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Abstract

A team of agents is jointly able to achieve a goal if despite
any incomplete knowledge they may have about the world
or each other, they still know enough to be able to get to a
goal state. Unlike in the single-agent case, the mere exis-
tence of a working plan is not enough as there may be several
incompatible working plans and the agents may not be able
to choose a share that coordinates with those of the others.
Some formalizations of joint ability ignore this issue of co-
ordination within a coalition. Others, including those based
on game theory, deal with coordination, but require a com-
plete specification of what the agents believe. Such a com-
plete specification is often not available. Here we present a
new formalization of joint ability based on logical entailment
in the situation calculus that avoids both of these pitfalls.

Introduction
The coordination of teams of cooperating but autonomous
agents is a core problem in multiagent systems research. A
team of agents is jointly able to achieve a goal if despite any
incomplete knowledge or even false beliefs that they may
have about the world or each other, they still know enough
to be able to get to a goal state, should they choose to do
so. Unlike in the single-agent case, the mere existence of
a working plan is not sufficient since there may be several
incompatible working plans and the agents may not be able
to choose a share that coordinates with those of the others.

There is a large body of work in game theory (Osborne
& Rubinstein 1999) dealing with coordination and strategic
reasoning for agents. The classical game theory framework
has been very successful in dealing with many problems in
this area. However, a major limitation of the framework is
that it assumes that there is a complete specification of the
structure of the game including the beliefs of the agents. It is
also often assumed that this structure is common knowledge
among the agents. These assumptions often do not hold for
the team members, let alone for a third party attempting to
reason about what the team members can do.

In recent years, there has been a lot of work aimed at de-
veloping symbolic logics of games so that more incomplete
and qualitative specifications can be dealt with. This can
also lead to faster algorithms as sets of states that satisfy
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a property can be abstracted over in reasoning. However,
this work has often incorporated very strong assumptions of
its own. Many logics of games like Coalition Logic (Pauly
2002) and ATEL (van der Hoek & Wooldridge 2003) ignore
the issue of coordination within a coalition and assume that
the coalition can achieve a goal if there exists a strategy pro-
file that achieves the goal. This is only sufficient if we as-
sume that the agents can communicate arbitrarily to agree
on a joint plan / strategy profile. In addition, most logics of
games are propositional, which limits expressiveness.

In this paper, we develop a new first-order (with some
higher-order features) logic framework to model the coordi-
nation of coalitions of agents based on the situation calculus.
Our formalization of joint ability avoids both of the pitfalls
mentioned above: it supports reasoning on the basis of very
incomplete specifications about the belief states of the team
members and it ensures that team members do not have in-
compatible strategies. The formalization involves iterated
elimination of dominated strategies (Osborne & Rubinstein
1999). Each agent compares her strategies based on her pri-
vate beliefs. Initially, they consider all strategies possible.
Then they eliminate strategies that are not as good as oth-
ers given their beliefs about what strategies the other agents
have kept. This elimination process is repeated until it con-
verges to a set of preferred strategies for each agent. Joint
ability holds if all combinations of preferred strategies suc-
ceed in achieving the goal.

In the next section, we describe a simple game setup that
we use to generate example games, and test our account of
joint ability. Then, we present our formalization of joint
ability in the situation calculus. We show some examples
of the kind of ability results we can obtain in this logic. This
includes examples where we prove that joint ability holds
given very weak assumptions about the agents. Then, we
discuss related work and summarize our contributions.

A simple game setup
To illustrate our formalization of joint ability, we will em-
ploy a simple game setup that incorporates several simplify-
ing assumptions. Many of them (e.g. only two agents, public
actions, no communicative acts, goals that can be achieved
with just two actions) are either not required by our formal-
ization or are easy to circumvent; others are harder to get
around. We will return to these in the Discussion section.



