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Abstract

The goal of producing a general purpose, semantically moti-
vated, and computationally tractable deductive reasoning ser-
vice remains surprisingly elusive. By and large, approaches
that come equipped with a perspicuous model theory either
result in reasoners that are too limited from a practical point
of view or fall off the computational cliff.

In this paper, we propose a new logic of belief callgd
which lies between the two extremes. We show that query
evaluation based afiC for a certain form of knowledge bases
with disjunctive information is tractable in the propositional
case and decidable in the first-order case. Also, we present a
sound and complete axiomatization for propositiafiél

Introduction

One of the most important yet elusive goals in the whole
area of Knowledge Representation is to devise a semanti-
cally coherent yet computationally well-behaved reasoning
service that could be used as a black box by a wide vari-
ety of systems in a wide variety of applications. There are
two obvious limit points we might consider: at one extreme,
we imagine a service based on classical logical entailment,
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what the service must be like in terms of the inferences it can
or must draw (given sentences, ..., ¢,, must it infer the
sentence)?), we consider thbeliefsof the system overall,
and what properties the set of beliefs must satisfy. The logic
of belief serves to provide a precise theoretical framework
for analyzing these properties. There are sentences in this
language of the fornB¢, saying that sentencgis believed,
and the semantic interpretations of the logic tell us under
what conditions such a sentence will be true, and therefore
what follows. Questions about the reasoning process now
become questions about thsureproperties of belief: if
B¢, ..., Bg, are all true, does it follow in the logic that
By is also true? We can think of th& as the stipulated
or explicitbeliefs of the system, and the question is whether
or notvy is a derived oiimplicit belief. In a logic of belief
we can also ask other sorts of questions that are difficult or
impossible to formulate otherwise. For example, we can ask
if the system has various forms of introspection{iBy is
true, does it follow thaiBB—By is true?) orde rebeliefs (if
the Bg; are all true, does it follow thatx By is also true?).

Of course using a logic of belief in this way would be
a lot less interesting if the reasoning service coincided ex-
actly with classical logical entailment, that is, if for evety

perhaps augmented nonmonotonically; at the other extreme, andv in our representation languagBg logically entailed

we imagine a service based only on retrieval, perhaps aug-
mented by some syntactic normalization. In between these
two limits, however, there is controversy: for some, any di-
vergence from classical logical entailment is semantically
problematic, and all talk about computational tractability is

By in the logic of belief iff ¢ classically entailed). This

is the case, for example, with the standard possible-world
logics of belief, originated by Hintikka (Hintikka 1962;
Halpern & Moses 1992), and which suffer from what Hin-
tikka calledlogical omnisciencelt would also be less inter-

taken as obsession with worst cases; for others, any attemptegting if the reasoning service coincided with retrieval, that

to go beyond retrieval in a domain-independent way is mis-
guided, as it fails to use whatever structure is provided by
the application domain. Be that as it may, in this paper we
will propose a new reasoning service that does lie between
the extremes mentioned.

There are many ways of specifying what a reasoning ser-
vice should do. One idea that has proved quite fruitful in the
last twenty years or so has been to think of the desired ser-
vice in terms of dogic of belief! (Levesque 1984; Konolige
1986; Vardi 1986; Fagin & Halpern 1988; Fagin, Halpern,
& Vardi 1990; Lakemeyer 1990; Cadoli & Schaerf 1992;
Delgrande 1995). The idea is this: instead of considering

1As is the custom, in this paper we do not distinguish between
knowledge and belief.

is, if Bo were true iff¢p were an element of some given list
of sentences.

In between these two extremes, two broad approaches
have emerged in the specification of a logic of tractable
belief? First, there are theyntacticapproaches exempli-
fied in (Konolige 1986; Vardi 1986; Fagin & Halpern 1988),
where the logical interpretations either include sets of sen-
tences (beyond the atomic ones) or mark them in some way
(e.g. the sentences that the reasoner is aware of). In this
case, a reasoner can beliey@and (¢ O ) but fail to be-
lieve ¢ because) is not syntactically blessed in the inter-
pretation. Second, there are teemanticapproaches ex-

2This oversimplifies the situation considerably.



emplified in (Levesque 1984; Lakemeyer 1990; Cadoli & automatically as part of the basic operation of the system. If
Schaerf 1992), and deriving originally from work on tauto- we accept that this is perhaps asking too much of a reason-
logical entailment (Anderson & Belnap 1975; Dunn 1976; ing service, then we need to rule out a service based sim-
Patel-Schneider 1985), where the logical interpretations as- ply on logical entailment, since KB2 does logically entalil
sign truth values to atoms, but allow them to receive fewer Jz.(P(x) A Q(x)). In fact, we also need to rule otguto-
or more than one. In this case, a reasoner can befiersd logical entailmentsince KB2 also tautologically entails the
(¢ D ) but fail to believey) because botld and —¢ are sentence. Indeed, tautological entailment agrees with logi-
somehow taken as true. cal entailment in the absence of negation. So restricting a
In this paper, we follow the tradition of the semantic ap- reasoning service to tautological entailment would still re-
proach to logics of tractable belief, but diverging from the quire it to be able to determine that.(P(z) A Q(z)) is
multiple truth values and tautological entailment. Most of true for KB2 but not KB1.
the criticism to date about that approach has had to do with |1 s significant that previous work proposing a lim-

its semantics: what is the intuitive understanding of & sen- jieq form of reasoning based on tautological entailment
tence receiving two fruth values (Fagin & Halpern 1988)? (| evesque 1984; Frisch 1987) only worked in the proposi-
Here our criticism in the next section is d|fferent: We ar- onal case and when the query was in CNF or the KB was
gue that despite its apparent tractability in certain cases j, pNF (Cadoli & Schaerf 1996). The first-order case later
(Levesque 1984), a reasoning service based on tautologicalsy,died in (Patel-Schneider 1985) and (Lakemeyer 1990) re-
entailment is required to handle disjunctions in a way that qired considerable machinery beyond tautological entail-
does too much in some contexts and not enough in others.  ment. Moreover, this additional effort only resulted in fewer

In the sequel, we first revisit disjunctions, and motivate  jnferences compared to tautological entailment and thus per-
why we need to consider two possible forms of disjunctions haps even less general applicability.

separately within the logic. Then we present a new logic of
belief, which we call the subjective log&L, and discuss the
resulting properties of beliefs. Next, we consider the com-
putational property of a reasoning service based6rfor

a form of knowledge bases (KBs) with disjunctive informa-
tion, the so-called propeérkBs proposed in (Lakemeyer & X : e ; .
Levesque 2002): we show that it is tractable in the propo- Propagation This means that disjunctions that express sim-
sitional case and decidable in the first-order case. Also, we ple rules as matenal_condltlonals will be f_uIIy utilized. Be-
give a sound and complete axiomatization for propositional C2uSe unit propagation does not result in an explosion of

SC. Finally, we discuss related work and conclude with fu- ¢/auses, we believe that this very common form of rea-
ture work. soning can also be kept tractable. Other approaches based

on unit propagation include (McAllester 1990; Dalal 1996;
Crawford & Etherington 1998), but they are all restricted to
the propositional case.

