The notation \texttt{do }\texttt{P while }\texttt{b od} has been used as a loop construct that is executed as follows. First, \texttt{P} is executed; then \texttt{b} is evaluated, and if its value is \texttt{T} then execution is repeated, and if its value is \texttt{⊥} then execution is finished. Let the program variable be integer variable \texttt{x}. Prove that the specification \[\text{mod } x' \cdot 2 = \text{mod } x \cdot 2 \]
is refined by the loop \texttt{do x:= x–2 while x\geq 2 od}.

§ To prove \(S \) is refined by \texttt{do P while b od}, prove instead
\[S \iff \text{if } b \text{ then } S \text{ else ok fi} \]
So we prove
\[(\text{mod } x' \cdot 2 = \text{mod } x \cdot 2 \iff x:= x–2. \text{ if } x\geq 2 \text{ then } x' = x–2 \text{ else ok fi}) \]
replace \texttt{ok} by cases
\[(\text{mod } x' \cdot 2 = \text{mod } x \cdot 2 \iff x:= x–2. \text{ if } x\geq 2 \text{ then } x' = x–2 \text{ else } x' = x\text{–2 fi}) \]
specialization and
\[(\text{mod } x' \cdot 2 = \text{mod } x \cdot 2 \iff \text{mod } x' \cdot 2 = \text{mod } (x–2) \cdot 2 \text{ else } x' = x–2 \text{ fi}) \]
context again
\[(\text{mod } (x–2) \cdot 2 = \text{mod } x \cdot 2 \iff \text{mod } x' \cdot 2 = \text{mod } (x–2) \cdot 2) \]
context again
\[(\text{mod } (x–2) \cdot 2 = \text{mod } x \cdot 2 \iff x' = x–2) \]
\[= \top \land \top = \top \]

1 From the construction axiom \(0, 1, 2 \)-\texttt{few: few}

(a)[3] what elements are constructed?
§ \(0, 1, 2 \)

(b)[3] give three solutions (considering \texttt{few} as the unknown).
§ solution \((0, 1, 2) \) and solution \((0, 1/2, 1, 3/2, 2) \) and solution \((0, 1/3, 2/3, 1, 4/3, 5/3, 2) \) and solution \texttt{int} and solution \texttt{rat} and solution \texttt{real}

(c)[3] give the corresponding induction axiom.
§ \(0, 1, 2 \)-\texttt{B: B} \Rightarrow \texttt{few: B}

(d)[3] state which solution is specified by construction and induction.
§ solution \(0, 1, 2 \)
2 Let x and y be rational variables. Define program zot by the fixed-point equation

\[zot = \begin{cases}
 y := 0 & \text{if } x = y \\
 x := \frac{x+y}{2} & \text{else}
\end{cases} \]

where + is rational addition and / is rational division.

(a)[3] Add recursive time.

\[zot = \begin{cases}
 y := 0 & \text{if } x = y \\
 x := \frac{x+y}{2}. \ t := t+1. & \text{else}
\end{cases} \]

(b)[9] Give two solutions to this equation (with recursive time added) (considering zot as the unknown). (No proof needed.)

\[x = y \Rightarrow x' = x \land y' = 0 \land t' = t \\
\begin{cases}
 x = y & \text{if } x = y \\
 x' = x \land y' = 0 \land t' = t & \text{else}
\end{cases} \]

(c)[3] The definition of zot makes it a solution (fixed-point) of an equation. What axiom is needed to make zot the weakest solution (weakest fixed-point)?

\[(\forall x, y, t, x', y', t'. \ Z = \begin{cases}
 y := 0 & \text{if } x = 0 \\
 x := \frac{x+y}{2}. \ t := t+1. & \text{else}
\end{cases} \) \Rightarrow (\forall x, y, t, x', y', t'. \ Z \Rightarrow zot) \]