In our examples, there are two agents, P and Q, one dis-
tinguished fluent F , and one distinguished action A. The
agents act synchronously and in turn: P acts first and then
they alternate. There is at least one other action A′, and pos-
sibly more. All actions are public (observed by both agents)
and can always be executed. There are no preestablished
conventions that would allow agents to rule out or prefer
strategies to others or to use actions as signals for coordina-
tion (e.g. similar to those used in the game of bridge). The
sorts of goals we will consider will only depend on whether
or not the fluent F held initially, whether or not P did action
A first, and whether or not Q then did action A.1 Since there
are 2×2×2 options, and since a goal can be satisfied by any
subset of these options, there are 28 = 256 possible goals to
consider.

This does not mean, however, that there are only 256 pos-
sible games. We assume the agents can have beliefs about
F and about each other. Since they may have beliefs about
the other’s beliefs about their beliefs and so on, there are,
in fact, an infinite number of games. At one extreme, we
may choose not to stipulate anything about the beliefs of
the agents; at the other extreme, we may specify completely
what each agent believes. In between, we may specify some
beliefs or disbeliefs and leave the rest of their internal state
open. For each such specification, and for each of the 256
goals, we may ask if the agents can jointly achieve the goal.2

Example 1: Suppose nothing is specified about the be-
liefs of P and Q. Consider a goal that is satisfied by P
doing A and Q not doing A regardless of F . In this case, P
and Q can jointly achieve the goal, since they do not need
to know anything about F or each other to do so. Had we
stipulated that P believed that F was true and Q believed
that F was false, we would still say that they could achieve
the goal despite the false belief that one of them has.

Example 2: Suppose we stipulate that Q knows that P
knows whether or not F holds. Consider a goal that is satis-
fied by P doing A and Q not doing A if F is true and P not
doing A and Q doing A if F is false. In this case, the two
agents can achieve the goal: P will do the right thing since
he knows whether F is true; Q will then do the opposite of
P since he knows that P knows what to do. The action of
P in this case behaves like a signal to Q. Interestingly, if we
merely require Q to believe that P knows whether or not F
holds, then even if this belief is true, it would not be suffi-
cient to imply joint ability (specifically, in the case where it
is true for the wrong reason; we will return to this).

Example 3: Suppose again we stipulate that Q knows
that P knows whether or not F holds. Consider a goal that
is satisfied by P doing anything and Q not doing A if F is
true and P doing anything and Q doing A if F is false. In
a sense this is a goal that is easier to achieve than the one
in Example 2, since it does not require any specific action
from P . Yet, in this case, it would not follow that they can

1We use the term “goal” not in the sense of an agent’s attitude,
but as a label for the state of affairs that we ask whether the agents
have enough information to achieve, should they choose to do so.

2We may also ask whether the agents believe or mutually be-
lieve that they have joint ability, but we defer this to later.

achieve the goal. Had we additionally stipulated that Q did
not know whether F held, we could be more definite and say
that they definitely cannot jointly achieve this goal as there
is nothing P can do to help Q figure out what to do.

Example 4: Suppose again we stipulate that Q knows that
P knows whether or not F holds. Consider a goal that is like
in Example 3 but easier, in that it also holds if both agents do
not do A when F is false. In this case, they can achieve the
goal. The reason, however, is quite subtle and depends on
looking at the various cases according to what P and Q be-
lieve. Similar to Example 2, requiring Q to have true belief
about P knowing whether F holds is not sufficient.

To the best of our knowledge, there is no existing formal
account where examples like these and their variants can be
formulated. We will return to this in the Related Work sec-
tion. In the next section, we present a formalization of joint
ability that handles the game setup above and much more
based on entailment in the situation calculus.

The formal framework
The basis of our framework for joint ability is the situation
calculus (McCarthy & Hayes 1969; Levesque, Pirri, & Re-
iter 1998). The situation calculus is a predicate calculus lan-
guage for representing dynamically changing domains. A
situation represents a possible state of the domain. There is
a set of initial situations corresponding to the ways the do-
main might be initially. The actual initial state of the domain
is represented by the distinguished initial situation constant,
S0. The term do(a, s) denotes the unique situation that re-
sults from an agent doing action a in situation s. Initial sit-
uations are defined as those that do not have a predecessor:
Init(s)

.
= ¬∃a∃s′. s = do(a, s′). In general, the situations

can be structured into a set of trees, where the root of each
tree is an initial situation and the arcs are actions. The for-
mula s v s′ is used to state that there is a path from sit-
uation s to situation s′. Our account of joint ability will
require some second-order features of the situation calculus,
including quantifying over certain functions from situations
to actions, that we call strategies.