As for (2), wedo want systems that can split cases and
deal with incomplete knowledge that is disjunctive, but we
need to do so in a controlled way. In fact what we will pro-
pose is a logic with a family of belief operataBy), B, B-,

..., Where the difference concerns how much case splitting
is tolerated in deriving implicit beliefs. For the above puzzle
with KB2, it will turn out that Bg3z.(P(z) A Q(z)) will be

true butB;3x.(P(x) A Q(x)) will be false. Of course, the

Our approach here will be to follow (Lakemeyer &
Levesque 2002) and preserve (1), but to deal with (2) in
a more controlled way. To handle (1) without also rea-
soning by cases, we will propose a logic of belief where
clauses that are explicitly believed are closed unait

Disjunctions Reconsidered

As observed in (Lakemeyer & Levesque 2002), although
disjunctions can be used in many ways in a commonsense
KB, it has two major applications: (1) to represemtessuch

as in Horn clauses, where we may need to perform chaining
in the reasoning; and (2) to represértomplete knowledge
about some individual(s), where we may need to split cases.
We believe that (2) is the computational problem. To see
why, consider the two example KBs in Figure 1. The reader

higher the levek, the more resources are required to deter-

KB1 KB2 s ) . . .
mine what is an implicit belief at that level. Each of these
(P(a) v P(e)V P(f)) | (P(a)VQ(e)VQ(c)) belief operators will be closed under various forms of obvi-
(Pla) Vv P(e)VQ(f)) | (Qd)VP(b)VQ(a)) ous reasoning. For example, if we believat some level,
(P(a) vV Q(e) vV P(c)) | (Pla)VP(e)VP(f)) we also believe ¢ \ 1) at the same level,e. weakening.
(P(a) v Q(e) vV Q(c)) (P(c) v Q(e)V P(a)) In addition, the beliefs at level 0 will be closed under unit
(Gl POVO) | (B Bevac) — Poeeen
a)V v E(c a) V.£o(e) v Some bad news: One tried-and-true and well-loved form
(Q(a) v Q(b) v Plg) (Q(b) v Q(a) v P(g)) of reasoning that we will need to give up on is the distribu-
(Q(a) v Q) V Q9)) (Q(a) v P(d) v P(b)) tion of A overv, that is, that believingp A (¢ Vv r)) should

always imply believingp A ¢) V (p A 7). We can get this
behavior by going up to higher levels.§. splitting the sec-
ond clause here), but to require it at every level would force
is invited to confirm that one and only one of these logically us to do too much reasoning. For example, after repeatedly
entails3z.(P(z) AQ(x)). So being required to handle (2) is  distributingA overV in KB2 above, it then becomes obvious
also being required to solve combinatorial puzzles like this that3z.(P(x) A Q(z)) must be true.

Figure 1: Two puzzles



The Subjective LogicSL
The syntax

The languag€ is a standard first-order logic with equality.
The languageS. is a first-order logic with equality whose
atomic formulas are belief atoms of the fod),¢ where¢

is a formula of the languagé and By, is a modal operator
foranyk > 0. Bi¢ is read as ¢ is a belief at levek”. We
call SC a subjectivelogic because all predicates other than
equality appear in the scope of a belief operator.

More precisely, we have the following inductive defini-
tions. We have countably infinite sets of variables and con-
stant symbols, which make up thermsof the language.
Theatomsare expressions of the forf(¢y, . . ., t,,) where
P is a predicate symbol (excluding equality) and thare
terms. Thditerals are atoms or their negations. We yst®
range over literals, and we ugdo denote the complement
of p.

The languag€ is the least set of expressions such that

1. if pis an atom, thep € Z;

2. if t andt’ are terms, the(t = ¢') € L;

3. if ¢,9 € £ andx is a variable, them¢, (¢ Vv ¢), and
Jx.¢p € L.

Clauseswhich play an important role in our semantic defi-

nition, are inductively defined as follows:

1. aliteral is a clause, and is called a unit clause;

2. if candc are clauses, thefz v ¢’) is a clause.

We identify a clause with the set of literals it contains. Only
non-empty clauses appeardn The empty clause, however,
which we denote by, can appear it and is needed in
the definition ofuP to follow.

The languag&L. is the least set of expressions such that

.if¢p € LorgisO, andk > 0, thenB,¢ € SL, and is
called abelief atomof level k;

if t andt’ are terms, thelit = t') € SC;

if , 8 € SC andz is a variable, thema, (« V 3), and
Jdx.a € SLC.

So, in short, the formulas &L are such that all predicates
other than equality must occur within a modal operator and
the modalities are non-nested. As usual, we se (),

(o D B), andVz.« as abbreviations. We write}; to denote

« with all free occurrences aof replaced by constait

2.
3.

The semantics

Sentences aof. are interpreted via setup which is a set of
non-emptyground clausesand which specifies which sen-

tences ofC are believed, and consequently which sentences

of SC are true. Intuitively, one may think of a setup as in-
dicating what isexplicitly believed as a possibly infinite set
of ground clauses. The semantics below then tells usiihe
plicit beliefs that follow. We begin with some preparatory
concepts.

Let s be a set of ground clauses. The closure ahder
unit propagation denoted byuP(s), is the least set’ satis-
fying: 1. s C ¢/; and 2. ifp € s’ and{p} Uc € ¢, then

c € s'. We definevP(s) as the se{c | cis a ground clause
and there existg’ € UP(s) such that’ C c}.

Next, observe that in classical logic we have the following
patterns of obvious inference:

1. from ¢, infer ——¢;
2. frome¢ or ), infer (¢ V v¥);
3. from¢ and, infer (¢ A ).

These patterns relate the inference of a formula to that of
its subformulas. As a characterization of these patterns of
obvious inference, we define the concept of belief reduction.
Roughly, (By¢) | denotes theSL formula resulting from
pushing the belief operator into. Intuitively, we take the
conclusion from(By¢) | to B¢ to be an obvious one. For
any¢ € L, theS. formula(By¢) | is defined as follows:

1. (Byc)| = Byc, wherecis a clause;

2. (Be(t=t))] = (t=1t);

3. (Bin(t=1))l = ~(t="1);

4. (By——¢)| = Byd;

5. (Br(¢ V)|l = (BroV Byi)),
whereg or ¢ is not a clause;

6. (Bx=(¢ V)l = (Bx—¢ A Bp—);

7. (Bx3z.¢) | = Fz.Byo;

8. (Bx—Jz.¢) | = Vz.Bi—¢.

