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Abstract

A basic reasoning problem in dynamic systems is
the projection problem: determine if a formula
holds after a sequence of actions has been per-
formed. In this paper, we propose a tractable1 so-
lution to the projection problem in the presence
of incomplete first-order knowledge and context-
dependent actions. Our solution is based on a
type of progression, that is, we progress the ini-
tial knowledge base (KB) wrt the action sequence
and answer the query against the resulting KB.
The form of reasoning we propose is always log-
ically sound and is also logically complete when
the query is in a certain normal form and the agent
has complete knowledge about the context of any
context-dependent actions.

1 Introduction
In the area of Knowledge Representation and Reasoning,
there is a well-known tradeoff between the expressiveness of
the representation language and the computational tractabil-
ity of the associated reasoning task. At one extreme, we
have databases for which queries can be efficiently evalu-
ated. But databases are too limited for many AI applica-
tions because they require complete knowledge about the
domains. Levesque[1998] proposes a generalization of a
database called aproper KB, which allows a limited form of
incomplete knowledge, equivalent to a (possibly infinite) con-
sistent set of ground literals. Since the deduction problem for
proper KBs is undecidable, Levesque proposes an evaluation-
based reasoning procedure calledV that is logically sound
and, when the query is in a certainnormal formcalledNF ,
also logically complete. Moreover, later Liu and Levesque
[2003] show that despite the incomplete knowledge, database
techniques can be used to implementV efficiently.

In this paper, we apply the procedureV to reasoning in
dynamic systemswhere the state of the world changes as a
result of the actions of agents. For such applications, a basic
reasoning problem is the so-calledprojection problem: given
an action theory that specifies the preconditions and effects of
actions, and an initial KB, determine whether or not a formula

1By “tractable” we mean “solvable in polynomial time”.

holds after a sequence of actions is performed. Two settings
where this problem arises naturally are for planning and for
high-level program execution[Levesqueet al., 1997]. A pre-
requisite to planning is the ability to determine if a goal is
satisfied after a sequence of actions. To execute a high level
robotic program such as “while there is a block on the table,
pick up a block and put it away”, one needs to determine after
various sequences of actions whether there is still a block on
the table.

In practice, there are two ways to deal with projection: we
canprogressthe initial KB wrt the action sequence and an-
swer the query against the resulting KB; or we canregress
the query wrt the action sequence and answer the resulting
query against the initial KB. Progression has at least two ad-
vantages: First, it avoids a duplication of effort when mul-
tiple queries need to be answered wrt the same action se-
quence, and especially when that sequence is long. Second,
in a robotics setting, a robot can use its “mental idle time” to
compute a progression while it is busy performing physical
actions. Projection via progression has three main compu-
tational requirements: the new KB must be efficiently com-
puted, its size should be at most linear in the size of the initial
KB (to allow for iterated progression), and it must be pos-
sible to answer the query efficiently from the new KB. Lin
and Reiter[1997] give a formal study of progression. They
show that progression is not always first-order definable, and
identify a few important cases where progression is first-order
definable and computationally tractable. However, the third
requirement is not addressed in their paper.

In this paper, we propose a tractable, sound, and sometimes
complete solution to the projection problem in the presence
of incomplete first-order knowledge and context-dependent
actions. We restrict our attention to actions with only “lo-
cal” effects, and where incomplete knowledge is in the form
of a proper KB. We define a version of progression where a
proper KB remains proper afterward, and where applyingV
to the progressed KB and the query returns the same value as
applyingV to the initial KB and a regressed query. We prove
that when the query is inNF and the initial KB has com-
plete knowledge about the context of any context-dependent
actions, our solution is logically complete. It is also logically
complete when the query is inNF and there are sensing ac-
tions that provide dynamic information about the context of
the relevant context-dependent actions.



2 Preliminaries
In this section, we review proper KBs,V, andNF . Also,
we briefly review the situation calculus, and formally define
local-effect action theories and regression for them.

2.1 Proper KBs,V, and the normal form NF
We use a standard first-order logical languageL with equal-
ity, a countably infinite set of constantsC = {c1, c2, . . .}, and
no other function symbols. We restrict our attention tostan-
dard interpretations, where equality is identity, and there is a
bijection between the set of constants and the domain of dis-
course. This restriction can be captured by a set of axiomsE ,
consisting of the axioms of equality and the set of formulas
{ci 6= cj | i 6= j}. Since we treat equality separately, when
we say “predicate”, “atom” or “literal”, we exclude equality.

We useρ to range over atoms whose arguments are distinct
variables. We usee to range overewffs, that is, quantifier-free
formulas with only equalities (i.e. no predicates). We use∀φ
to denote the universal closure ofφ. We writeφxc to denote
φ with all free occurrences ofx replaced by constantc. We
write Σ |=E φ to denoteE ∪ Σ |= φ.