Predicates and functions whose values may change from
situation to situation (and whose last argument is a situation)
are called fluents. The effects of actions on fluents are de-
fined using successor state axioms (Reiter 2001), which pro-
vide a succinct representation for both effect and frame ax-
ioms (McCarthy & Hayes 1969). To axiomatize a dynamic
domain in the situation calculus, we use action theories (Re-
iter 2001) consisting of (1) successor state axioms; (2) initial
state axioms, which describe the initial states of the domain
including the initial beliefs of the agents; (3) precondition
axioms, which specify the conditions under which each ac-
tion can be executed (we assume here that all actions are
always possible); (4) unique names axioms for the actions,
and (5) domain-independent foundational axioms (we adopt
the ones given in (Levesque, Pirri, & Reiter 1998) which
accommodate multiple initial situations).

For our examples, we only need three fluents: the fluent
F mentioned in the previous section in terms of which goals
are formulated, a fluent turn which says whose turn it is to
act, and a fluent B to deal with the beliefs of the agents.



Moore (Moore 1985) defined a possible-worlds semantics
for a logic of knowledge in the situation calculus by treating
situations as possible worlds. Scherl and Levesque (Scherl
& Levesque 2003) adapted this to Reiter’s action theories
and gave a successor state axiom for B that states how ac-
tions, including sensing actions, affect knowledge. Shapiro
et al. (Shapiro, Lespérance, & Levesque 1998) adapted this
to handle the beliefs of multiple agents, and we adopt their
account here. B(x, s′, s) will be used to denote that in sit-
uation s, agent x thinks that situation s′ might be the actual
situation. Note that the order of the situation arguments is
reversed from the convention in modal logic for accessibil-
ity relations. Belief is then defined as an abbreviation:3

Bel(x, φ[now], s)
.
= ∀s′.B(x, s′, s) ⊃ φ[s′].

We will also use

TBel(x, φ[now], s)
.
= Bel(x, φ[now], s) ∧ φ[s]

as an abbreviation for true belief (which we distinguish from
knowledge formalized as a KT45 operator, for reasons al-
luded to above in Example 2). Whenever we need knowl-
edge and not merely true belief, we can simply add the fol-
lowing initial reflexivity axiom (called IBR) to the theory:

Init(s) ⊃ B(x, s, s).

Mutual belief among the agents, denoted by MBel, can be
defined either as a fix-point or by introducing a new acces-
sibility relation using a second-order definition. Common
knowledge is then MBel under the IBR assumption.

Our examples use the following successor state axioms:

• F (do(a, s)) ≡ F (s).
The fluent F is unaffected by any action.

• turn(do(a, s)) = x ≡
x = P ∧ turn(s) = Q ∨ x = Q ∧ turn(s) = P .

Whose turn it is to act alternates between P and Q.

• B(x, s′, do(a, s)) ≡ ∃s′′.B(x, s′′, s) ∧ s′ = do(a, s′′).
This is a simplified version of the successor state axiom
proposed by Scherl and Levesque. See the Discussion
section for how it can be generalized.

The examples also include the following initial state axioms:

• Init(s) ⊃ turn(s) = P . So, agent P gets to act first.

• Init(s) ∧ B(x, s′, s) ⊃ Init(s′).
Each agent initially knows that it is in an initial situation.

• Init(s) ⊃ ∃s′B(x, s′, s).
Each agent initially has consistent beliefs.

• Init(s) ∧ B(x, s′, s) ⊃ ∀s′′. B(x, s′′, s′) ≡ B(x, s′′, s).
Each agent initially has introspection of her beliefs.

