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Abstract

John McCarthy’s situation calculus has left an enduring mark on artificial intel-
ligence research. This simple yet elegant formalism for modelling and reasoning
about dynamic systems is still in common use more than forty years since it was
first proposed. The ability to reason about action and change has long been con-
sidered a necessary component for any intelligent system. The situation calculus
and its numerous extensions as well as the many competing proposals that it
has inspired deal with this problem to some extent. In this paper, we offer a
new approach to belief change associated with performing actions that addresses
some of the shortcomings of these approaches. In particular, our approach is
based on a well-developed theory of action in the situation calculus extended
to deal with belief. Moreover, by augmenting this approach with a notion of
plausibility over situations, our account handles nested belief, belief introspec-
tion, mistaken belief, and handles belief revision and belief update together with
iterated belief change.

Keywords: Knowledge representation and reasoning, reasoning about action
and change, situation calculus, belief change.

The work of John McCarthy has had a profound and lasting effect on artifi-
cial intelligence research. One of his more enduring contributions has been the
introduction of the situation calculus [2, 3]. This simple yet elegant formalism
for modelling and reasoning about dynamic systems is still in common use more
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than forty years since it was first proposed. The ability to reason about action
and change has long been considered a necessary component for any intelligent
system. An agent acting in its environment must be capable of reasoning about
the state of its environment and keeping track of any changes to the environ-
ment as actions are performed. Various theories have been developed to give
an account of how this can be achieved. Foremost among these are theories of
belief change and theories for reasoning about action. While originating from
different motivations, the two are united in their aim to have agents maintain
a model of the environment that matches the actual environment as closely as
possible given the available information. An important consideration is the abil-
ity to deal with a succession of changes; known as the problem of iterated belief
change.

In this paper, we consider a new approach for modelling iterated belief
change using the language of the situation calculus [2, 3]. While our approach
is in some ways limited in its applicability, we feel that it is conceptually very
simple and offers a number of useful features not found in other approaches:

• It is completely integrated with a well-developed theory of action in the
situation calculus [4] and its extension to handle knowledge expansion
[5, 6]. Specifically, the manner in which beliefs change in our account is
simply a special case of how other fluents change as the result of actions,
and thus among other things, we inherit a solution to the frame problem.

• Like Scherl and Levesque [5, 6], our theory accommodates both belief
update and belief expansion. The former concerns beliefs that change as
the result of the realization that the world has changed; the latter concerns
beliefs that change as the result of newly acquired information.

• Unlike Scherl and Levesque, however, our theory is not limited to belief
expansion; rather it deals with the more general case of belief revision.
It will be possible in our model for an agent to believe some formula
φ, acquire information that causes it to change its mind and believe ¬φ
(without believing the world has changed), and later go back to believing φ
again. In Scherl and Levesque and in other approaches based on this work
such as [7, 8], new information that contradicts previous beliefs cannot be
consistently accommodated.

• Because belief change in our model is always the result of action, our
account naturally supports iterated belief change. This is simply the result
of a sequence of actions. Moreover, each individual action can potentially
cause both an update (by changing the world) and a revision (by providing
sensing information) in a seamless way.

• Like Scherl and Levesque and unlike many previous approaches to belief
change, e.g., [9, 10], our approach supports belief introspection: an agent
will know what it believes and does not believe. Furthermore, it has
information about the past, and so will also know what it used to believe
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and not believe. Finally, an agent will be able to predict what it will
believe in the future after it acquires information through sensing.

• Unlike Scherl and Levesque, our agents will be able to introspectively
tell the difference between an update and a revision as they move from
believing φ to believing ¬φ. In the former case, the agent will believe that
it believed φ in the past, and that it was correct to do so; in the latter
case, it will believe that it believed φ in the past but that it was mistaken.

• One important lesson learned is that not only does our method for iter-
ated belief change in the situation calculus possess interesting properties
but attempting to use more sophisticated schemes that involve modifying
plausibilities of possible worlds, leads to unintuitive introspection proper-
ties when applied to situations.

The rest of the paper is organized as follows: in the next section, we briefly
review the situation calculus including the Scherl and Levesque [5, 6] model of
belief expansion, and we review the most popular accounts of belief revision,
belief update, and iterated belief change; in Section 3, we motivate and define a
new belief operator as a modification to the one used by Scherl and Levesque;
in Section 4, we prove some properties of this operator, justifying the points
made above; in Section 5, we show the operator in action on a simple example,
and how an agent can change its mind repeatedly; in Section 6, we analyze the
extent to which our framework satisfies revision, update, and iterated revision
postulates; in Section 7, we compare our framework to some of the existing
approaches to belief change; and in the final section, we draw some conclusions
and discuss future work.

1. Background

The basis of our framework for belief change is an action theory [4] based
on the situation calculus [2, 3], and extended to include a belief operator [5, 6].
In this section, we begin with a brief overview of the situation calculus and
follow it with a short review of belief change in sufficient detail to understand
the contributions made in this paper.

1.1. The Situation Calculus

The situation calculus is a predicate calculus language for representing dy-
namically changing domains. A situation represents a snapshot of the domain.
There is a set of initial situations corresponding to the ways the agent1 believes
the domain might be initially. The actual initial state of the domain is repre-
sented by the distinguished initial situation constant, S0, which may or may not

1The situation calculus can accommodate multiple agents, but for the purposes of this
paper we assume that there is a single agent, and all actions are performed by that agent.
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be among the set of initial situations believed possible by the agent. The term
do(a, s) denotes the unique situation that results from the agent performing ac-
tion a in situation s. Thus, the situations can be structured into a set of trees,
where the root of each tree is an initial situation and the arcs are actions.

Predicates and functions whose value may change from situation to situation
(and whose last argument is a situation) are called fluents. For instance, we use
the fluent InR1(s) to represent that the agent is in room R1 in situation s. The
effects of actions on fluents are defined using successor state axioms [4], which
provide a succinct representation for both effect axioms and frame axioms [2, 3].
For example, assume that there are only two rooms, R1 and R2, and that the
action leave takes the agent from the current room to the other room. Then,
the successor state axiom for InR1 is:2

InR1(do(a, s)) ≡ ((¬InR1(s) ∧ a = leave) ∨ (InR1(s) ∧ a 6= leave)).