Definition 1 A KB Σ is proper if E ∪ Σ is consistent andΣ
is a finite set of formulas of the form∀(e ⊃ ρ) or ∀(e ⊃ ¬ρ).

It is not hard to see that the problem of determining whether a
sentence is logically entailed by a proper KB is undecidable,
since when the KB is empty, this reduces to classical valid-
ity. Levesque[1998] proposes an evaluation-based reasoning
procedure calledV instead. Given a proper KB and a query,
V returns one of three values 0 (known false), 1 (known true),
or 1

2 (unknown) as follows:

1. V [Σ, P (~c )] =


1 if there is a∀(e(~x) ⊃ P (~x))

in Σ such thatV [Σ, e(~c )] = 1
0 if there is a∀(e(~x) ⊃ ¬P (~x))

in Σ such thatV [Σ, e(~c )] = 1
1
2 otherwise

2. V [Σ, c = c′] = 1 if c is identical toc′, and 0 otherwise;

3. V [Σ,¬φ] = 1− V [Σ, φ];
4. V [Σ, φ ∨ ψ] = max{V [Σ, φ], V [Σ, ψ]};
5. V [Σ,∃xφ] = maxc∈H+ V [Σ, φxc ], whereH+ is the

union of the constants inΣ or φ, and an extra constant.

ThisV procedure is logically sound and, when the query is in
a certain normal form calledNF , also logically complete:

Theorem 1 ([Levesque, 1998]) LetΣ be proper. Then

1. for everyφ ∈ L, if V [Σ, φ] = 1 thenΣ |=E φ;
and ifV [Σ, φ] = 0 thenΣ |=E ¬φ.

2. for everyφ ∈ NF , V [Σ, φ] = 1 iff Σ |=E φ;
and V [Σ, φ] = 0 iff Σ |=E ¬φ.

For the interested readers, the following is the definition of
NF from [Levesque, 1998]:

Definition 2 A set Γ of sentences is logically separable iff
for every consistent set of ground literalsL, if L ∪ Γ has no
standard model, thenL∪{φ} is inconsistent for someφ ∈ Γ.

Definition 3 The normal formNF is the least set such that

1. if φ is a ground atom or ewff, thenφ ∈ NF ;
2. if φ ∈ NF , then¬φ ∈ NF ;
3. if φ1, . . . , φn ∈ NF , and{φ1, . . . , φn} is logically sep-

arable, then∧φi ∈ NF ;
4. if Γ ⊆ NF , Γ is logically separable, and for someφ,

Γ = {φxc | c ∈ C}, then∀xφ ∈ NF .

The intuition behindNF is that different parts of a formula
must be logically independent. A simple example of a for-
mula not inNF is (p∨¬p), wherep is atomic. In the propo-
sitional case, a CNF formula is inNF if its clauses are non-
tautologous and closed under resolution.

Liu and Levesque[2003] show thatV can be implemented
efficiently using database techniques (projections, joins,etc).
Here we present a cleaner variant of this result.

Let Lk denote the set of formulas fromL that use at most
k different variables. LetR = {~c 1, . . . ,~cm} be a finite set of
n-tuples. We use~x ∈ R to denote~x = ~c 1 ∨ . . . ∨ ~x = ~cm.

Definition 4 Let L beP or ¬P for some predicateP . The
ewff definingL in a properΣ, denoted byξL, is the disjunc-
tion of all e such that∀(e(~x) ⊃ L(~x)) ∈ Σ. We can writeξL
in the form of~x ∈ IL ∨ eL ∧ ~x 6∈ OL so thatIL andOL are
finite relations with as many tuples as possible, andeL is an
ewff. Thee-sizeof Σ is the maximum size of aneL in Σ.

Then a corollary to Theorem 4.8 in[Liu and Levesque, 2003]:

Corollary 2 Let Σ be proper, and letφ ∈ Lk. ThenV [Σ, φ]
can be computed in timeO(lmnk), wherel is the size ofφ,
m is the e-size ofΣ, andn is the size ofΣ.

Although the time complexity scales exponentially withk,
this is typical even of queries over ordinary databases, and so
is perhaps as good as can be expected.

2.2 Situation calculus
Our account of action and change is formulated in the lan-
guage of the situation calculus[McCarthy and Hayes, 1969;
Reiter, 2001]. We will not go over the language here except
to note the following components: there are three disjoint
sorts for actions, situations, and objects; there is a special
constantS0 denoting theinitial situation, namely the one in
which no actions have yet occurred; there is a distinguished
binary functiondo(a, s) denoting the successor situation tos
resulting from performing actiona; relations whose truth val-
ues vary from situation to situation, are called (relational)flu-
ents, and are denoted by predicate symbols taking a situation
term as their last argument; and there is a special predicate
Poss(a, s) stating that actiona is executable in situations.