The last two properties of belief can be shown to hold for all
situations using the successor state axiom for B so that be-
lief satisfies the modal system KD45 (Chellas 1980). If we
include the IBR axiom, belief will satisfy the modal system
KT45. Since the axioms above are universally quantified,

3Free variables are assumed to be universally quantified from
outside. If φ is a formula with a single free situation variable, φ[t]
denotes φ with that variable replaced by situation term t. Instead
of φ[now] we occasionally omit the situation argument completely.

they are known to all agents, and in fact are common knowl-
edge. We will let Σe denote the action theory containing the
successor and initial state axioms above. All the examples
in the next section will use Σe with additional conditions.

Our definition of joint ability
We assume there are N agents named 1 to N . We use the
following abbreviations for representing strategy4 profiles:

• A vector of size N is used to denote a complete strategy
profile, e.g. ~σ for σ1, σ2, · · · , σN .

• ~σ-i
represents an incomplete profile with strategies for ev-

eryone except player i, i.e. σ1, · · · , σi−1, σi+1 · · · , σN .

• ⊕
i

is used to insert a strategy for player i into an incom-
plete profile: ~σ-i

⊕i δ : σ1, · · · , σi−1, δ, σi+1 · · · , σN .

• |i is used to substitute the ith player’s strategy in a com-
plete profile: ~σ|

i
δ : σ1, · · · , σi−1, δ, σi+1 · · · , σN .

All of the definitions below are abbreviations for formulas in
the language of the situation calculus presented above. The
joint ability of N agents to achieve φ is defined as follows:5

• JCan(φ, s)
.
=

∀~σ. [
∧N

i=1
Pref(i, σi, φ, s)] ⊃ Works(~σ, φ, s).

Agents 1 · · ·N can jointly achieve φ iff all combinations
of their preferred strategies work together.

• Works(~σ, φ, s)
.
= ∃s′′. s v s′′ ∧ φ[s′′] ∧

∀s′. s v s′ < s′′ ⊃∧N

i=1
(turn(s′) = i ⊃ do(σi(s

′), s′) v s′′).
Strategy profile ~σ works if there is a future situation where
φ holds and the strategies in the profile prescribe the ac-
tions to get there according to whose turn it is.

• Pref(i, σi, φ, s)
.
= ∀n. Keep(i, n, σi, φ, s)

Agent i prefers strategy σi if it is kept for all levels n.6

• Keep is defined inductively:7

– Keep(i, 0, σi, φ, s)
.
= Strategy(i, σi).

At level 0, all strategies are kept.
– Keep(i, n + 1, σi, φ, s)

.
= Keep(i, n, σi, φ, s) ∧

¬∃σ′
i. Keep(i, n, σ′

i, φ, s) ∧
GTE(i, n, σ′

i, σi, φ, s)∧¬GTE(i, n, σi, σ
′
i, φ, s).

For each agent i, the strategies kept at level n + 1 are
those kept at level n for which there is not a better one
(σ′

i is better than σi if it is as good as, i.e. greater than
or equal to, σi while σi is not as good as it).

• Strategy(i, σi)
.
=

∀s. turn(s) = i ⊃ ∃a. TBel(i, σi(now) = a, s).

4Strictly speaking, the σi’s are second-order variables ranging
over functions from situations to actions. We use Strategy(i, σi) to
restrict them to valid strategies.

5In the Discussion section, we consider the case where there
may be agents outside of the coalition of N agents.

6The quantification is over the sort natural number.
7Strictly speaking, the definition we propose here is ill-formed.

We want to use it with the second argument universally quanti-
fied (as in Pref). Keep and GTE actually need to be defined using
second-order logic, from which the definitions here emerge as con-
sequences. We omit the details for space reasons.



Strategies for an agent are functions from situations to ac-
tions such that the required action is known to the agent
whenever it is the agent’s turn to act.