This axiom asserts that the agent will be in R1 after doing some action if and
only if either the agent is in R2 (¬InR1(s)) and leaves it or the agent is currently
in R1 and the action is anything other than leaving it.

Moore [11] defined a possible-worlds semantics for a modal logic of knowledge
in the situation calculus by treating situations as possible worlds. Scherl and
Levesque [5, 6] adapted the semantics to the action theories of Reiter [4]. The
idea is to have an accessibility relation on situations, B(s′, s), which holds if in
situation s, the situation s′ is considered possible by the agent. Note that the
order of the arguments is reversed from the usual convention in modal logic.

Levesque [8] introduced a predicate, SF(a, s), to describe the result of per-
forming the binary-valued sensing action a. SF(a, s) holds if and only if the
sensor associated with a returns the sensing value 1 in situation s. Each sensing
action senses some property of the domain. The property sensed by an action is
associated with the action using a guarded sensed fluent axiom [12]. For exam-
ple, suppose that there are lights in R1 and R2 and that Light1(s) (Light2(s),
respectively) holds if the light in R1 (R2, respectively) is on. Then:

InR1(s) ⊃ (SF(senseLight, s) ≡ Light1(s))
¬InR1(s) ⊃ (SF(senseLight, s) ≡ Light2(s))

can be used to specify that the senseLight action senses whether the light is
on in the room where the agent is currently located.

Scherl and Levesque [5, 6] defined a successor state axiom for B that shows
how actions, including sensing actions, affect the beliefs of the agent. We use
the same axiom (with some notational variation) here:

Axiom 1 (Successor State Axiom for B)

B(s′′, do(a, s)) ≡ ∃s′[B(s′, s) ∧ s′′ = do(a, s′) ∧ (SF(a, s′) ≡ SF(a, s))].

2We adopt the convention that unbound variables are universally quantified in the widest
scope.
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The situations s′′ that are B-related to do(a, s) are the ones that result from
doing action a in a situation s′, such that the sensor associated with action a

has the same value in s′ as it does in s. This axiom is further illustrated in
Figure 2 and the explanatory text that follows. We will see in Section 2.2 how
a belief operator can be defined in terms of this fluent.

There are various ways of axiomatizing dynamic applications in the situation
calculus. Here we adopt a simple form of the guarded action theories described
by De Giacomo and Levesque [12] consisting of: (1) successor state axioms3 for
each fluent (including B and pl introduced below), and guarded sensed fluent
axioms for each action, as discussed above; (2) unique names axioms for the
actions, and domain-independent foundational axioms (given below); and (3)
initial state axioms, which describe the initial state of the domain and the
initial beliefs of the agent.4 For simplicity, we assume here that all actions are
always executable and omit the action precondition axioms and references to a
Poss predicate that are normally included in situation calculus action theories.
These do not add any significant complexity to our approach but omitting them
here allows us to focus on the key elements of our framework.

In what follows, we will use Σ to refer to a guarded action theory of this
form. By a domain-dependent fluent, we mean a fluent other than B or pl, and a
domain-dependent formula is one that only mentions domain-dependent fluents.

As part of every guarded action theory, we have unique names axioms for
actions and foundational axioms. The unique names axioms for the actions state
that distinct action function symbols correspond to different action functions.
For every pair of distinct action functions, a1 and a2, we need an axiom of the
following form:

Axiom 2
a1(~x) 6= a2(~y).

Also, for an action function, a, we need an axiom of the following form:

Axiom 3
a(~x) = a(~y) ⊃ ~x = ~y.

This means that an action function applied to distinct arguments is mapped
to different actions, i.e., all action functions are injective. If we have n action
functions, we need O(n2) unique names axioms [13]. However, it would not be
difficult to have them automatically generated from a list of the action names
and arities.

3We could use the more general guarded successor state axioms of De Giacomo and
Levesque [12], but regular successor state axioms suffice for the simple domain we consider
here and for illustrating our approach.

4These are axioms that only describe initial situations. Reiter [4] has adopted S0 as the
only initial situation, but to formalize belief, we need additional initial situations representing
the alternative scenarios consistent with the agent’s initial beliefs.
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We want the situations to be the smallest set generated by sequences of
actions starting in an initial situation. We axiomatize the structure of the situ-
ations with foundational axioms based on the ones listed in Levesque et al. [14]
and Pirri and Reiter [15] for the language of the “epistemic situation calculus”.
We first define the initial situations to be those that have no predecessors:

Init(s′)
def

= ¬∃a, s.s′ = do(a, s)

We declare S0 to be an initial situation.

Axiom 4
Init(S0)

We also need an axiom stating that do is injective.

Axiom 5
do(a1, s1) = do(a2, s2) ⊃ (a1 = a2 ∧ s1 = s2)

The induction axiom for situations says that if a property P holds of all
initial situations, and P holds for all successors of situation s if it holds for s,
then P holds for all situations.

Axiom 6

∀P.[(∀s.Init(s) ⊃ P (s)) ∧ (∀a, s.P (s) ⊃ P (do(a, s)))] ⊃ ∀sP (s).

We now define precedence for situations. We say that s strictly precedes s′

if and only if there is a (non-empty) sequence of actions that take s to s′.

Axiom 7

∀s1, s2.s1 ≺ s2 ≡ (∃a, s.s2 = do(a, s) ∧ (s1 � s)),

where s1 � s2
def

= s1 = s2 ∨ s1 ≺ s2 denotes that s1 precedes s2.

1.2. Belief Change

Before formally defining a belief operator in this language, we briefly review
the notion of belief change as it exists in the literature. Belief change, simply put,
aims to study the manner in which an agent’s epistemic (belief) state should
change when the agent is confronted by new information. In the literature,5

there is often a clear distinction between two forms of belief change: revision
and update. Both forms can be characterized by an axiomatic approach (in

5We shall restrict our attention to approaches in the AGM vein [16, 9, 10] although there
are many others.
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terms of rationality postulates) or through various constructions (e.g., epistemic
entrenchment, possible worlds, etc.). The AGM theory [9] is the prototypical
example of belief revision while the KM framework [10] is often identified with
belief update.