In logic, we usually define concepts and prove properties
about formulas by induction on the structure of formulas.
The principle can be stated as follows. We first define a
complexity measuré - || which maps formulas into natural
numbers. Usually, the complexity measure is the length of
the formula or the number of logical operators in the for-
mula. Now leta: be an arbitrary formula. Assuming that
we have defined a conce@tor proved a property’ for all
formulasg such that| 8 ||<|| « ||, we proceed to defin€
or prove P for a. In SL, the complexity measure is more
complicated, because we need to take into account both the
length and the level of belief atoms. For example, we would
like | B2¢ ||<|| B3¢ ||. For anya € SC, || «|| is defined as
follows:

LE=)=1

2. |mall = 14 [l

Bzall = 3+ ol

Aav o)l = 3+ llell + 181

5. || Bro|| = 2F*t™, wherem is the length ofp, but where
all atoms and equalities are considered to have length 1.

It is easy to prove the following property abdpH||:
Proposition 11. For any¢, || Bx¢ || < || Br+1¢|;
2. Forany¢ that is not a clause|| (By¢) ||| < || Br®||-

Now we are ready to define truth 8C. Let s be a setup.
Then for any sentence € S, s = « (read ‘s satisfiesy”)
is defined inductively ofj«|| as follows:

1. s = (d =d')iff dandd’ are the same constant;
2. sEaliff sHao;

A W



3. sEaVvgiff sEaors = g; 3. s E B¢ by splitting onc € s. Then for allp € ¢,
sU{p} E Br—1¢. Sincec € VP(s’), by Proposition 2,

4. s |= Jz.«a iff for some constant, s = a?; r
| = o there exist’ C c andc” € s’ such thaie’ C ¢ and for

5. s = By¢ iff one of the following holds: allp € ¢’ —¢,p € UP(s'). We prove that for alp € ¢”,
(a) subsumek = 0, ¢ is a clause:, andc € VP(s); s'"U{p} = Bi-1¢, and hence’ |= Bj.¢.
(b) reduce ¢ is not a clause and = (B ¢) |; (@) pec’—c. Thenp € UP(s'),and sdd € UP(s'U{p}).
(c) split k > 0 and there is some € s such that for all Pick anyp’ € ¢, thenvP(sU{p'}) C VP(s"U{p}) and
pEc sU{p}E By_10. sU{p'} E Bi—1¢. By induction,s’ U {p} &= Br_1¢.

J i
By the above proposition, this semantics is well-defined, As () £ € ¢ Thenp € c. Thuss U {p} = Bi-10. Since

| ! .

usual, we say that a senteneec SC is valid (= «) if for V,P(S V {p})BQ VP(s"U {p}), by induction, we get that

every setup, we have thas |= . s'U{p} F B¢ u
Before discussing properties of the logic as a whole, we As an easy corollary, i C s/, thens < s’.

observe that the semantics above proposes three different

justifications for believing a sentenge(at levelk): Properties of beliefs

1. ¢ is a clausek = 0, and after doing unit propagation on  We now consider the properties of beliefs, both at the same
the ground clauses that are explicitly believed, we end up and across different levels. What interests us most are ques-
with a subclause of; tions like when does a belief at a certain level entail another

belief and when is this not the case. We will see that many

properties agree with those which one finds in classical ap-
proaches to modeling belief such as possible-world seman-
tics (Kripke 1959; Hintikka 1962). But there will also be

3. there is a clause in our eXpIiCit beliefs that if we were to a number of differences, which sets our model apart from

Spllt, that iS, if we were to augment our beliefs by a literal existing approaches_ We on|y include a few proofs_
in that clause, then in all cases we would end up believing o )
¢ at levelk — 1. Equality: Due to our treatment of equality, we have that at

all levels, exactly the true equality sentences are believed:

2. we already have appropriate beliefs about the subformulas
of ¢, for example, believing both conjuncts of a conjunc-
tion, or some instance of an existential;

Note that all three of these rules deal with disjunction but in

quite different ways. = Bre=e, 1)
The reader should note the assumptions made with respectwheree contains no predicate symbols.

to the universe of discourse and, as a result, the treatment of _ . .

equality. For one, all setups use the same universe of dis- Belief Reductions: Obviously, we have

course, which is identical to the infinite set of constants in E (Br¢) 1D B¢ 2

the language. Moreover, distinct constants stand for distinct —

individuals, which fixes the meaning of the equality predi- = Bo¢ = (Bog) | 3

cate. All this allows giving quantifiers a substitutional inter- ~ Also, we have

pretation and, previous criticism of substitutional interpreta- = By——¢ = B¢ 4)
tions notwithstanding (Kripke 1976), greatly simplifies the _
technical treatment. = Bi(@ A ) = Bid A Bryp ©)

E BiVx.¢p = Va.Byo (6)
Monotonicity of beliefs Proof: Since the proofs are all very similar, we only prove

We now prove the monotonicity of beliefs, that is, that new (4) here. It suffices to prove that B,-—¢ O B¢,
clauses can be added to any setup without revoking pre- since the other direction follows from (2). We prove this
viously supported beliefs. This is a basic property used by induction onk. Basis: k& = 0. Trivial. Induction

throughout the paper. step: Lets = Byi+1——¢. If this holds by reduction, then

By.¢, if s |= B¢, thens' = Byo. p € ¢, s U{p}  By—=¢. By induction,s U {p} |= Bi¢.
» ) Thuss = Byy19. [ |

Proposition 2 For any ¢ € UP(s), there existg’ € s such

thatec C ¢’ andforallp € ¢/ — ¢, 5 € UP(s). However, we have

Proposition 3 If s C VP(s'), thenVP(s) C VP(s'). # Bi(¢ V1) D Bro V By @)

Proposition 4 [Monotonicity] a -BkEIx.¢> > Jz.By¢, fork > 0 (8)

If VP(s) C VP(s'), thens < . We give two counter-examples for (7). Let = {(p V q)}.

_ i , Thens; = Bo(p V q), buts; £ Bop ands; = Byq. Let
Proof: We prove by induction ofj B¢ ||. so={(zVy),@Vp),FVql Thens, = Bi(pV q), but
1. s[=Byc by subsumption. SinceP(s) CVP(s'), s’ =Byc. s2 £ Bip andss # B g.

2. s = B¢ by reduction. For each case ¢f it is easy to Distribution: Unfortunately, only one direction of each of

prove by induction that' = Bj.¢ too. the normal distribution laws goes through, as shown in the



following:
= Bi[(o AY) V(6 An)] D Bilo A (¥ V)] )
#BilpA(qgVr)] D Bil(pAg) V(pAr)] (10)
E BiloV (¥ An)] D Bil(¢ V) AoV n) (11)
# Bil(pVa) A(pVr)DBilpV(gnr) (12)

(10) and (12) hold for the same reason as the failure of
Modus Ponens in (15) discussed below.