• GTE(i, n, σi, σ
′
i, φ, s)

.
= Bel(i,∀~σ-i

. ([
∧

j 6=i

Keep(j, n, σj , φ, now) ∧ Works(~σ-i
⊕i σ′

i, φ, now)]
⊃ Works(~σ-i

⊕i σi, φ, now)), s).
Strategy σi is as good as (Greater Than or Equal to) σ′

i for
agent i if i believes that whenever σ′

i works with strategies
kept by the rest of the agents so does σi.

These formulas define joint ability in a way that resembles
the iterative elimination of weakly dominated strategies of
game theory (Osborne & Rubinstein 1999) (see the Related
Work section). As we will see in the examples to follow, the
mere existence of a working strategy profile is not enough;
the definition requires coordination among the agents in that
all preferred strategies must work together.

Formalizing the examples
As we mentioned, for each of the 256 possible goals we can
consider various assumptions about the beliefs of the agents.
In this section, we provide theorems for the goals of the four
examples mentioned earlier. Due to lack of space we omit
the proofs. Since there are only two agents, the previous
definitions can be simplified. For better exposition, we use
g (possibly superscripted) to refer to strategies of the first
agent (called P ) and h for those of the second (called Q).

Example 1
For this example, the goal is defined as follows:
φ1(s)

.
= ∃s′. Init(s′) ∧ ∃a. a 6= A ∧ s = do(a, do(A, s′))

Because the goal in this example (and other examples)
is only satisfied after exactly two actions, we can prove
that Works(g, h, φ1, s) depends only on the first action pre-
scribed by g and the response prescribed by h:

Lemma 1 Σe |= Init(s) ⊃
Works(g, h, φ1, s) ≡ g(s) = A ∧ h(do(A, s)) 6= A.

We can also show that P will only prefer to do A, and Q will
only prefer to do a non-A action. So, we have the following:

Theorem 1 Σe |= Init(s) ⊃ JCan(φ1, s).

It then trivially follows that the agents can achieve φ1 de-
spite having false beliefs about F :

Corollary 1 Σe |= [Init(s) ∧ Bel(P,¬F, s) ∧
Bel(Q,F, s)] ⊃ JCan(φ1, s).

We can also trivially show that the agents have mutual belief
that joint ability holds:

Corollary 2 Σe |= Init(s) ⊃ MBel(JCan(φ1, now), s).

Example 2
For this example, the goal is defined as follows:

φ2(s)
.
= ∃s′, a. Init(s′) ∧ a 6= A ∧ [F (s′) ∧

s = do(a, do(A, s′)) ∨ ¬F (s′) ∧ s = do(A, do(a, s′))].

Lemma 2 Σe |= Init(s) ⊃
Works(g, h, φ2, s) ≡ [F (s)∧g(s) = A∧h(do(A, s)) 6= A∨

¬F (s)∧g(s) 6= A∧h(do(g(s), s)) = A].

We will also use the following definitions:

• BW(x, φ, s)
.
= Bel(x, φ, s) ∨ Bel(x,¬φ, s)

the agent believes whether φ holds.

• TBW(x, φ, s)
.
= TBel(x, φ, s) ∨ TBel(x,¬φ, s).

As mentioned in Example 2, Q’s having true belief about
P truly believing whether F is not sufficient for joint ability:

Theorem 2 Σe ∪ {TBel(Q, TBW(P, F, now), S0)} 6|=
JCan(φ2, S0).

This is because TBel(Q, TBW(P, F, now), s) does not pre-
clude Q having a false belief about P , namely believing that
P believes that F is false when in fact P believes correctly
that F is true. To resolve this, we can simply add the IBR
axiom. Another approach is to remain in the KD45 logic but
assert that Q’s belief about P ’s belief of F is correct:

BTBel(Q,P, F, s)
.
=

[Bel(Q, TBel(P, F, now), s) ⊃ TBel(P, F, s)]∧
[Bel(Q, TBel(P,¬F, now), s) ⊃ TBel(P,¬F, s)]

To keep our framework as general as possible, we take
the second approach and add BTBel(Q,P, F, s) whenever
needed. With this, we have the following theorem:

Theorem 3 Σe |= [Init(s) ∧ BTBel(Q,P, F, s) ∧
TBel(Q, TBW(P, F, now), s)] ⊃ JCan(φ2, s).