Intuitively speaking, belief revision is appropriate for modelling static en-
vironments about which the agent has only partial and possibly incorrect in-
formation. New information is used to fill in gaps and correct errors, but the
environment itself does not undergo change. Belief update, on the other hand,
is intended for situations in which the environment itself is changing due to the
performing of actions.

For completeness and later comparison, we list here the AGM postulates
[16, 9] for belief revision. By K ∗ φ we mean the revision of belief state K by
new information φ.6

(K∗1) K ∗ φ is deductively closed
(K∗2) φ ∈ K ∗ φ
(K∗3) K ∗ φ ⊆ K + φ

(K∗4) If ¬φ 6∈ K, then K + φ ⊆ K ∗ φ
(K∗5) K ∗ φ = L iff |= ¬φ
(K∗6) If |= φ ≡ ψ, then K ∗ φ = K ∗ ψ
(K∗7) K ∗ (φ ∧ ψ) ⊆ (K ∗ φ) + ψ

(K∗8) If ¬ψ 6∈ K ∗ φ, then (K ∗ φ) + ψ ⊆ K ∗ (φ ∧ ψ)

Katsuno and Mendelzon [10] provide the following postulates for belief up-
date, where K ⋄ φ denotes the update of belief state K by formula φ.7

(K⋄1) K ⋄ φ is deductively closed
(K⋄2) φ ∈ K ⋄ φ
(K⋄3) If φ ∈ K, then K ⋄ φ = K

(K⋄4) K ⋄ φ = L iff K |= ⊥ or φ |= ⊥
(K⋄5) If |= φ ≡ ψ, then K ⋄ φ = K ⋄ ψ
(K⋄6) K ⋄ (φ ∧ ψ) ⊆ (K ⋄ φ) + ψ

(K⋄7) If K is complete and ¬ψ 6∈ K ⋄ φ, then (K ⋄ φ) + ψ ⊆ K ⋄ (φ ∧ ψ)
(K⋄8) If [K] 6= ∅, then K ⋄ φ =

⋂
w∈[K]w ⋄ φ

6In the AGM theory, K is a set of formulae and φ is a formula taken from an object
language L containing the standard Boolean connectives and the logical constant ⊥ (falsum).
Furthermore, K is a set of formulae (from L) closed under the deductive consequence operator
Cn associated with the underlying logic. The operation K +φ denotes the belief expansion of
K by φ and is defined as K +φ = Cn(K ∪{φ}). [K] denotes the set of all consistent complete
theories of L containing K.

7To facilitate comparison with the AGM postulates, we have reformulated the original
postulates of Katsuno and Mendelzon into an equivalent set using AGM-style terminology
[17]. For renderings of these postulates and the AGM postulates above in the KM-style, refer
to Katsuno and Mendelzon [10].
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One of the major issues in this area is that of iterated belief change, i.e.,
modelling how the agent’s beliefs change after a succession of belief revisions
or updates occur. Two of the main developments in this area are the work of
Darwiche and Pearl [18] and Boutilier [19]. Darwiche and Pearl put forward
the following postulates as a way of extending the AGM revision postulates to
handle iterated revision.8

(DP1) If ψ |= φ, then (K ∗ φ) ∗ ψ = K ∗ ψ
(DP2) If ψ |= ¬φ, then (K ∗ φ) ∗ ψ = K ∗ ψ
(DP3) If φ ∈ K ∗ ψ, then φ ∈ (K ∗ φ) ∗ ψ
(DP4) If ¬φ 6∈ K ∗ ψ, then ¬φ 6∈ (K ∗ φ) ∗ ψ

In Section 5, we return to consider the extent to which our framework sat-
isfies these postulates.

2. Our Account of Belief Change

2.1. Belief Change and Introspection

Scherl and Levesque provide an elegant framework for incorporating knowl-
edge change into the situation calculus. However, in many applications, there is
a need to represent information that could turn out to be wrong, i.e., we need
to be able to represent beliefs and how they change due to actions. In order to
incorporate belief change into our framework, we decided to adapt ideas from
Spohn [20] and Darwiche and Pearl [18]. Our first attempt was to add an ex-
tra argument to the accessibility relation. This extra argument was a natural
number corresponding to the plausibility of the accessible situation.9 B(s′, n, s)
would denote that in s, the agent thinks s′ was possible with κ-ranking (plau-
sibility) n.10 The lower κ-ranking, the more plausible the situation would be
considered by the agent, and the beliefs of the agent in s would be determined
by the situations accessible from s with κ-ranking 0, i.e.,

Bel(φ, s)
def

= ∀s′.B(s′, 0, s) ⊃ φ[s′].

The successor state axiom for B would adjust the plausibilities of the B-
related situations depending on the results of sensing using a scheme similar
to Darwiche and Pearl’s. Unlike most other approaches to belief revision, we

8Again, for consistency of presentation, we have translated the Darwiche and Pearl pos-
tulates into AGM-style terminology rather than KM-style terminology used in the original
paper.

9In fact, the actual numbers assigned to the situations are not relevant. All that is impor-
tant is the ordering of the situations by plausibility. We could have used any total preorder
on situations for this purpose, but using ≤ on natural numbers simplifies the presentation of
our framework.

