{do } \textit{P} \texttt{od} is used to mean that \textit{P} is executed repeatedly, and within \textit{P}, the syntax \texttt{exit } \textit{n} \texttt{when } \textit{b} is used to mean that execution jumps out of \textit{n} loops if binary expression \textit{b} is \top. Here is a nest of loops. All \texttt{exits} are shown.

\begin{verbatim}
 do A.
 do B.
 do C.
 exit 1 when \textit{u}.
 exit 2 when \textit{v}.
 exit 3 when \textit{w}.
 D od.
 E od.
 F od.
\end{verbatim}

What refinements need to be proven in order to prove that this nest of loops refines specification \textit{S}?

§ Each loop needs a specification. Using \textit{R} and \textit{Q} for the inner loops,

\begin{verbatim}
\begin{align*}
 & S \iff A. R \\
 & R \iff B. Q \\
 & Q \iff C. \text{if } \textit{u} \text{ then } E. R \\
 & \quad \text{else if } \textit{v} \text{ then } F. S \\
 & \quad \text{else if } \textit{w} \text{ then } \textit{ok} \\
 & \quad \text{else } D. Q \text{ fi fi fi}
\end{align*}
\end{verbatim}

6 Define \textit{dbl} by the following recursive equation:

\texttt{dbl} = 2, \texttt{dbl} \times \texttt{dbl}

(a)[6] Show two bunches that satisfy the equation. (no proof needed)

§ \texttt{2nat}+1 and \texttt{nat} and \texttt{int} and \texttt{real}

(b)[6] What axiom must be added to define \textit{dbl} as the smallest bunch satisfying the equation?

§ \texttt{B} = \texttt{2, B} \times \texttt{B} \Rightarrow \texttt{dbl: B}

(c)[6] What is the smallest bunch satisfying the equation? (no proof needed)

§ \texttt{2nat}+1

7 In the program

\texttt{chan c: int \ c?}

(a)[3] add the time spent waiting for input according to the transit time measure.

§ \texttt{chan c: int \ t:= \textit{max t} (T_r + 1). c?}

(b)[9] including the time (from part (a)), rewrite the program without using any programming notations, and simplify as much as possible.

§ \begin{verbatim}
\begin{align*}
 \exists T, r, r', w, w'. & r:=0. w:=0. t:= \textit{max t} (T_r + 1). r:= r+1 \\
 \exists T, r, r', w, w'. & r:=0. w:=0. t:= \textit{max t} (T_r + 1). r'=r+1 \wedge w'=w \wedge t'=t \\
 \exists T, r, r', w, w'. & r'=0+1 \wedge w'=0 \wedge t'=\textit{max t} (T_0 + 1) \\
 \exists T. & t'=\textit{max t} (T_0 + 1) \\
 t'&\geq t
\end{align*}
\end{verbatim}