We relate the language of the situation calculus toL as
follows: There is a set of constants of sort object which are
constants ofL. The situation-independent predicates and re-
lational fluents are predicates fromL. That is, ifP (~x) is a
situation-independent predicate, andF (~x, s) is a relational
fluent, thenP (~x) andF (~x) are predicates fromL.

We extend the languageL toL+ by allowing equalities in-
volving action functions. Letφ ∈ L+, and letτ be a situation
term. We useφ[τ ] to denote the situation calculus formula
obtained fromφ by takingτ as the situation arguments of all
fluents mentioned byφ. We useα to range over ground ac-
tions, and we useδ to range over sequences of ground actions.



Let δ = 〈α1, . . . , αn〉. We usedo(δ, S0) to denote the end sit-
uation ofδ, that is,do(αn, do(αn−1, . . . do(α1, S0) . . .)).

A particular domain of application will be specified by a
basic action theory of the following form:2

D = Dap ∪ Dss ∪ Duna ∪ DS0 , where

1. Dap is a set of action precondition axioms, one for
each action functionA, with form Poss(A(~x), s) ≡
ΠA(~x)[s],3 whereΠA(~x) ∈ L.

2. Dss is a set of successor state axioms (SSAs), one for
each fluent, of the formF (~x, do(a, s)) ≡ ΦF (~x, a)[s],
whereΦF (~x, a) ∈ L+. Usually,ΦF (~x, a) has the form

γ+
F (~x, a) ∨ (F (~x) ∧ ¬γ−F (~x, a)).

SSAs take the place of the so-called effect axioms, and
provide a solution to the frame problem.

3. Duna is the set of unique names axioms for actions:

A(~x) 6= A′(~y), and A(~x) = A(~y) ⊃ ~x = ~y,

whereA andA′ are distinct action functions.

4. DS0 is of the form{φ[S0] | φ ∈ Σ0}, whereΣ0 ⊆ L.
Σ0 is called the initial KB.

In this setting, the projection task can be defined as follows:
determine ifD |=E φ[do(δ, S0)], whereφ ∈ L, andδ is a
sequence of ground actions.

As a running example, we will use a simple blocks world.4

We use a single action,move(x, y, z), moving a blockx from
block y to block z (treating the table as just another block).
We use three fluents:clear(x, s), block x has no blocks on
top of it; on(x, y, s), block x is on blocky; eh(x, s), the
height of blockx is even. We have the following action pre-
condition axiom and successor state axioms:

Poss(move(x, y, z), s) ≡ clear(x) ∧ on(x, y) ∧ clear(z).
clear(x, do(a, s)) ≡ (∃y, z)a = move(y, x, z) ∨

clear(x, s) ∧ ¬(∃y, z)a = move(y, z, x);
on(x, y, do(a, s)) ≡ (∃z)a = move(x, z, y) ∨

on(x, y, s) ∧ ¬(∃z)a = move(x, y, z);
eh(x, do(a, s)) ≡ (∃y, z)[a = move(x, y, z) ∧ ¬eh(z, s)] ∨

eh(x, s) ∧ ¬(∃y, z)[a = move(x, y, z) ∧ eh(z, s)].

2.3 Local effect action theories and regression
Actions in many dynamic domains have onlylocal effectsin
the sense that if an actionA(~c ) changes the truth value of
an atomF (~d ), then~d is contained in~c . This contrasts with
actions havinguniversal effectssuch as exploding a bomb,
which kills all those near it. We can define this as follows:

Definition 5 A successor state axiom islocal-effectif both
γ+
F (~x, a) and γ−F (~x, a) are disjunctions of formulas of the

form ∃~z [a = A(~y) ∧ φ(~y)], whereA is an action function,
~y contains~x, ~z is the remaining variables of~y, andφ (called
a context formula) is a quantifier-free formula fromL. An
action theory is local-effect if each SSA is local-effect.

2We use slightly different notation from that in[Reiter, 2001].
3We omit the leading universal quantifiers.
4To justify the concerns for the tractability of reasoning, the

reader should imagine there being a very large number of blocks.

Our blocks world example above is clearly local-effect.
The notion of a successor state axiom being local-effect

is a generalization of that of being strictly context-free de-
fined by Lin and Reiter[1997]. An SSA isstrictly context-
free if γ+

F (~x, a) andγ−F (~x, a) are disjunctions of formulas of
the form∃~z [a = A(~y)], whereA, ~y, and~z are as above. For
instance, the SSA for fluenton is strictly context-free, while
that for fluenteh is not.