10We adopt Spohn’s [20] terminology here.
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Figure 1: Belief introspection and plausibility update clash.

wanted to handle positive and negative introspection of beliefs. However, we
realized that this desideratum was in conflict with any reasonable scheme for
updating plausibilities of accessible situations. Any reasonable scheme would
have the following property: if the accessible situation agrees with the actual
situation on the result of a sensing action, the plausibility of the situation should
increase (i.e., its κ-ranking should decrease), otherwise the plausibility should
decrease. In other words, if B(s′, n, s) and SF(a, s′) ≡ SF(a, s) hold, then
B(do(a, s′),m, do(a, s)) should hold for some m ≤ n. Similarly, if SF(a, s′) ≡
¬SF(a, s) holds, then m should be greater than or equal to n. On the other
hand, to ensure positive and negative introspection of beliefs, we combined and
generalized the constraints that B be transitive and Euclidean to obtain the
following requirement on B (which we call TE for transitive and Euclidean):

∀s, s′.(∃n.B(s′, n, s)) ⊃ [∀s′′,m.B(s′′,m, s′) ≡ B(s′′,m, s)]. (TE)

This requirement ensures that any situation s′ accessible from s has the same
belief structure as s, i.e., s′ has the same accessible situations with the same
plausibilities as s. This ensures that the agent has positive and negative intro-
spection of its entire epistemic state, i.e., both its beliefs and conditional beliefs.
For example, in Figure 3, all the situations within each oval are mutually ac-
cessible (and only these situations are accessible) with the plausibility indicated
inside the oval.

To see why this requirement conflicts with any reasonable plausibility update
scheme for perfectly accurate sensors, consider the following example illustrated
in Figure 1. In the figure, there are three situations, S, S1, and S2. S1 and S2

are accessible from S, and S1 has κ-ranking n (the κ-ranking of S2 is irrelevant
to the example). In order to satisfy TE, S1 must also be accessible from S2 with
κ-ranking n. However, after the agent senses φ (i.e., after it performs the action
senseφ), S1 will have to become less plausible relative to S, but more plausible
relative to S2, since S1 and S disagree on the value of φ, whereas S1 and S2

agree. Therefore, TE will in general be violated after the agent senses φ.

A possible solution to this problem is to consider only what the agent believes
in the actual situation, i.e., in S0 and its successors, and set the plausibilities
of all accessible situations according to whether they agree with the actual
situation on the value of the property being sensed. In our example, if we take
S to be S0, S1 would then become less plausible relative to both S and S2.
Unfortunately, this solution can also lead to subtle undesirable introspective
properties. For instance, in Section 6 we show how one can construct an example
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where the following holds: Bel(¬φ ∧ Bel(φ, do(senseφ,now)), S), i.e., in S, the
agent believes ¬φ, and also believes that after sensing φ, it will believe φ, which
is counterintuitive. If the agent believes ¬φ, then it should also believe that it
will continue to believe ¬φ after sensing φ.

Our resolution to this problem, which is discussed at length in the following
sections, was to revert back to a binary accessibility relation and to use Scherl
and Levesque’s successor state axiom for B. Instead of assigning plausibilities
relative to a situation, each situation is assigned an absolute plausibility using a
functional fluent pl(s), which maps a situation to a natural number correspond-
ing to the κ-ranking of s (again, the lower the κ-ranking, the more plausible
the situation). The plausibilities of successor situations are constrained to be
the same as their predecessors, i.e., the plausibility of a situation is unaffected
by actions. The beliefs of the agent in a situation s are those formulae true
in the most plausible situations accessible from s, but these situations are no
longer required to have κ-rank 0. When sensing occurs, accessible situations
will be dropped, therefore the set of the most plausible accessible situations
will change, and the agent’s beliefs will change. Since Scherl and Levesque’s
successor state axiom for B preserves TE, positive and negative introspection
will be maintained, if it holds initially.

2.2. Definition of the Belief Operator

In this section, we define what it means for an agent to believe a formula φ in
a situation s, i.e., Bel(φ, s). Since φ will usually contain fluents, we introduce a
special symbol now as a placeholder for the situation argument of these fluents,
e.g., Bel(InR1(now ), s). φ[s] denotes the formula that results from substituting
s for now in φ. To make the formulae easier to read, we will often suppress the
situation argument of fluents in the scope of a belief operator, e.g., Bel(InR1, s).

Scherl and Levesque [5, 6], define a modal operator for belief in terms of
the accessibility relation on situations, B(s′, s). For Scherl and Levesque, the
believed formulae are the ones true in all accessible situations:

Definition 8

BelSL(φ, s)
def

= ∀s′(B(s′, s) ⊃ φ[s′]).

To understand how belief change works, both in Scherl and Levesque and
here, consider the example illustrated in Figure 2. In this example, we have
three initial situations S, S1, and S2 (across the bottom of the diagram). S1

and S2 are B-related to S (i.e., B(S1, S) and B(S2, S)), as indicated by the
arrows labelled B. (Ignore the circles around certain situations for now.) In
all three situations, the agent is not in the room R1. In S and S2 the light in
R1 is on, and in S1 the light is off. So at S, the agent believes it is not in R1

(i.e., that it is in R2), but it has no beliefs about the status of the light in R1.
We first consider the action of leaving R2, which will lead to a belief update.
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Figure 2: An example of belief update and revision.

By the successor state axiom for B, both do(leave, S1) and do(leave, S2) are
B-related to do(leave, S). In the figure, these three situations are called S′

1, S
′

2

and S′, respectively. The successor state axiom for InR1 causes InR1 to hold
in these situations. Therefore, the agent believes InR1 in S′. By the successor
state axiom for Light1, which we state below, the truth value of Light1 would
not change as the result of leave. This is an example of belief update: the
agent’s beliefs are modified as a result of reasoning about actions performed in
the environment.

Now the agent performs the sensing action senseLight. According to the
sensed fluent axioms for senseLight, SF(senseLight, S∗) holds for situation
S∗ if and only if the light is on in the room in which the agent is located in S∗.
In the figure, the light in R1 is on in S′ and S′

2, but not in S′

1. So, SF holds for
senseLight in the former two situations but not in the latter. The successor
state axiom for B ensures that after doing a sensing action A, any situation that
disagrees with the actual situation on the value of SF for A is dropped from the
B relation in the successor state. In the figure, S′ is the actual situation. Since
S′

1 disagrees with S′ on the value of SF for senseLight, do(senseLight, S′

1)
(labelled S′′

1 in the figure) is not B-related to do(senseLight, S′) (labelled
S′′). On the other hand, S′

2 and S′ agree on the value of SF for senseLight, so
do(senseLight, S′

2) (labelled S′′

2 in the figure) is B-related to S′′. The result
is that the agent believes the light is on in S′′. This is an example of belief
expansion because the belief that the light is on was simply added to the belief
state of the agent. Belief revision works using the same principles.