Thus normal form conversions generally do not preserve
equivalence for beliefs at a fixed level Those who may
find this troubling should recall our previous discussion
where we pointed out that it is the distribution nfover v
(and not, say, closure under resolution) which would force
us into solving puzzles like those in Figure 1, since no nega-
tions are involved.

Level Change:As expected, we have the following:

= By O Br19 (13)
Proof: Let sy be the empty setup. It is easy to see that
so B~ Bycforanyk and clause. Also, s = Byelff so e
for any k and equality or inequality. Thuss, = By iff
so = Byy1¢ for any¢.

Now lets = By¢. If sis empty, thens = Bji16.
Otherwise, pick any: € s. By monotonicity, for allp € c,
sU{p} = Br¢. Thuss = Byy1¢. ]

Modus Ponens:Finally, we consider the closure of beliefs
under Modus Ponens. As expectdgy-beliefs are closed
under unit propagation, whil8y-beliefs are not fok > 0.
However, we do have a generalized form of closure under
unit propagation. Lep be a literal and: a clause. Then

': Bop A Bo(ﬁ V C) D B()C (14)
# Bip A B1(pV q)] D Big (15)
F Bip ABj(pVc) D Biyjc (16)

Proof: (15): Intuitively, this is because you may need one
split for p and another fofp D ¢), but one split may not get
yougq. To see why, lets = {(z Vp), (ZVp), (y VDV q),
(yVDVq)}. Thens = Byp by splitting on the first clause,
ands = Bj(p D q) by splitting on the third clause. But
S }75 qu.

(16): The proof is by induction oi+ j. Basis:i +j = 0.
This is simply (14). Induction step:+ j > 0. Suppose that
i > 0. By induction,}= B;_1p A Bj(pV ¢) D Bt _1c.
Now lets = B;p A Bj(p V ¢). Then there is some € s
such that for all € ¢, s U {l} = B;_1p. By monotonicity,
sU{l} E Bj(pVc). Hences U{l} = B;+,_1c. Therefore
s = B;yjc. The case whepi > 0 is similar. [ ]

(15) shows that Modus Ponens is not a valid form of in-
ference at a fixed levéd. However, we do get a generalized
form of Modus Ponens under a certain condition. In what
follows, leti, j > 0, and letp, v € L such that) does not
contain equalities. Then we have

= B¢ A Bj(¢ D 1) D By, for somek a7
The proof needs the following:

F BxO D By (18)

= B;¢ A Bj—~¢ D B0, for somek (29)

Proof: (18): The proof is by induction ok. The base case
is proved by induction o). Note that) does not contain
equalities.

(19): The proof is by induction oft B;¢ || + || B;—¢ ||
Since= B;,——¢ = B, ¢, we only need to consider the cases
wheng is a clause, an equality, a double negation, a disjunc-
tion, or an existential. Here we only prove the cases when
is a clause or a disjunction. Other cases are either trivial or
can be similarly proved. Case &:is a clause:. Letn be the
number of literals ire. Sincel= Bj—~c = A . B;p, by re-
peatedly applying (16), we haye B;cA B;—c D B, 1,;0.

Case 2:¢ is ¢1 V ¢ such thaty; or ¢ is not a clause. By
induction, there existy, ko, k3, andk, such that

= Bign A Bj=¢n D By, 0,h = 1,2

E Bi_1¢ ANBj—¢ D By, 0, if i >0

= Bi¢ A Bj_1~¢ D By, 0, if j >0
If i =0, letks = —1;if j = 0, letky, = —1. We let
k = max{kq, ks, ks+1,ks+1}. Nowlets = B;¢pABj—¢.
If s = B;¢ by splitting, thens = By,10. If s = B;—¢
by splitting, thens = By, 10. Otherwise, we have that
s |= B¢ N Bj—¢p, forsomeh = 1,2. Sos |= B, 0. &

Now we can prove (17).

Proof: The proof is by induction or. There are two cases.
Case 1-¢ Vi isaclause. Thea is an atom, say; andy is
aclause, say. By (16),= B;pAB;(pVc) D B,y jc. Case 2:
—¢ V 1 is not a clause. By (19), there exist&asuch that
= BipABj~¢ O By, 0. By (18), = Bi¢AB;j~¢ O By, v,
If j =0, letks = —1; otherwise, by induction, there exists
a kg such that= B;o A Bj_1(¢ D ) D By,. Then
k=max{j, k1, ko+1} is the value we want. [ ]

A Reasoning Service Based o8

As we mentioned in the introductio&( is intended to serve

as a foundation for limited but decidable (and even tractable)
reasoning services. The idea is to model the reasoning ser-
vice as belief implicationj.e. validity of formulas of the
form (ByKB D By¢), whereKB is a knowledge base, and

¢ is a query. More precisely, we have

Definition 1 Thequery evaluation problemased orSL for

a fixed valuek (the QESL problem in short) is as follows:
Given a knowledge base KB id and a formulag in L,
decide whether th&L formula (ByKB > By ¢) is valid.

Intuitively, if a KB is thought as providing the explicit
beliefs of the system, formulated not as a possibly infinite
set of ground clauses, but as a finite set of sentences of
using quantification, then the implicit beliefs at levehlre
those sentencessuch thai BoKB D By¢) is valid.

Example 1 Consider KB1 and KB2 in Figure 1, and the
query¢ = Jz.(P(z) A Q(x)). Then we have:

1. B (BoKB1 D By¢), for anyk;

2. £ (BoKB2 D By¢), foranyk < 8;

3. = (BoKB2 D By, ¢), for everyk > 8.

Example 2 Consider the following KB with only one pred-
icateC(p1, p2) saying that the two persons are compatible.



1. Vavy.C(z,y) D C(y, z);

2. Vz.C(x,ann) V C(x,bob);

3. =C(bob, fred);

4. C(carol,eve) V C(carol, fred);

5. Va.z # bob A x # carol D C(dan, x);

6. =C(eve,ann) V =C(eve, fred).

We have the following queries:

1. ¢1 = C(fred,ann);

2. ¢pg =VarIyC(z,y);

3. ¢3 = JoFy32[C(x,y) A C(x, 2) A =C(y, 2)];
4. ¢4 = JxTy[x # y A C(x, carol) A C(y, carol)).
Then we have:

1. = BoKB D By¢1,
sinceC(fred,ann) can be obtained by unit propagation
from =C(bob, fred), ~C(fred,bob)V C(bob, fred), and
C(fred,ann) Vv C(fred, bob).

2. ': ByKB D Blgbg,
since for each constadt we obtaindyC(d, y)
by case analysis ove&r(d, ann) v C(d, bob).

3. E BoKB D By ¢3,
since we hav&’'(dan, fred), C(dan,ann), and
C(dan, eve), hence we obtaip; by case analysis
over—C(eve,ann) V =C(eve, fred).