By using the unique names axioms, the instantiation of a
local-effect SSA on a ground action can be significantly sim-
plified. Suppose the SSA forF is local-effect. Letα = A(~c)
be a ground action, and let∗ be + or −. Thenγ∗F (~x, α) is
equivalent to a formula of the following form:

~x = ~d1 ∧ ψ1 ∨ . . . ∨ ~x = ~dn ∧ ψn,
where~di is a vector of constants contained in~c, andψi is a
sentence. We will useγ∗F (α)(~x) to denote the above formula,
and we will write(~d, ψ) ∈ γ∗F (α) to mean that~x = ~d ∧ ψ is
one of the disjuncts. Also, we will useΦF (α)(~x) to denote
γ+
F (α)(~x) ∨ (F (~x) ∧ ¬γ−F (α)(~x)). In the case of our blocks

world, instances of the SSAs can be simplified as follows:

clear(x, do(move(c1, c2, c3), s)) ≡ x = c2 ∨
clear(x, s) ∧ ¬(x = c3).

on(x, y, do(move(c1, c2, c3), s)) ≡ x = c1 ∧ y = c3 ∨
on(x, y, s) ∧ ¬(x = c1 ∧ y = c2).

eh(x, do(move(c1, c2, c3), s)) ≡ x = c1 ∧ ¬eh(c3, s) ∨
eh(x, s) ∧ ¬(x = c1 ∧ eh(c3, s)).

An important computational mechanism for reasoning
about actions is regression[Reiter, 2001]. Here we define
a one-step regression operator for local-effect action theories.

Definition 6 Let φ ∈ L. We useRα(φ) to denote the for-
mula obtained fromφ by replacing each fluent atomF (~t )
with ΦF (α)(~t ). We callRα(φ) theregressionof φ wrt α.

Note thatRα(φ) remains inL. Let δ = 〈α1, . . . , αn〉. We
useRδ to denoteRα1 ◦ · · · ◦ Rαn . We now state a simple
form of the regression theorem[Reiter, 2001]. Recall thatΣ0

is the initial KB ofD.

Theorem 3 (The Regression Theorem)
For everyφ ∈ L, D |=E φ[do(δ, S0)] iff Σ0 |=E Rδ(φ).
This theorem shows that regression is a sound and complete
solution to the projection problem. In this paper, we prove all
our results about progression by using regression as a bridge.

3 Progression of Proper KBs
In this section, we define a variant of classical progression,
and show how to compute it for local-effect action theories.

First considerclassical progression. Suppose we have a
KB Σ. LetM be a possible state ofΣ, that is, a model ofΣ.
Let α be a ground action. Then thesuccessor stateof M wrt
α is the modelM ′ such that for any ground fluent atomF (~c ),
M ′ |= F (~c ) iff M |= ΦF (α)(~c ). A KB Σ′ is a progression
of Σ wrt α if the models ofΣ′ are exactly the successor states
of models ofΣ wrt α. A basic property of progression is:
Suppose thatΣ′ is a progression ofΣ wrt α. Then for every
φ ∈ L, Σ′ |=E φ iff Σ |=E Rα(φ). It is in this sense that we
say classical progression preserves classical entailment.



It would be nice if the classical progression of a proper KB
were proper, so that we could use it andV to solve the pro-
jection problem. However, this is unfortunately not the case
even for very simple action theories. Consider the following
example from[Petrick and Levesque, 2002]:

F (do(a, s)) ≡ a = A ∧G(s) ∨ F (s); G(do(a, s)) ≡ G(s).

Then any progression of the empty KB (which is proper) wrt
actionA results in disjunctive information,(F ∨ ¬G), and
hence is no longer proper. So what we will propose is a vari-
ant of classical progression where the progression of a proper
KB does remain proper and the progression preservesV in-
stead of preserving classical entailment.

Definition 7 Let Σ and Σ′ be proper. We say thatΣ′ is a
(weak) progressionof Σ wrt a ground actionα if for every
φ ∈ L, V [Σ′, φ] = V [Σ,Rα(φ)].

We now show that for local-effect action theories, it is easy
to compute a weak progression of a proper KB.