Our definition of Bel is similar to the one in Scherl and Levesque, but we are
going to generalize their account in order to be able to talk about how plausible
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the agent considers a situation to be. Plausibility is assigned to situations
using a function pl(s), whose range is the natural numbers, where lower values
indicate higher plausibility. The pl function only has to be specified over initial
situations, using an initial state axiom. Successor situations have the same
plausibility as their predecessors, as stipulated by the following successor state
axiom:

Axiom 9 (Successor State Axiom for pl)

pl(do(a, s)) = pl(s).

We say that the agent believes a proposition φ in situation s, if φ holds in the
most plausible B-related situations. A situation is most plausible in situation s,
if it is at least as plausible as all alternate situations to s:

Definition 10

MP(s′, s)
def

= ∀s′′.B(s′′, s) ⊃ pl(s′) ≤ pl(s′′).

We use MPB(s′, s) to denote the situations s′ that are most plausible and B-
related to s:

Definition 11
MPB(s′, s)

def

= B(s′, s) ∧ MP(s′, s).

Finally, we define the belief operator as follows:

Definition 12
Bel(φ, s)

def

= ∀s′.MPB(s′, s) ⊃ φ[s′].

That is, φ is believed at s when it holds at all the most plausible situations
B-related to s. Note that unlike Spohn [20] and Darwiche and Pearl [18], we do
not require some situations to have plausibility 0.

We now return to the initial situations in Figure 2, and add a plausibility
structure to the belief state of the agent by supposing that S1 is more plausible
than S2 (indicated by the circle surrounding S1). For example, suppose that
pl(S1) = 0 and pl(S2) = 1. Now, the beliefs of the agent are initially determined
only by S1. Therefore, the agent now believes that the light R1 is off in S.
After leaving R2, the agent continues to believe that the light is off. After doing
senseLight, S′′

1 is dropped from B as before, so now S′′

2 is the most plausible
accessible situation, which means that it determines the beliefs of the agent.
Since the light is on in S′′

2 , the agent believes it is on in S′′. Since the agent
goes from believing the light is off to believing it is on, this is a case of belief
revision.

In order to ensure positive and negative introspection of beliefs, we assert
the TE constraint over initial situations using an initial state axiom:

12



Axiom 13

Init(s) ∧B(s′, s) ⊃ (∀s′′.B(s′′, s′) ≡ B(s′′, s)).

The successor state axiom for B preserves this constraint over all situations.

Theorem 14

{Axioms 1, 6, and 13} |= ∀s, s′.B(s′, s) ⊃ (∀s′′.B(s′′, s′) ≡ B(s′′, s)).

In order to clarify how this constraint ensures that introspection is handled
properly, we will show that in the example illustrated in Figure 2, the agent
introspects its past beliefs. First, we need some notation that allows us to
talk about the past. We use Prev(φ, s) to denote that φ held in the situation
immediately before s:

Definition 15

Prev(φ, s)
def

= ∃a, s′.s = do(a, s′) ∧ φ[s′].

Recall that in the example, the agent believed that the light in R1 was off in
S′, i.e., Bel(¬Light1, S

′). We want to show that Bel(Prev(Bel(¬Light1)), S
′′)

holds, i.e., in S′′, the agent believes that in the previous situation it believed
that the light in R1 was off. Consider a situation S∗ that is among the most
plausible B-related situations to S′′. In this example, there is only one such sit-
uation, namely, S′′

2 . We need to show that Prev(Bel(¬Light1), S
′′

2 ) holds,
i.e., that Bel(¬Light1, S

′

2) holds. By Theorem 14, S′

2 is B-related to the
same situations as S′, i.e., S′

1 and S′

2. Since S′

1 is more plausible than S′

2,
we only require that ¬Light1(S

′

1) holds. Since this is true, it follows that
Bel(Prev(Bel(¬Light1)), S

′′) is also true.

The specification of pl and B over the initial situations is the responsibility
of the axiomatizer of the domain in question. This specification need not be
complete. Of course, a more complete specification will yield more interesting
properties about the agent’s current and future belief states.

We have another constraint on the specification of B over the initial situa-
tions: the situations B-related to an initial situation are themselves initial, i.e.,
the agent believes that initially nothing has happened. We assert this constraint
as an initial state axiom:

Axiom 16
Init(s) ∧B(s′, s) ⊃ Init(s′).

3. Properties

In this section, we highlight some of the more interesting properties of our
framework. In order to clarify our explanations and facilitate a comparison
with previous approaches to belief change, it will be important for us to attach
a specific meaning to the use of the terms revision and update, which we will do
here. Let Σ denote the set of axioms of the previous sections (i.e., Axioms 1 –
16).

13



3.1. Belief Revision

Recall from Section 2 that belief revision is suited to the acquisition of in-
formation about static environments for which the agent may have mistaken
or partial information. In our framework, this can only be achieved through
the use of sensing actions since they do not act to modify the environment but
rather to tell us something about it. We suppose that for each formula φ by
which we might want to revise, there is a corresponding sensing action capable
of determining the truth value of φ. Moreover, we assume that this sensing
action has no effect on the environment; the only fluent it changes is B.11

Definition 17 (Uniform Formula) We call a formula uniform if the only
situation term it contains is the situation constant now and it contains no un-
bound variables.

We now define a revision action as follows:

Definition 18 (Revision Action for φ) A revision action A for a uniform
formula φ with respect to action theory Σ is a sensing action that satisfies the
following condition for every domain-dependent fluent F :

Σ |= [∀s.SF(A, s) ≡ φ[s]] ∧ [∀s∀~x.F (~x, s) ≡ F (~x, do(A, s))].

In other words, A is a sensing action for the formula φ, and it does not change
any physical fluents. Since we assume there is a revision action A for each
formula φ that we might want to revise by, we assume that Σ also contains
the appropriate sensed fluent axioms and successor state axioms to satisfy this
definition.