4. |: ByKB D By¢y, but ‘75 ByKB D B¢y,
since we obtai, by case analysis over
C(carol,ann) V C(carol, bob) and
C(carol,eve) V C(carol, fred);
but we cannot gep, by one case analysis only.

We have given informal explanations here. Formal proofs
can be obtained by resorting to Theorem 5 below.

Logical correctness

A basic concern of a reasoning service is its logical correct-
ness, that is, just how closely it aligns with classical logical
entailment. We now show that query evaluation based on
SL is classically sound, that is, {fByKB D By.¢) is valid,
then& U KB classically entailsy, where& consists of the
axioms of equality and the infinite sétd # d') | d andd’
are distinct constan}s

As we have noted earlier, it is part of the semantics of
SC that the domain of discourse is essentially the set of
constants and equality is identity. Levesque (1998) calls
first-order interpretationstandardif they make the same as-
sumption. As the following theorem shows, the restriction
to standard interpretations can be captured by

Theorem [from (Levesque 1998)]

SupposeS is any set of closed wffs, and that there is an
infinite set of constants that do not appeaSinTheng U S

is satisfiable iff it has a standard model.

Lemma 1 Lets be a standard interpretation.
Thens o, ¢ iff s = Byo.

Proof: It is easy to prove by induction that =, ¢ iff
s = Byo. Itis also easy to prove by induction that when
is a set of literalss = By11¢iff s = Byo. [ ]

Theorem 1 If = ByKB D By¢, thené U KB ¢, ¢.

Proof: By the above theorem, it suffices to prove that every
standard moded of KB is also a model of. Since we have
thats =, KB, by lemma 1,s = ByKB, and therefore

s = By¢. Again, by lemma 1s =, ¢. [ |

We now consider the issue of classical completeness of
query evaluation based a8C. Of course, in general, this
reasoning is classically incomplete, which is necessary for
the sake of tractability. But there do exist a few simple cases
where it is classically complete.

In previous work, Levesque (1998) proposed a generaliza-
tion of databases callgotoper KBs which allow a limited
form of incomplete knowledge, equivalent to a consistent
set of ground literals. The classical entailment problem for
proper KBs is not decidable. So Levesque proposed a sound
butincomplete reasoning proceddfdor proper KBs which
was classically complete for queries in a normal form called
NZF. On the other hand, the expressiveness of proper KBs
is still quite limited. So Lakemeyer and Levesque (2002)
proposed an extension to proper KBs called propéBs,
which allow simple forms of disjunctive information. We
now define these precisely.

In what follows, we usé to range over substitutions of all
variables by constants, and writ@ as the result of apply-
ing the substitution tav. We usevYa to mean the universal
closure ofa. We lete range over ewffsi.e. quantifier-free
formulas containing no predicate symbols.

Definition 2 Let e be an ewff and: a clause. Then a for-
mula of the form¥(e D ¢) is called av-clause. AKB is
called proper® if it is a finite non-empty set of/-clauses.
Given a propet KB, we define gn(KB) as the infinite setup
{ch|V(e D c)eKBand|= ef}. A KBis calledproperifitis
proper™ and gndKB) is a consistent set of ground literals.

Ouir first result is that reasoning basedS&#his classically
complete for proper KBs when the query isAfF:

Theorem 2 Let KB be proper, and let € NF.
If £ UKB [=¢, ¢, thenj= ByKB > Byo.

Proof: By Levesque’s result that is complete for queries
in NF, if £ UKB = ¢, thenV[¢] = 1. By Corollary 1
below, we have thalt [¢] = 1 iff = BoKB D By¢. |

In the propositional case, when the KB is propand the
query is again in\F, we get a form of “eventual complete-
ness”, which is to say that for each query that is a logical
entailment, there is & for which the query is an implicit

Obviously, a standard interpretation can be represented aspelief at levelk:

an (infinite) set of ground literals such that for each ground
atoma, exactly one ofe and—a is in s. We usel=., to

denote the support and entailment relations in classical first-

order logic.

Theorem 3 In the propositional case, if KB is propér
¢ € NF, and KB =, ¢, then there exists & such that
': ByKB D Bk(ZS



Proof: Let k be the number of non-unit clausesKiB. We
prove that= ByKB D> By¢. By Theorem 5 below, it
is equivalent to proving that giiB) = By¢. Note that
gndKB) is KB itself. We prove by induction o&. Basis:
k = 0. ThenKBis proper. By Theorem 2= ByKB D By.
Induction step% > 0. Then there exists a non-unit clause
in KB. SinceKB ¢, ¢, we have thakB—{c}U{p} oL ¢
forall p € c. By induction, gngKB—{c}U{p}) = Bj— 1<;§
Thus gndKB) = By.¢.

Computing implicit beliefs
The other important concern of a reasoning service is its
computational property. In this section, we show that for
proper” KBs, query evaluation based @it is tractable in
the propositional case and decidable in the first-order case.

We begin by considering the simple case of proper KBs.
We show that Levesque’s reasoning procedurés actu-
ally a decision procedure for the QESL problem over proper
KBs. This results from an observation that relafégo tau-
tological entailment. Here is the definition of tautological
entailment for standard interpretations from (Lakemeyer &
Levesque 2002).

A literal setup is a set of ground literals. The support
relation = between literal setups and sentences is defined
as follows:

s = Liff 1 € s, wherel is a literal;

s =t (t = t') iff tisidentical tot';

s =t = (t = t') iff ¢ is notidentical ta’;
sl g i s =t g

sE (V) iff s gors = ¥

s E —(¢ V) iff s B —¢ ands =P —);
s = Ju.g iff s = ¢% for some constant;
s = =3¢ iff s E' —¢7 for all constant.

A set of sentence& tautologically entails a sentence
(X — o) iff for all literal setups, if s =t ¢ forall ¢ € 3,
thens = ¢

Lemma 2 Lets be a consistent literal setup.
Thens =t ¢ iff s = Byo.

Proof: Easy by induction. Note thatP(s) is s itself.

Theorem 4 Let KB be proper, and lep € L.
ThenE= ByKB D By¢ iff KB — ¢.

Proof: SinceKB is proper, gngKB) gnd(KB) does not con-
tain complementary literals. We hayje B)KB > B¢ iff
(by Theorem 5 below) gri&kB) = B¢ iff (by Lemma 2)
gndKB) ! ¢ iff KB — ¢, by Lemma 4 in (Lakemeyer &
Levesque 2002). [ |

© N gk wDdRE

Note that this theorem does not conflict with our goal of
avoiding the difficulties with tautological entailment, be-
cause it only holds for proper KBs. In the presence of dis-
junctive informationS£ and tautological entailment will be-
have differently.

In (Lakemeyer & Levesque 2002), it was shown that
KB — ¢ iff V[¢] = 1. Thus we have

Corollary 1 V is a decision procedure for the QESL prob-
lem for proper KBs.