Definition 8 LetD be local-effect andΣ be proper.
We definePα(Σ) as the set of the following sentences:

∀ [~x ∈ AF ∨ ξF (~x) ∧ ~x 6∈ DF ⊃ F (~x)],
∀ [~x ∈ (A¬F −D¬F ) ∨ ξ¬F (~x) ∧ ~x 6∈ D¬F ⊃ ¬F (~x)],

whereF ranges over fluents,ξF (resp.ξ¬F ) is the ewff defin-
ing F (resp.¬F ) in Σ (c.f. Definition 4), and

1. AF = {~d | (~d , ψ) ∈ γ+
F (α) andV [Σ, ψ] = 1},

D¬F = {~d | (~d , ψ) ∈ γ+
F (α) andV [Σ, ψ] 6= 0};

2. A¬F = {~d | (~d , ψ) ∈ γ−F (α) andV [Σ, ψ] = 1},
DF = {~d | (~d , ψ) ∈ γ−F (α) andV [Σ, ψ] 6= 0}.

Then we get the following:

Theorem 4 LetD be local-effect andΣ be proper.
ThenPα(Σ) is a weak progression ofΣ wrt α.

Let δ = 〈α1, . . . , αn〉. We usePδ to denotePαn ◦ · · · ◦ Pα1 .
By a simple induction, we have that for everyφ ∈ L,
V [Pδ(Σ), φ] = V [Σ,Rδ(φ)].

The intuition behindAF andD¬F is simple. For~d ∈ AF ,
F (~d ) will become true in every possible successor state,
so we addF (~d ) to Σ. For ~d ∈ D¬F , F (~d ) may be-
come true in some possible successor state, so we delete
¬F (~d ) from Σ. Now consider our blocks world exam-
ple. LetΣ = {on(c1, c2), clear(c1), clear(c3), eh(c1)}. Af-
ter actionmove(c1, c2, c3) is performed, we addclear(c2),
¬clear(c3), on(c1, c3), and ¬on(c1, c2) to Σ, and delete
clear(c3), ¬clear(c2), on(c1, c2), ¬on(c1, c3), eh(c1), and
¬eh(c1) from Σ. We deleteeh(c1) because ifeh(c3) holds
in the current state,eh(c1) will become false in the successor
state; similarly, we delete¬eh(c1).

We now define a reasoning procedurePV to solve the pro-
jection task using weak progression andV as follows:

Definition 9 Let D be a local-effect action theory with a
properΣ0. We definePV [δ, φ] asV [Pδ(Σ0), φ].

Now suppose thatPV [δ, φ] = 1. ThenV [Σ0,Rδ(φ)] =
V [Pδ(Σ0), φ] = 1. By soundness ofV , Σ0 |=E Rδ(φ). By
the Regression Theorem,D |=E φ[do(δ, S0)]. Similarly, if

PV [δ, φ] = 0, thenD |=E ¬φ[do(δ, S0)]. ThusPV is logi-
cally sound for projection. It is easy to see thatPα(Σ) can be
computed inO(n) time, wheren is the size ofΣ. By Corol-
lary 2, we have the following tractability result:

Theorem 5 Let D be a local-effect action theory with a
properΣ0, and letφ ∈ Lk. ThenPV [δ, φ] can be computed
in timeO(pn + lmnk), wherep is the length ofδ, l the size
of φ,m the e-size ofΣ0, andn the size ofΣ0.

ThusPV provides an efficient and logically sound solution to
the projection problem despite the incomplete knowledge. In
the next two sections, we will explore under what conditions,
PV is also logically complete.

4 A Completeness Result
SincePV usesV , it is not surprising that we need a query
to be in normal form for logical completeness. In this sec-
tion, we will show that the only other thing we need is for the
initial KB to have complete knowledge of the context of any
context-dependent actions.

More precisely, we say that a KBΣ is completewrt a setG
of ground atoms if for alll ∈ G, eitherΣ |=E l or Σ |=E ¬l.
A KB Σ is complete wrt a predicateP if it is complete wrt all
ground atoms ofP . Now letΣ be proper, andφ a quantifier-
free sentence such thatΣ is complete wrt all atoms ofφ. Then
it is easy to see thatV [Σ, φ] is either 0 or 1.

Definition 10 A KB Σ is context-complete(wrt D) if it is
complete wrt every predicate appearing in everyγ+

F andγ−F .

SoΣ is context-complete if it has complete knowledge about
the predicates in the context of any context-dependent ac-
tions. For example, in our blocks world, aΣ is context-
complete if it is complete wrteh; it may be incomplete wrt
clear andon. So context-completeness still allows incom-
plete knowledge.

There are two useful special cases where we get context-
completeness. An SSA isequality-onlyif no predicate ap-
pears inγ+

F or γ−F . Obviously, anyΣ is context-complete
wrt equality-only SSAs. Indeed, many SSAs we come across
are equality-only. An SSA iscontext-freeif no fluent appears
in γ+

F or γ−F . It is reasonable to assume that an agent has
complete knowledge about situation-independent predicates.
Under such an assumption, anyΣ is context-complete wrt
context-free SSAs.