It follows from the theorem that Q’s knowing that P
knows whether F holds is sufficient to get joint ability. More
interestingly, it follows immediately that common knowl-
edge of the fact that P knows whether F holds implies com-
mon knowledge of joint ability.

Example 3
The goal for this example is easier to satisfy than the one in
Example 2 (i.e. Σe |= φ2(s) ⊃ φ3(s)):
φ3(s)

.
= ∃s′, a, b. Init(s′) ∧

[F (s′) ∧ b 6= A ∧ s = do(b, do(a, s′)) ∨
¬F (s′) ∧ b = A ∧ s = do(b, do(a, s′))].

Nonetheless, unlike in Example 2, it does not follow that the
agents can achieve the goal (cf. theorem 3):

Theorem 4 Σe 6|= [BTBel(Q,P, F, S0) ∧
TBel(Q, TBW(P, F, now), S0)] ⊃ JCan(φ3, S0).

In fact, we can prove a stronger result that if Q does not
believe whether F holds they cannot jointly achieve φ3:

Theorem 5 Σe |= ¬BW(Q,F, S0) ⊃ ¬JCan(φ3, S0).

Note that there are two strategy profiles that the agents be-
lieve achieve φ3: (1) P does A when F holds and a non-A
action otherwise, and Q does the opposite of P ’s action; (2)
P does a non-A action when F holds and A otherwise, and
Q does the same action as P . However, Q does not know
which strategy P will follow and hence might choose an in-
compatible strategy. Therefore, although there are working
profiles, the existence of at least two incompatible kept pro-
files results in the lack of joint ability. We did not have this
problem in Example 2 since profile (2) did not work there.

We can prove that if Q truly believes whether F holds they
can achieve the goal as Q will know exactly what to do:

Theorem 6 Σe |= Init(s) ∧ TBW(Q,F, s) ⊃ JCan(φ3, s).



Example 4
The goal here is easier than the ones in Examples 2 and 3:
φ4(s)

.
= ∃s′, a, b. Init(s′) ∧

{F (s′) ∧ b 6= A ∧ s = do(b, do(a, s′)) ∨ ¬F (s′) ∧
[s = do(A, do(A, s′))∨b 6= A∧s = do(a, do(b, s′))]}.

Similarly to Example 2, we can show that if Q has true be-
lief about P truly believing whether F holds, then assuming
BTBel(Q,P, F, s), the agents can achieve the goal:
Theorem 7 Σe |= Init(s) ∧ BTBel(Q,P, F, s) ∧

TBel(Q, TBW(P, F, now), s) ⊃ JCan(φ4, s).
Note that there are many profiles that achieve φ4 (including
profiles (1) and (2) mentioned in Example 3). Nonetheless,
unlike in Example 3, we can prove by looking at various
cases that the agents can coordinate (even if ¬BW(Q,F, s)
holds) by eliminating their dominated strategies.

From the above theorem, it follows that Q’s knowing that
P knows whether F holds is sufficient to get joint ability.
More interestingly, common knowledge of the fact that P
knows whether F holds implies common knowledge of joint
ability even though Q may have incomplete beliefs about F .

Properties of the definition
We now present several properties of our definition to show
its plausibility in general terms. Let Σ be an arbitrary action
theory with a KD45 logic for the beliefs of N agents.

Our definition of ability is quite general and can be
nested within beliefs. The consequential closure prop-
erty of belief can be used to prove various subjective
properties about joint ability. For example, to prove
Bel(i, Bel(j, JCan(φ, now), now), S0), it is sufficient to find
a formula γ such that Σ |= ∀s. γ[s] ⊃ JCan(now, s) and
Σ |= Bel(i, Bel(j, γ, now), S0).