Levesque (1998) claimed without proof thidtcan be im-
plemented efficiently using database techniques. Liu and
Levesque (2003) substantiated this claim by obtaining a
tractability result forl/.

Now let us consider the general case of propkBs. In
the rest of this section, we assume that KB is propand
¢ € L. We first present a theorem which reduces the QESL
problem for propetr KBs to a model checking problem (for
an infinite model).

Lemma 3
(1) gndKB) |= ByKB.
(2) If s = ByKB, thenvP(gnd(KB)) C VP(s).

Proof: It is easy to see that = ByKB iff for any ¢ €
gndKB), s = Byc. Thus (1) gndkB) = ByKB; and (2)
if s = ByKB, then gndKB) C VP(s), by Proposition 3,
VP(gndKB)) C VP(s). [ |

So in a sense, gitB) is the minimal model oKB.
Theorem 5 = ByKB D By¢ iff gnd(KB) = By¢.

Proof: The only-if direction follows from gnKB) =
ByKB. Suppose that giiiB) = By¢. Lets = ByKB.
ThenvP(gnd(KB)) CVP(s). By monotonicity,s = By¢. B

We then get the following result about propositional rea-
soning usingS_:

Theorem 6 In the propositional case, determining whether
= (BoKB D By¢) can be done in im@((in)**+1), where
l is the size o, andn is the size of KB.

Proof: We resort to Theorem 5. Note that in the proposi-
tional caseKB is simply a set of clauses, and di®) is

KB itself. Let f(k) denote the time complexity of deciding

if gnd(KB) = By¢. Then we have: (1Y (0) = O(In),
since unit propagation can be done in linear time; and (2)
f(k) = O(ln- f(k — 1)), wherek > 0, since each split-
ting operation is associated with a logical operator or clause.
Solving the recurrence, we get thétk) is O((In)**1). m

Corollary 2 The QESL problem for propér KBs is
tractable (for small, fixed) in the propositional case.

Next, we will show that in the first-order case, the QESL
problem for proper KBs is decidable by presenting a pro-
cedure calledV for deciding whether gné&kB) = By¢. W
is a slight variant of the reasoning procedufeproposed
for proper” KBs by Lakemeyer and Levesque (2002). The
main idea behindV is that to decide gnkB) = By, it
suffices to consider (1) a finite set of constants when evaluat-
ing quantifications, and (2) a finite subset of GdB) when
performing unit propagation or splitting. The argument for
this is essentially the same as far. The intuition is that
constants not mentioned KB or ¢ behave the same, so we
only need to pick a certain number of representatives.

Letm > 0. We useH,} to denote the union of the con-
stants inKB, those mentioned in the query, andm new
constants appearing nowhere KiB and ¢. Let n be the
maximum number of variables invaclause oKB. We use



gndKB)|H, to denote the sefcd | V(e D ¢) KB, 0 € H,,
andj= ef}, where byl € H," we mean that only takes
constants frond .

1 if one of the following
conditions (1)—(9) holds
0 otherwise

WIKB, k, ¢] = {

1. k=0, ¢ is a clause:, and there exists
¢ € UP(gndKB)|H,) such that’ C c.

2. ¢ = (d =d'), andd is identical tod’.
3. ¢ = ~(d = d'), andd is distinct fromd’.
4. ¢ = ——p, andW[KB, k, ] = 1.
5. ¢ = (¢ V1), ornisnotaclause, and’[KB, k,¢] = 1
or WIKB, k,n] = 1.
6. ¢ = —(v V1), WIKB, k,~p] =1, andW [KB, k, ~n] =1.
7. ¢ = Jx.4h, andW KB, k, %] = 1 for somed € H;'.
8. ¢ = —~3r.9p, andW[KB, k, —%] = 1 forall d € H; .
9. k>0, ¢ is a clause, a disjunction, or an existential, and

there is av(e D ¢) € KB and ad € H," such that= ef
and for allp € cf, WKBU {p},k — 1, ¢] = 1.

Let x be any bijection from constants to constants. We
usea* to denotea with every constant! replaced byd*.
We let * denote{a* | a € ¥}. We used* to denote
the substitution which assigns variablehe valued* if 6
assignse the valued. It is easy to prove the following:

Proposition 51. = e iff = e*, wheree is an ewff.
2. c € UP(s) iff ¢* € UP(s").
3. 5 = Byo iff s* = Bo*.
4. gndKB)* = gnd KB*).
Letecy, ..., ec, be the list of constants appearingfify
but notKB or the query¢. Let L be a list of constants

di,...,dr (k < m) not appearing inH. We letid(L)
represent the bijection that swagsandec;, i = 1,....k

s Vs

and leaves the rest constants unchanged. Note that for any

¢ € UP(gndKB)), ¢ mentions at most. constants not ap-
pearing inH,".

Lemma 4 Letc € UP(gndKB)). Letx beid(L) whereL
is the list of constants appearing inbut not H;". Then
c* € UP(gndKB)|H,).

Proof: We prove by induction on the length of a derivation.
Basis: ¢ € gndKB). Then there exist(e D d) € KB
andé s.t. | ef andc = df. Sincel= ef iff = e*6*, i.e.
ed*, we have thatl6*, i.e. c¢*, is in gndKB) too. Thus
¢* € UP(gndKB)|H,). Induction stepz is obtained from
pandcV p. Letx beid(L’) whereL’ is the list of constants
appearing inc vV p but not H;F. By induction, bothp* and

(¢ V p)* are inUP(gndKB)|H,I). Thusc*, i.e. ¢*, is in
UP(gndKB)|H,!) too. ]

Lemma5 Let ¢ be a formula in with a single free vari-
ablez. Letb andd be two constants that do not appear in
KB or ¢. Then gndKB) = By.¢7 iff gnd(KB) = By¢2.

Proof: Let x be the bijection that swagsandd and leaves
the rest constants unchanged. Then(#B) = B¢} iff
(by Proposition 5 (3)) gnKB)* = By (¢7)* iff (by Propo-
sition 5 (4)) gndKB*) = By (¢})" iff gnd(KB) |= By.67,
sincex leaves constants KB or ¢ unchanged. [ |

Lemma 6 Suppose that giikB) = B¢ by splitting on
¢ € gndKB). Then gn¢KB) = B¢ by splitting on some
¢ € gndKB)|H, .

Proof: Let = beid(L) whereL is the list of constants ap-
pearing inc but notH,". Thenc* egndKB)|H,". Letpec.
Then gndKB) U {p} = Bi_1¢, thatis, gndKBU {p})
E Bi_16. Thus gndKB U {p})* & By_1¢%, that is,
gndKB U {p*}) = By_1¢. Therefore gn(KB) = B¢
by splitting onc*. ]

Theorem 7 gndKB) = B¢ iff W[KB,k, ¢] = 1.