The logical completeness ofPV is obtained by show-
ing that progression preserves context-completeness and that
under context-completeness, our progression coincides with
classical progression.

Theorem 6 LetΣ be context-complete. Then
1. Pα(Σ) is context-complete too;
2. Pα(Σ) is a classical progression ofΣ.

Proof: (2) We prove that for every modelM ′, M ′ |= Pα(Σ)
iff there is a modelM s.t. M |= Σ andM ′ is the successor
state ofM wrt α. For the only-if direction, we constructM
as follows: for every fluent atomF (~c ), if V [Σ, F (~c)] = 1,
thenM |= F (~c ); if V [Σ, F (~c)] = 0, thenM |= ¬F (~c );
otherwise,M |= F (~c ) iff M ′ |= F (~c ). The proof uses the
fact thatV [Σ, γ∗F (α)(~c )] ∈ {0, 1}, where∗ is + or−.



So under context-completeness, our progression preserves
classical entailment. Now letΣ0 be context-complete. By a
simple induction, we have: for everyφ ∈ L,Pδ(Σ0) |=E φ iff
Σ0 |=E Rδ(φ). Now letφ ∈ NF . By completeness ofV for
NF , V [Pδ(Σ0), φ] = 1 iff Pδ(Σ0) |=E φ iff Σ0 |=E Rδ(φ)
iff D |=E φ[do(δ, S0)]. Thus when the initial KB is context-
complete and the query is in normal form,PV is logically
complete for projection.

5 Incorporating Sensing
In many applications, it is asking too much to require com-
plete knowledge in the initial KB about the context of the
context-dependent actions. In this section, we follow de Gi-
acomo and Levesque[1999] and relax this restriction in two
ways: first, we only need context-completeness relative to the
sequence of actions and the query in question; second, we can
achieve this local context-completeness dynamically by re-
sorting to sensing actions, that is, actions that get knowledge
from outside the system. In other words, we show that when
a history of actions and sensing results is “just-in-time” for a
normal form query,PV is once again logically complete.

We first extend our account of action and change to in-
corporate sensing. Assume that in addition to ordinary ac-
tions that change the world, we also have binary sensing ac-
tions that do not change the world but tell the agent whether
some conditionφ holds in the current situation. We use
the predicateSF (a, s) to characterize what the sensing ac-
tion tells the agent about the world. Now our basic ac-
tion theory has an extra componentDsf , which is a set of
sensed fluent axioms (SFAs), one for each action, of the form
SF (A(~x), s) ≡ φA(~x)[s], whereφA ∈ L. We say thatDsf
is atomic if eachφA is an atom.

For instance, we may add three sensing actions to the
blocks world example:senseclear(x), senseon(x, y), and
senseeh(x). The axiomSF (senseeh(x), s) ≡ eh(x, s) says
that the actionsenseeh(x) tells the agent ifeh(x, s) holds.

To describe a sequence of actions and sensing results, we
use the notion of ahistory, that is, a sequence of pairs(α, µ)
whereα is a ground action andµ ∈ {0, 1} is the sensing
result: whenα is an ordinary action, we simply letµ = 1.
We useend(σ) to denote the end situation of historyσ, and
Sensed(σ) to denote the situation calculus formula stating
all sensing results ofσ. Formally,

• end(ε) = S0, whereε is the empty history;
end(σ · (α, µ)) = do(α, end(σ)).
• Sensed(ε) = True;
Sensed(σ · (α, 1)) = Sensed(σ) ∧ SF (α, end(σ));
Sensed(σ · (α, 0)) = Sensed(σ) ∧ ¬SF (α, end(σ)).

Naturally, we are only interested in consistent histories,
that is, histories with reasonable sensing results. Formally,

Definition 11 A historyσ is consistentif
E ∪ D ∪ {Sensed(σ)} is a consistent theory.

Now the projection problem including sensing is formu-
lated as deciding ifD ∪ {Sensed(σ)} |=E φ[end(σ)], where
φ ∈ L, andσ is a consistent history.

In the rest of this section, we assume thatDsf is atomic.
To prepare for the definition of just-in-time-history, we first

extend our regression and progression operators to incorpo-
rate sensing. The ideas are quite simple. For example, if we
regress the formulaclear(c1)∧ eh(c1) wrt (senseeh(c1), 1),
we should obtainclear(c1). If we progress a proper KBΣ
wrt (senseeh(c1), 1), we should obtainΣ ∪ {eh(c1)}.