Definition 19 (Domain-dependent Formula) We refer to a formula as
domain-dependent if all the fluents mentioned in it are domain-dependent.

It is easy to see from Definition 18 that if A is a revision action and φ∗ is
domain-dependent, then A does not affect the value of φ∗.

Lemma 20 Let φ∗ be a domain-dependent formula, and A be a revision action
for some formula φ. Then:

Σ |= ∀s.φ∗[s] ≡ φ∗[do(A, s)].

We now show that belief revision is handled appropriately in our system in
the sense that if the sensor indicates that φ holds, then the agent will indeed
believe φ after performing A. Similarly, if the sensor indicates that φ is false,
then the agent will believe ¬φ after doing A.

11This is not an overly strict imposition for we can capture sensing actions that modify
the domain by “decomposing” the action into a sequence of non-sensing actions and sensing
actions.
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Theorem 21 Let φ be a domain-dependent, uniform formula, and A be a
revision action for φ with respect to Σ. It follows that:

Σ |= [∀s.φ[s] ⊃ Bel(φ, do(A, s))] ∧ [∀s.¬φ[s] ⊃ Bel(¬φ, do(A, s))]

If the agent is indifferent towards φ before doing the action, i.e., does not believe
φ or ¬φ, this is a case of belief expansion. If, before sensing, the agent believes
the opposite of what the sensor indicates, then we have belief revision.

Note that this theorem also follows from Scherl and Levesque’s theory. How-
ever, for Scherl and Levesque, if the agent believes ¬φ in S and the sensor
indicates that φ is true, then in do(A,S), the agent’s belief state will be incon-
sistent. The agent will then believe all propositions, including φ. In our theory,
the agent’s belief state will be consistent in this case, as long as there is some
situation S′ accessible from S that agrees with S on the value of the sensor
associated with A.

Theorem 22 Let A be a revision action for a domain-dependent, uniform
formula φ with respect to Σ. The following set of sentences (which we denote
by Γ) is satisfiable:

Σ ∪ {Bel(¬φ, S0),Bel(φ, do(A,S0)),¬Bel(FALSE , do(A,S0))}.

3.2. Belief Update

Belief update refers to the belief change that takes place due to a change in
the environment. In analogy to revision, we introduce the notion of an update
action.

Definition 23 (Update Action for φ) An update action A for a uniform
formula φ with respect to action theory Σ is a non-sensing action that always
makes φ true in the environment. That is, Σ |= ∀s.φ[do(A, s)] ∧ SF(A, s).

As with Scherl and Levesque’s theory, the agent’s beliefs are updated ap-
propriately when an update action A for φ occurs, i.e., the agent will believe φ
after A is performed.

Theorem 24 Let A be an update action for φ. Then:

Σ |= ∀s. Bel(φ, do(A, s)).

In our framework, we can represent actions that do not fall under the cat-
egory of update actions. Of particular interest are ones whose effects depend
on what is true in the current situation, i.e., conditional effects. We can prove
an analogous theorem for such actions. Suppose that A is a non-sensing action,
i.e., Σ |= ∀s.SF(A, s), and that A is an action that causes φ′ to hold, whenever
φ holds beforehand. Further suppose that the agent believes φ in S. Then, after
performing A in S, the agent ought to believe that φ′ holds.
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Theorem 25 Let A be a ground action term, and φ, φ′ be uniform formulae.
Then:

Σ |= ∀s.Bel(φ, s) ∧ ∀s′SF(A, s′) ∧ (∀s′.φ[s′] ⊃ φ′[do(A, s′)]) ⊃
Bel(φ′, do(A, s)).

It is very important to note that in our framework, there are no actions
that correspond directly to the actions “revise by φ” or “update by φ”. We
only have physical actions and sensing actions. It is, therefore, the properties
associated with these actions by the successor state and sensed fluent axioms
that determine how (and whether) the agent’s beliefs get revised or updated.

3.3. Introspection

Since we constrained the accessibility relation to be transitive and Euclidean,
our agents are guaranteed to be introspective.

Theorem 26

Σ |= [Bel(φ, s) ⊃ Bel(Bel(φ), s)] ∧ [¬Bel(φ, s) ⊃ Bel(¬Bel(φ), s)].

3.4. Awareness of Mistakes

In Section 2.2, we claimed that the agent can also introspect its past beliefs.
Suppose that the agent believes ¬φ in S, and after performing a revision action
A for φ in S, the agent believes φ. In do(A,S), the agent should also believe
that in the previous situation φ was true, but it believed φ was false. In other
words, the agent should believe that it was mistaken about φ. We now prove
a theorem that states that the agent will indeed believe that it was mistaken
about φ.

Theorem 27 Let A be a revision action for a domain-dependent, uniform
formula φ with respect to Σ. Then:

Σ |= ∀s.Bel(¬φ, s) ∧ Bel(φ, do(A, s)) ⊃
Bel(Prev(φ ∧ Bel(¬φ)), do(A, s)).

The properties presented in this section demonstrate the elegance and the
power of our framework. While the framework itself is not overly complex, it
provides a powerful system in which to reason about the beliefs of an agent in
a dynamic environment with the capability to perform actions and to sense the
environment.
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4. Example

We now present an example to illustrate how this theory of belief change
can be applied. We model a world in which there are two rooms, R1 and R2.
The agent can move between the rooms. Each room contains a light that can
be on or off. The agent has two binary sensors. One sensor detects whether
or not the light is on in the room in which the agent is currently located. The
other sensor detects whether or not the agent is in R1.

We have three fluents: Light1(s) (Light2(s), respectively), which holds if
and only if there is light in R1 (R2, respectively) in situation s, and InR1(s),
which holds if the agent is in R1 in s. If the agent is not in R1, then it is
assumed to be in R2. There are three actions: the agent leaves the room it
is in and enters the other room (leave), the agent senses whether it is in R1

(senseInR1), and the agent senses whether the light is on in the room in which
it is currently located (senseLight).