Proof: We prove by induction or| B¢ ||. Here we only
prove the cases of clauses, disjunctions, and quantifications.
The other cases follow easily from properties of beliefs.

1. By Lemma 4, whenH " contains constants appearing
in ¢, ¢ € UP(gndKB)) iff ¢ € UP(gndKB)|H,).
Thus gndKB) = Byc iff £ = 0 and there exists
¢ € UP(gndKB)|H,}) such that’ C ¢, ork > 0 and
gndKB) = By.c by splitting.

2. gndKB) = By (v V n), wherey or n is not a clause,
iff gnd(KB) = By or gndKB) = Byn or gndKB) =
By (v Vv n) by splitting.

3. By Lemma 5, gn(KB) = By —3z.¢ iff gnd(KB)
B~y foralld € Hy .

4. gndKB) = Bj3dz.y iff gnd(KB) = Byeyj for some
d € H{ orgndKB) = B;3x.¢ by splitting.

5. By Lemma 6, gn(KB) = By ¢ by splitting iff this holds
by splitting on some € gndKB)|H,!. ]

Corollary 3 The QESL problem for propérKBs is decid-
able in the first-order case.

A Complete Axiomatization
for Propositional SC

In this section, we present a sound and complete axioma-
tization for propositionalSC, i.e. a set of axioms and in-
ference rules that generate all and only the valid sentences.
Although it is not intended as a step towards “automating”
the logic, it does provide another useful perspective on the
valid sentences. As far as we can tell, due to the peculiarity
of the semantics o, the general techniques for obtaining
complete axiomatizations for classical logics of knowledge
and belief (Halpern & Moses 1992) do not applyS6. The

key to our complete axiomatization lies in the construction
of sets of representative models, called RM-sets, for belief
atomsB;¢. Since the definition of RM-sets is non-trivial,
we leave it to the end of this section. For now, it is sufficient
to know that a RM-set 0B, ¢ is a finite setA of finite se-
tups, and atoms appearingdnbut not¢ are called helping
atoms. In what follows, we identify a finite setapvith the
conjunction of the clauses in



Our proof system is as follows:
Axioms:

Al Allinstances of propositional tautologies

A2 Unit Resolution:Byp A By(p V ¢) D Byc, wherep is a
literal andc is a clause

A3 SubsumptionByc D Byc', wherec andc’ are clauses,
andc C ¢

A4 Belief Reduction forBy: B¢ D (Bp¢) |

A5 Belief Reduction forBy: (Bi¢) | D Bro
Inference rules:

R1 Modus Ponens: from anda: O (3 infer 5

R2 Case Analysis: fronfV/ B(_)p) A Bjy O By, infer
Byc N Bjyp D B¢, Wherecis a clause
R3 Representative Model: frorf\/,_, Bot) D «, infer

Br¢d DO «, whereA is a RM-set of B¢ such that its
helping atoms do not appeardn

Theorem 8 The axiom system is sound and complete.

The proof is presented in (Liu 2004). The soundness part
is a typical proof by induction on the length of a derivation,
where the main complication is the soundness of R2 and R3.

The completeness part is more involved but here are the ™

main ideas: A belief literal is a belief atom or its negation; a
belief clause is a finite set of belief literals;Sd formula is

in CNF if it is a conjunction of belief clauses. Clearly, any
SC formulac can be put into an equivalent formula in CNF.
To prove a validSL formulac«, we first prove its CNF form
and then provex from it by using A1 and R1. Now consider
a valid belief clause

8= Bj1¢1 A...NBj ¢ D By i V...V By, 1.

Let A; be a RM-set oiBj, ¢;, i = 1,..., m such that help-
ing atoms ofA4,..., A,, are pairwise disjoint. To provg,

we first prove(\/t en, Boti) Ao A (V. ca, Botm) D
By, 1V.. .V By, wn and then provéf from th|s formula by
repeatedly applylng R3. Now consider a valid belief clause

v = Byt D Bklwl V...V Bkn’(/Jn7

wheret is afinite setup. We claim thd@y¢ D By, v; is valid
for somei = 1, ..., n. Sincet = Byt, t = By,1; for some
i. Now lets = Byt. Thent C VP(s). By monotonicity,
s = By, ;. Thus to provey, we proveByt D By, ; for
somei. Finally, valid formulas of the fornByt D By ¢ can
be proved by using axioms and proof rules other than R3.

We now present the definition of RM-sets, beginning with
the definition of splitting models. Intuitively, a RM-sét of
a belief atomB;, ¢ is a finite set of finite models dBy. ¢ such
that each model aB; ¢ has a representative ik, in a sense
we will explain soon. Moreover, i§ = B¢ by splitting,
then its representative ifA is a splitting model.

Let c be a clause ansla setup. We useVs to denote the
setup{(c Vv d) | d € s}.

Definition 3 Let A = {t4,...,
setups. Letr;,y;,z;,i = 1,...,

t,} be afinite set of finite
n, be distinct atoms not

appearing imA. We call them helping atoms.
The following is a type-1 splitting model wrk:

{\/ x; V yi}’ @] U ﬁl’ﬂ?ti U U ﬁyi\~/ti.
The following is a type-2 splitting model wrk:

{\/ xZ; V yz} U U{—L’El \Y Ziy Y5 \Y Zi}U
7 i

U(—\l‘i vV _\Zi)\~/ti U LJ(_\yz V _\Zi)\~/ti.
7 3

Definition 4 The RM-sets ofBy¢ are inductively defined

on|| Bx¢|| as follows:

1. The only RM-set oByc is {{c}}.

2. If A'is a RM-set ofB,.c, andt is a type¢ splitting model
wrt A (if & > 0theni = 1 elsei = 2), then{t} is a
RM-set of By, 1 c.

. A RM-set of B;v is a RM-set of B, ——).

. If A; is a RM-set of B,—;, i« = 1,2, and the helping

atoms ofA; andA, are disjoint, thedt; Uts | t; € A,

i =1,2} is a RM-set ofB,— (11 V 12).

If A; is a RM-set ofByv;, i = 1,2, thenA; U Asisa

RM-set OfBO (¢1 \Y 1,[}2)

If A; is a RM-set of By 19,7 = 1,2, A is a RM-set of

By (¢ V 9h2), andt is a types splitting model wrtA (if

k > 0theni = 1 elsei = 2), thenA; UA, U {t} isa

RM-set Oka+1(T/J1 \ '1/12)

The following theorem characterizes RM-sets:

Theorem 9 Let A be a RM-set ofB,¢, and let H be its
helping atoms. Then

1. Ais afinite set of finite setups.

2. Forallt € A, t = Byo.

3. For any setup such thats = B¢ and s does not men-

tion atoms inH, there exists € A such that for any
not mentioning atoms iff, s Ut = «iff s = a.

w

5.

The proof is presented in (Liu 2004).