One simple case where we can show that an agent believes
that joint ability holds is when there is no need to coordi-
nate. In particular, if agent i has a strategy that she believes
achieves the goal regardless of choices of other team mem-
bers, then she believes that joint ability holds:8

Theorem 8 Σ |= [∃σi∀~σ-i
. Bel(i, Works(~σ-i

⊕i σi, φ,
now), S0)] ⊃ Bel(i, JCan(φ, now), S0).9

(Example 3 with BW(Q,F, s) is such a case: Q believes
that a strategy that says do A when F is false and do a non-
A action otherwise achieves the goal whatever P chooses.)
However, there are theories Σ′ such that even though agent
i has a strategy that always achieves the goal (regardless of
choices of others) joint ability does not actually follow:
Theorem 9 There are Σ′ and φ such that

Σ′∪{∃σi∀~σ-i
Works(~σ-i

⊕i σi, φ, S0)} 6|= JCan(φ, S0).
This is because agent i might not know that σi always works,
and hence might keep other incompatible strategies as well.

Another simple case where joint ability holds is when
there exists a strategy profile that every agent truly believes
works, and moreover everyone believes it is impossible to
achieve the goal if someone deviates from this profile:10

8Note that, however, this does not imply that joint ability holds
in the real world since i’s beliefs might be wrong.

9From here on, σ’s are intended to range over strategies.
10EBel(γ, s)

.
=

∧
N

i=1
Bel(i, γ, s).

Theorem 10 Σ |= [∃~σ. ETBel(Works(~σ, φ, now), S0) ∧
∀~σ′ 6= ~σ. EBel(¬Works(~σ′, φ, now), S0)] ⊃ JCan(φ, S0).

It turns out that joint ability can be proved from even weaker
conditions. ETBel(Works(~σ, φ, now), S0) in the antecedent
of Theorem 10 can be replaced by Works(~σ, φ, S0)∧∧N

i=1
¬Bel(i,¬Works(~σ, φ, now), S0), i.e. Works(~σ, φ, S0)

holds and is consistent with the beliefs of the agents. This is
because each agent i will only prefer her share of ~σ (i.e. σi).

We can generalize the result in Theorem 10 if we assume
there exists a strategy profile that is known by everyone to
achieve the goal. Then, it is sufficient for every agent to
know that their share in the profile is at least as good as any
other available strategy to them, for JCan to hold:

Theorem 11 Σ ∪ {IBR} |=

[∃~σ. EBel(Works(~σ, φ, now), S0) ∧ ∀~σ′.
∧N

i=1
Bel(i,

Works(~σ′, φ, now) ⊃ Works(~σ′|
i
σi, φ, now), S0)]

⊃ JCan(φ, S0).

Another important property of joint ability is that it is non-
monotonic w.r.t. the goal. Unlike in the single agent case,
it might be the case that a team is able to achieve a strong
goal while it is unable to achieve a weaker one (the goals in
Examples 3 and 4 are an instance of this):

Theorem 12 There are Σ′, φ, and φ′ such that
Σ′ |= φ(s) ⊃ φ′(s) but Σ′ 6|= JCan(φ, S0) ⊃ JCan(φ′, S0).

Discussion
Although the game in this paper makes several simplify-
ing assumptions for illustration purposes, many of them
are not actually required by our account of joint ability or
are easy to circumvent. For example, the formalization as
presented here supports more than two agents and goals
that are achieved after more than two actions. Although
the game does not involve any sensing or communicative
acts, our definition stays the same should we include such
actions. We only need to revise the successor state ax-
iom for belief accessibility as in (Scherl & Levesque 2003;
Shapiro, Lespérance, & Levesque 1998). Similarly, actions
that are not public can be handled with a variant axiom mak-
ing the action known only to the agent who performed it.
However, handling concurrent actions and actions with pre-
conditions is more challenging.

Also, the definition of joint ability presented here assumes
all N agents are in the same coalition. It can be straightfor-
wardly generalized to allow some agents to be outside of
the coalition. Let C be a coalition (i.e. a subset of agents
{1, · · · , N}). Since each agent j 6∈ C might conceivably
choose any of her strategies, agents inside the coalition C
must coordinate to make sure their choices achieve the goal
regardless of the choices of the agents outside C. It turns
out that a very slight modification to the definition of Keep
is sufficient for this purpose. In particular, the definition of
Keep for agents inside C remains unchanged while for every
agent j 6∈ C, we define Keep(j, n, σj , s)

.
= Strategy(j, σj).