The successor state axioms and guarded sensed fluent axioms for our exam-
ple, which we will call E, are as follows:

Light1(do(a, s)) ≡ Light1(s)
Light2(do(a, s)) ≡ Light2(s)
InR1(do(a, s)) ≡ ((¬InR1(s) ∧ a = leave) ∨ (InR1(s) ∧ a 6= leave))
TRUE ⊃ (SF(leave, s) ≡ TRUE )
InR1(s) ⊃ (SF(senseLight, s) ≡ Light1(s))
¬InR1(s) ⊃ (SF(senseLight, s) ≡ Light2(s))
TRUE ⊃ (SF(senseInR1, s) ≡ InR1(s))

¬InR1

Light1

InR1

Light1

pl = 2

pl = 1

InR1

¬Light1

pl = 0

B

S0

B

B

¬InR1

................

................

................

Light1

Light2

Light2

¬Light1

Figure 3: The initial state of the example domain.
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Next we must specify the initial state. This includes both the physical state
of the domain and the belief state of the agent. First we describe the initial
physical state of the domain, by saying which domain-dependent fluents hold
in the actual initial situation, S0. Initially, the lights in both rooms are on and
the agent is in R2 (this is illustrated on the left-hand side of Figure 3):

Light1(S0) ∧ ¬InR1(S0) ∧ Light2(S0).

The initial belief state of the agent is illustrated in Figure 3. It shows that
in the most plausible situations B-related to S0 (the ones with plausibility 0
in the figure), ¬Light1 and InR1 hold. In the next most plausible situations
B-related to S0 (the ones with plausibility 1), Light1 and InR1 hold. In the
third most plausible (the ones with plausibility 2) B-related situations to S0,
Light2 and ¬InR1 hold. There is also at least one situation in the latter group
in which Light1 holds and one in which ¬Light1 holds. Specifying this belief
state directly can be cumbersome. For example, the axiom for the situations
with plausibility 1 is:

(∃s.Init(s) ∧B(s, S0) ∧ pl(s) = 1) ∧
(∀s.Init(s) ∧ pl(s) = 1 ⊃ Light1(s) ∧ InR1(s)).

For now, we will not enumerate the set of axioms that specify the belief state
shown in Figure 3. But we assume that we have such a set which, together
with the axioms for the initial physical state, we refer to as I. After we have
discussed the example, we will show that there is a more elegant way to specify
the initial belief state of the agent. So for this example, we add E, and I to Σ,
and obtain the following:

Proposition 28 The following formulae are entailed by Σ ∪ E ∪ I:

1. Bel(¬Light1 ∧ InR1, S0)

2. Bel(Light1 ∧ InR1, do(senseLight, S0))

3. Bel(¬InR1, do(senseInR1, do(senseLight, S0)))

4. Bel(Prev(¬InR1 ∧ Bel(InR1)), do(senseInR1, do(senseLight, S0)))

5. ¬Bel(Light1, do(senseInR1, do(senseLight, S0))) ∧
¬Bel(¬Light1, do(senseInR1, do(senseLight, S0)))

6. Bel(InR1, do(leave, do(senseInR1, do(senseLight, S0))))

7. Bel(Light1,

do(senseLight,

do(leave, do(senseInR1,

do(senseLight, S0))))).

We shall now give a short, informal explanation of why each part of the previous
theorem holds.

1. In the most plausible situations B-related to S0, ¬Light1 ∧ InR1 holds.
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2. Even though the agent believes that it is in R1 initially, it is actually in R2.
Therefore, its light sensor is measuring whether there is light in R2, even
though the agent thinks that it is measuring whether there is light in R1.
It turns out that there is light in R2 in S0, so the sensor returns 1. Since
the agent believes that the light sensor is measuring whether there is light
in R1 and in all the situations with plausibility 0, there is no light in R1,
those situations are dropped from the B relation. In the situations with
plausibility 1, the light is on in R1, so those situations are retained. In
those situations Light1∧InR1 holds and those fluents are not affected by
the senseLight action, so the agent believes Light1 ∧ InR1 after doing
senseLight.

3. Now the agent senses whether it is in R1. Again the agent’s most plausible
situations conflict with what is actually the case, so they are dropped
from the B relation. The situations with plausibility 2 become the most
plausible situations, so the agent believes it is not in R1.

4. By Theorem 27, the agent realizes that it was mistaken about being in
R1.

5. Among the situations with plausibility 2, there is one in which the light
is on in R1 and one in which it is not on. Therefore, the agent is unsure
as to whether the light is on.

6. Now the agent leaves R2 and enters R1. This happens in all the B-related
situations as well. Therefore, the agent believes that it is in R1. This is
an example of an update.

7. The light in R1 was on initially, and since no action was performed that
changed the state of the light, the light remains on. After checking its
light sensor, the agent believes that the light is on in R1.

A more complete illustration of this example is given in Figure 4.

This example shows that the agent’s beliefs change appropriately after both
revision actions and update actions. The example also demonstrates that our
formalism can accommodate iterated belief change. The agent goes from be-
lieving that the light is not on, to believing that it is on, to not believing one
way or the other, and then back to believing that it is on.

To facilitate the specification of the initial belief state of the agent, we find
it convenient to define another belief operator ⇒, in the spirit of the conditional
logic connective [21]:

Definition 29

φ⇒s ψ
def

=
∀s′.B(s′, s) ∧ φ[s′] ∧ (∀s′′.B(s′′, s) ∧ φ[s′′] ⊃ pl(s′) ≤ pl(s′′)) ⊃ ψ[s′].

φ⇒s ψ holds if in the most plausible situations B-related to s where φ holds, ψ
also holds. Note that for any situation S, Bel(φ, S) is equivalent to (TRUE ⇒S

φ).
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Figure 4: Example domain. Only the important details are displayed.