The above Property 3 says that each mad#l B¢ such
thats does not mention atoms i has a representativan
A in the sense thatU ¢ ands agree on allSC formulas not
mentioning atoms if{. Now we are in a good position to
explain the motivation behind defining two types of splitting
models. Consider the belief atof;p. Assume that our
definition was: ift is a type-1 splitting model wrfp}, then
{t} is a RM-set ofB;p. Now lett = {z V y, TV p,5 V p},
andlets = {u Vv, uVw,TVw,aVwVpTVWVp,p}.
Thens ': Bip,sUt ': Bop N Bop, but s l?é Bop N Bop.
Thus Property 3 would not hold.

Example 3

1. A={{p,q},{r}}isaRM-setofBy[p A ¢V ];

2. t is a type-2 splitting model wid\, wheret; =
{uvVoVvzVy,uVw,oVwITVzyVz,uVvVwVp,
vVwVp,aVwVquVuwVqgTVEVrYVZVT)

. {t2} is RM-set of By, wheret, =
{uvVv,aVw,oVw,avVwoVr,oVwVr}



4. {ts} is RM-set of B; (pAq), wherets ={uVv, uVw, TVw,
uNwVp, VWV p, VY, TVz,§Vz,TVEZVqYIVZVq};

5. {t1,t2,t3} isa RM-set ofBy[p A q VV 1].

Related Work

Our work on SC grew out of our attempts to semanti-
cally characterize the reasoning procedireroposed for
proper- KBs in (Lakemeyer & Levesque 2002). The main
difference betweeX and the procedurd” presented in this
paper is: inX, the depth of case splitting allowed depends
on the form of the query, while i/, this number is supplied
explicitly as an extra parametgr

Existing semantic approaches to limited reasoning can
be put into two categories. Early work (Levesque 1984,
Frisch 1987; Schaerf & Cadoli 1995; Patel-Schneider 1985;
Lakemeyer 1990) was based on tautological entailment.
Later work (Dalal 1996; Crawford & Etherington 1998) was
based on unit propagation, but restricted to the proposi-
tional case. The last two grew out of attempts to seman-
tically characterize the concept of Socratic completeness,
which was first introduced in (Crawford & Kuipers 1989)
and later generalized to the notion of Socratic proof system
(McAllester & Givan 1993). Dalal’'s work is limited to a
propositional clausal language. Crawford and Etherington
(1998) attempted to extend this work to the full proposi-
tional language. They proposed a non-deterministic seman-
tics. However, their notion of models is so loosely defined
that almost none of the normal Boolean laws holds in their
logic. In the following, we first compar&L with tautologi-
cal entailment, and then with Dalal’s logic.

In some casesSL is stronger than tautological entailment.
For example, we have that By[p A (p V r)] D Byr and
= Bol(pVa) A(PVr)A(gVr)] O Bir, butpA(pVr) =7
and(pVqg)A(pVr)A(gVr) - r. However, in some other
casesSL is weaker than tautological entailment. Consider
KB2 in Figure 1. We have th&&B2 — Jz.(P(z) AQ(x)),
but £ ByKB2 D> ByJz.(P(z) A Q(x)) for k < 8. Also,
there are cases whef£ coincides with tautological entail-
ment. For example, as shown by Theorem 4, the two co-
incide on proper KBs. As to the computational property,
consider proper KBs. We know that deciding whether
KB — ¢ is co-NP-hard in the propositional case and un-
decidable in the first-order case, while deciding whether
= ByKB D B¢ is tractable in the propositional case and
decidable in the first-order case.

Dalal (1996) considers a propositional clausal language,
and provides a model-theoretic semantics for Boolean Con-
straint Propagation (BCP), a variant of unit propagation.
More precisely, he defines an entailment relatien be-

tween clausal theories and clauses, and shows that a refu-

tation variant of BCP is sound and complete fer, that
is, for any clausal theor} and any clause, ¥ = ¢ iff the
empty clause can be obtained by BCP frahu ¢, where
¢ = {p| p € c}. Moreover, Dalal extends the inference re-
lation-gcp to a family of inference relationsi”, k£ > 0, by
allowing Modus Ponens on clauses of restricted size. This
family of inference relations is eventually complete.

Now we restrict ourselves to the propositional clausal

language, and compa®. with Dalal’'s logic. LetX be

a clausal theory and a clause. We writes =" c if

E (ByX D Byc). First, note that tautologous clauses are
handled differently in the two approaches. We have that
p bFeep (¢V Q) but£ Bop D By (qV7q) for anyk. Secondly,
Facp is strictly stronger thak=5-. For example, we have that
(pVa) APV q) Fece g butbE Bol(pVq) A(PVq)] O Bog.
However, in generak-3°" and |=3- are incomparable. For
example, let; = {(uVwv), (@Vv),(@VpVy), ([ TVPVa)},
thenX; F5F ¢ but B BoX D Big; letXs = {(uVv),
(zVy),([@vzTVp),(@vyVvae),®VTVae),(@VyVp)}
then= ByXs D Ba(p V q) but s ¥5F (p V ¢). Finally,
similar to 8P, =3+ is eventually complete for nontautolo-
gous clauses, which are examples of queries in the normal
form NF.

Conclusions

In this paper, we have proposed a new logic of limited be-
lief called SC, with the goal of providing a semantically co-
herent and computationally attractive reasoning service for
knowledge bases with disjunctive information. Reasoning
based orSL is always classically sound, and in some simple
cases, is also classically complete. Given disjunctive facts,
it performs unit propagation, but only does case analysis in
a limited way, under user control. While the reasoning ser-
vice is well-defined for any first-order KB, we have consid-
ered its computational property for two special cases. For
proper KBs, which represent incomplete knowledge without
disjunction, the reasoning service can be realized using the
efficient database procedure discussed in (Liu & Levesque
2003). For properKBs, which represent incomplete knowl-
edge including disjunction, we have proved that the reason-
ing service is tractable in the propositional case and decid-
able in the first-order case. Also, we have presented a sound
and complete axiomatization for propositiox#l.

There are a number of topics for future research. First of
all, the Representative Model inference rule in our axiom-
atization is obscure and unintuitive. It would be desirable
to find a more natural axiom system. Moreover, we would
like to generalize our axiomatization to the first-order case.
It would also be interesting to analyze the complexity of the
satisfiability problem of propositiona£. Also, we would
like to explore in the first-order case, under what restric-
tions on proper KBs and queries, reasoning based&h
is eventually complete. But the more pressing problem is
this: while query evaluation based &if for proper~ KBs
is decidable, it is crucial to identify “islands of tractability”
by applying restrictions on properKBs and queries. This
can be seen as an extension of the work presented in (Liu
& Levesque 2003), where a tractable case of the reasoning
procedurel/ was identified. We expect that the graphical
notion of tree-width will again play an important role in this
research.
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