Let α = A(~c ) be a ground action, and letµ ∈ {0, 1}.
We defineR(α,µ)(φ) as follows: If α is an ordinary ac-
tion, thenR(α,µ)(φ) = Rα(φ). Otherwise, let the SFA be
SF (A(~x), s) ≡ F (~x, s). ThenR(α,µ)(φ) is the formula ob-
tained fromφ by replacing each atomF (~t ) with~t = ~c∨F (~t )
whenµ = 1 and withF (~t ) ∧ ~t 6= ~c whenµ = 0.

Now we turn to progression with sensing. LetΣ be proper.
Let α = A(~c ) be a ground action, and letµ ∈ {0, 1}.
We defineP(α,µ)(Σ) as follows: If α is an ordinary ac-
tion, thenP(α,µ)(Σ) = Pα(Σ). Otherwise, let the SFA be
SF (A(~x), s) ≡ F (~x, s). ThenP(α,1)(Σ) = Σ ∪ {F (~c )},
andP(α,0)(Σ) = Σ ∪ {¬F (~c )}. We have the following ex-
tended progression theorem:

Theorem 7 Letσ be a consistent history. Then
1. E ∪ Pσ(Σ0) is consistent. HencePσ(Σ0) is proper.

2. For everyφ ∈ L, V [Pσ(Σ0), φ] = V [Σ0,Rσ(φ)].
Another concept we need is dependency set.

Definition 12 Thedependency setof a formulaφ wrt an or-
dinary actionα, denoted byDSα(φ), is the set of ground
atoms that appear inγ+

F (α) or γ−F (α) for some fluentF in φ.

For example, letα = move(c1, c2, c3). ThenDSα(clear(x))
is the empty set, andDSα(eh(x)) = {eh(c3)}.
Definition 13 Let σ be a consistent history, andφ ∈ L. We
say thatσ is a just-in-time-history(JIT-history) forφ if for
every divisionσ1 · (α, µ) · σ2 of σ, if α is an ordinary action
thenPσ1(Σ0) is complete wrtDSα(Rσ2(φ)), and if α is a
sensing action then the sensed fluent appears inRσ2(φ).
Intuitively, σ is a JIT-history forφ if whenever performing an
ordinary actionα, the agent has complete knowledge about
the context ofα wrt fluents related toφ. This complete
knowledge may come from the sensing actions precedingα.
For example, letΣ0 = {clear(c1), on(c1, c2), clear(c3)}.
Then the history(senseeh(c3), 1) · (move(c1, c2, c3), 1) is a
JIT history for the formula∃x[clear(x) ∧ eh(x)]. Note that
here the agent has incomplete knowledge about both fluents
clear andeh. Thus a JIT history does not require complete
knowledge about the component fluents of the query.

For JIT histories and initial KBs that are proper, we have
the following extended regression theorem:

Theorem 8 Letσ be a JIT-history forφ, and letΣ0 be proper.
ThenD ∪ {Sensed(σ)} |=E φ[end(σ)] iff Σ0 |=E Rσ(φ).

By a proof essentially the same as the one in the previous
section, we get the following result:

Theorem 9 Letσ be a JIT-history forφ.
ThenPσ(Σ0) |=E φ iff Σ0 |=E Rσ(φ).
Now let σ be a JIT-history forφ ∈ NF . Then we have
V [Pσ(Σ0), φ] = 1 iff Pσ(Σ0) |=E φ iff Σ0 |=E Rσ(φ) iff
D ∪ {Sensed(σ)} |=E φ[end(σ)]. Thus when a history is
just-in-time for a normal form query,PV is again logically
complete for projection.



6 Related Work
As mentioned in the introduction, Lin and Reiter[1997] give
a systematic study of classical progression. As a part of their
study, they view STRIPS as a mechanism for computing pro-
gression and thus provide a logical semantics for STRIPS. In
this respect, they consider strictly context-free SSAs and ini-
tial KBs in the form of relational databases or sets of ground
literals. These are special cases of local-effect SSAs and
proper KBs, and our weak progression coincides with clas-
sical progression in these cases. Son and Baral[2001] pro-
pose the so-called 0-approximation semantics for an exten-
sion of action languageA. They define an a-state (approxi-
mate state) as a consistent set of fluent literals, and define a
transition function which maps an a-state and an action into
the next a-state. So 0-approximation is essentially a kind of
approximate progression. However, their work is restricted
to the propositional case, and our progression coincides with
theirs therein. Amir and Russell[2003] present efficient al-
gorithms for (approximate) logical filtering, where filtering
means updating an agent’s belief state in response to actions
and observations. So logical filtering is essentially progres-
sion. But again, their work is restricted to the propositional
case. De Giacomo and Mancini[2004] study how to exploit
relational database technology to implement progression, but
only when the initial KB has complete knowledge. We get to
use database techniques in the incomplete case via the results
in [Liu and Levesque, 2003].