Therefore, for every agent j outside the coalition we have
Pref(j, σj , s) ≡ Strategy(j, σj).



Related work

As mentioned, there has been much recent work on devel-
oping symbolic logics of cooperation. In (Wooldridge &
Jennings 1999) the authors propose a model of cooperative
problem solving and define joint ability by simply adapt-
ing the definition of single-agent ability, i.e. they take the
existence of a joint plan that the agents mutually believe
achieves the goal as sufficient for joint ability. They ad-
dress coordination in the plan formation phase where agents
negotiate to agree on a promising plan before starting to
act. Coalition logic, introduced in (Pauly 2002), formal-
izes reasoning about the power of coalitions in strategic
settings. It has modal operators corresponding to a coali-
tion being able to enforce various outcomes. The frame-
work is propositional and also ignores the issue of coordi-
nation inside the coalition. In a similar vein, van der Hoek
and Wooldridge propose ATEL, a variant of alternating-time
temporal logic enriched with epistemic relations in (van der
Hoek & Wooldridge 2003). Their framework also ignores
the issue of coordination inside a coalition. In (Jamroga &
van der Hoek 2004), the authors acknowledge this shortcom-
ing and address it by enriching the framework with extra
cooperation operators. These operators nonetheless require
either communication among coalition members, or a third-
party choosing a plan for the coalition.

The issue of coordination using domination-based solu-
tion concepts has been thoroughly explored in game the-
ory (Osborne & Rubinstein 1999). Our framework differs
from these approaches, however, in a number of ways. Fore-
most, our framework not only handles agents with incom-
plete information (Harsanyi 1967), but also it handles in-
complete specifications where some aspects of the world or
agents including belief/disbelief are left unspecified. Since
our proofs are based on entailment, they remain valid should
we add more detail to the theory. Second, rather than as-
signing utility functions, our focus is on the achievability of
a state of affairs by a team. Moreover, we consider strict
uncertainty where probabilistic information may be unavail-
able. Our framework supports a weaker form of belief (as
in KD45 logic) and allows for false belief. Our definition
of joint ability resembles the notion of admissibility and it-
erated weak dominance in game theory (Osborne & Rubin-
stein 1999; Brandenburger & Keisler 2001). Our work can
be related to these by noting that every model of our theory
with a KT45 logic of belief can be considered as a partial ex-
tensive form game with incomplete information represented
by a set of infinite trees each of which is rooted at an initial
situation. We can add Nature as a player who decides which
tree will be chosen as the real world and is indifferent among
all her choices. Also, for all agents (other than Nature) we
assign utility 1 to any situation that has a situation in its past
history where φ is satisfied, and utility 0 to all other situa-
tions. However, since there are neither terminal nodes nor
probabilistic information, the traditional definition of weak
dominance cannot be used and an alternative approach for
comparing strategies (as described in this paper) is needed,
one that is based on the private beliefs of each agent about
the world and other agents and their beliefs.

Conclusion
In this paper, we proposed a logical framework based on
the situation calculus for reasoning about the coordination
of teams of agents. We developed a formalization of joint
ability that supports reasoning on the basis of very incom-
plete specifications of the belief states of the team members,
something that classical game theory does not allow. In con-
trast to other game logics, our formalization ensures that
team members are properly coordinated. We showed how
one can obtain proofs of the presence or lack of joint abil-
ity for various examples involving incomplete specifications
of the beliefs of the agents. We also proved several general
properties about our definitions.

In future work, we will consider some of the generaliza-
tions of the framework noted in the Discussion section. We
will also examine how different ways of comparing strate-
gies (the GTE order) lead to different notions of joint ability,
and try to identify the best. We will also evaluate our frame-
work on more complex game settings. Finally, we will look
at how our framework could be used in automated verifica-
tion and multiagent planning.
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