The idea of progression is widely used in planning under
incomplete knowledge. Most systems use propositional rep-
resentations, for example, BDDs[Cimatti and Roveri, 2000],
and clauses[Brafman and Hoffmann, 2004]. Being proposi-
tional makes it possible for them to consider arbitrary incom-
plete knowledge and perform classical progression. Although
techniques are employed so that the systems can achieve rea-
sonable performance in practice, there is no theoretical guar-
antee of the tractability of their solutions to projection. The
PKS system of Petrick and Bacchus[2002] uses a first-order
representation. The form of incomplete knowledge they con-
sider is mainly a set of ground literals but with some other
features. The general idea behind their progression is simi-
lar to ours, but without a semantical characterization of what
it preserves. Moreover, they do not address the issue of the
restrictions they need to get completeness.

The idea of JIT histories in this paper comes from[De Gi-
acomo and Levesque, 1999]. They use JIT histories to ob-
tain complete knowledge about the component fluents of the
query. However, we use JIT histories only to obtain complete
knowledge about the context of actions to be performed.

7 Conclusions
In this paper, we have proposed a tractable, sound, and some-
times complete solution to the projection problem in the pres-
ence of context-dependent actions and incomplete first-order
knowledge in the form of a proper KB. Our solution is via a
version of progression that preserves properness andV .

For simplicity of presentation, in this paper we require ac-
tions to have local effects only, and we make the extra require-
ment that context formulas (c.f. Definition 5) be quantifier-

free. However, the soundness and completeness results in
this paper will still hold if we relax these two requirements.
The tractability result will also hold if context formulas use
a bounded number of variables. As for local effects, the
tractability result only needs them to ensure that the pro-
gressed KB is not much larger than the original KB. We be-
lieve that there are other ways of doing this that would include
a substantial class of actions with universal effects. Finally,
our definition of JIT-history rules out sensing a fluent that is
irrelevant to the query. We believe that this can be handled in
a more natural way by a restriction on basic action theories.

For the future, we would like to conduct experimental eval-
uation of our solution to projection, and apply it to first-order
planning systems. Also, we would like to extend our work
here to deal with functional fluents and disjunctive incom-
plete knowledge.

References
[Amir and Russell, 2003] E. Amir and S. Russell. Logical filtering.

In Proc. IJCAI-03, pages 75–82, 2003.

[Brafman and Hoffmann, 2004] R. Brafman and J. Hoffmann. Con-
formant planning via heuristic forward search. InProc. ICAPS-
04, pages 355–364, 2004.

[Cimatti and Roveri, 2000] A. Cimatti and M. Roveri. Conformant
planning via symbolic model checking.Journal of Artificial In-
telligence Research, 13:305–338, 2000.

[De Giacomo and Levesque, 1999] G. De Giacomo and H. J.
Levesque. Projection using regression and sensors. InProc.
IJCAI-99, pages 160–165, 1999.

[De Giacomo and Mancini, 2004] G. De Giacomo and T. Mancini.
Scaling up reasoning about actions using relational database tech-
nology. InProc. AAAI-04, pages 245–250, 2004.

[Levesqueet al., 1997] H. J. Levesque, R. Reiter, Y. Lespérance,
F. Lin, and R. Scherl. Golog: A logic programming language for
dynamic domains.J. of Logic Programming, 31:59–84, 1997.

[Levesque, 1998] H. J. Levesque. A completeness result for reason-
ing with incomplete first-order knowledge bases. InProc. KR-98,
pages 14–23, 1998.

[Lin and Reiter, 1997] F. Lin and R. Reiter. How to progress a
database.Artificial Intelligence, 92(1–2):131–167, 1997.

[Liu and Levesque, 2003] Y. Liu and H. J. Levesque. A tractability
result for reasoning with incomplete first-order knowledge bases.
In Proc. IJCAI-03, pages 83–88, 2003.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes. Some
philosophical problems from the standpoint of artificial intelli-
gence. InMachine Intelligence, volume 4, pages 463–502. 1969.

[Petrick and Bacchus, 2002] R. Petrick and F. Bacchus. A
knowledge-based approach to planning with incomplete informa-
tion and sensing. InProc. AIPS-02, pages 212–222, 2002.

[Petrick and Levesque, 2002] R. Petrick and H. J. Levesque.
Knowledge equivalence in combined action theories. InProc.
KR-02, pages 303–314, 2002.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems. MIT
Press, 2001.

[Son and Baral, 2001] T. C. Son and C. Baral. Formalizing sensing
actions – A transition function based approach.Artificial Intelli-
gence, 125(1–2):19–91, 2001.