We can use this operator to specify the initial belief state of the agent without
having to explicitly mention the plausibility of situations. To obtain the results
of Proposition 28, it suffices to let I be the following set of axioms:

Light1(S0) ∧ ¬InR1(S0) ∧ Light2(S0)
TRUE ⇒S0

¬Light1 ∧ InR1

Light1 ⇒S0
InR1

¬(Light2 ∧ ¬InR1 ⇒S0
Light1)

¬(Light2 ∧ ¬InR1 ⇒S0
¬Light1)

It is easy to see that the belief state depicted in Figure 3 satisfies these
axioms. In the most plausible worlds, (¬Light1 ∧ InR1) holds. In the most
plausible worlds where the light in R1 is on, the agent is in R1. Finally, the last
two axioms state that among the most plausible worlds where the light is on in
R2 and the agent is in R2, there is one where the light is off in R1 and one in
which the light is on (respectively).
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5. Postulate Soundness

In this section, we consider the extent to which our framework satisfies the
AGM postulates for belief revision, the KM postulates for belief update, and
the DP postulates for iterated belief revision. In order to do so we first need to
establish a common footing. The first notion to establish is what is meant by the
belief state of the agent. We define a belief state (relative to a given situation)
to consist of those formulae believed true at a particular situation. We limit
our attention to uniform, domain-dependent formulae, since these frameworks
only consider objective formulae (i.e., formulae without belief operators), and
they do not have an explicit representation of state, but rather they implicitly
refer to the current state, and so there is no need to consider beliefs regarding
more than one situation. Therefore, the language we use here, Lnow , is a set
of domain-dependent uniform formulae. We assume that Lnow is propositional
and finite.12 φ, ψ, and γ will be used to denote domain-dependent uniform
formulae. Also, t and u, possibly decorated, will be used to denote ground
situation terms.

In the previous section, we used a theory to specify the beliefs of the agent.
We said that the agent believed (did not believe, respectively) a formula, if
the theory entailed that the formula was believed (not believed, respectively).
Unless the theory is complete with respect to the beliefs of the agent, we will
not be able to determine whether some formulae are believed or not. In other
words, there could be more than one model of the theory. This is not the case
for the semantic frameworks for belief change, e.g., the AGM framework. There
the belief state of the agent is also determined by a set of sentences, however,
there is also an implicit closed world assumption. The sentences in the set are
believed by the agent, and if a sentence is not in the set, then it is not believed
by the agent. There is no uncertainty about what is believed by the agent, i.e.,
the belief state of the agent can be represented by a single model. To bring our
framework in line with the AGM framework, we assume that we have a model
M of Σ, which will be used to fix the belief state of the agent. We can encode
an AGM belief state K in our setting using M and a ground situation term t

such that M |= Bel(φ, t) if and only if φ ∈ K.

We need to define the three operators used in the postulates: belief expan-
sion, revision and update. The operators in the postulates map belief states
to new belief states. Our framework is based on situations and actions rather
than belief sets and their operators, so we will use a different representation and
then translate the postulates appropriately. Our revision and update operators
are actions, i.e., they map situations into situations. Sensing actions lead to
belief revision, and physical actions yield belief update. Iterated revisions and
updates are handled using sequences of actions. However, there is no action
type that corresponds to belief expansion. Therefore, we define the expansion

12We make this assumption to accord with the AGM and KM frameworks, however this
assumption is only used in the proof for the soundness of K⋄8 (Lemma 57).
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operator directly as a belief state as discussed below. As a consequence, ex-
pansions cannot be iterated, but the postulates do not require that we iterate
them.

We first define a function that maps a situation t into the belief state of the
agent at t.

Definition 30 (K(t)) We denote the belief state at t (in M) by K(t) and
define it as follows:

K(t) = {ψ : M |= Bel(ψ, t)}.

It is easily verified that K(t) is closed under deduction.

Recall that the expansion of a belief state K by a formula φ is defined to be
the belief state that results from simply adding φ to K. If φ is inconsistent with
K, then the belief state that results from adding φ to K will be inconsistent.
We can encode this in our framework as an operator that maps a situation t

and a formula φ into a belief state, but this time it will be the belief set that
results from adding φ to K(t).

Definition 31 (t+ φ) We denote the expansion of t by φ (in M) by t+φ and
define it as follows:

t+ φ = {ψ : M |= Bel(φ ⊃ ψ, t)}

So, the belief state that results from expanding t with φ is the set of formulae
that are believed to be implied by φ in t. Since our expansion operator does not
return a situation, it can only be applied last in a sequence of operations. This
is the case for all of the postulates, so this definition suffices for our purposes.

Next, we define the revision of t by φ, t∗φ, as the situation that results from
performing a revision action for φ in t. As we said earlier, we assume that for
any φ under consideration, there is a revision action Aφ for φ with respect to
Σ. When φ is clear from the context, we will drop the subscript. In the AGM
setting, a revision K ∗φ is interpreted as the revision of beliefs K after learning
φ. In our case, we do not know whether φ will be true until after performing
the revision action. Accordingly, we define a revision of t by φ only in the case
that φ happens to be true in situation t (i.e., M |= φ[t]).

Definition 32 (t ∗ φ) We denote the revision of t by φ (in M) as t ∗ φ and
define it as follows:

t ∗ φ = do(Aφ, t),

whenever M |= φ[t]. If M |= ¬φ[t], then t ∗ φ is undefined.
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5.1. AGM Postulates

Here are the AGM postulates translated into our notation.

(K∗1) K(t ∗ φ) is deductively closed.
(K∗2) φ ∈ K(t ∗ φ)
(K∗3) K(t ∗ φ) ⊆ t+ φ

(K∗4) If ¬φ 6∈ K(t), then t+ φ ⊆ K(t ∗ φ)
(K∗5) K(t ∗ φ) 6= Lnow

(K∗6) If |= φ ≡ ψ, then K(t ∗ φ) = K(t ∗ ψ)
(K∗7) K(t ∗ φ ∧ ψ) ⊆ (t ∗ φ) + ψ

(K∗8) If ¬ψ 6∈ K(t ∗ φ), then (t ∗ φ) + ψ ⊆ K(t ∗ φ ∧ ψ)

Note that (K∗5) is somewhat different from the corresponding standard
AGM postulate. This is due to the fact that it is not possible in our frame-
work to revise with an identically false formula, since t ∗ φ is only defined if
M |= φ[t]. To obtain (K∗5) in our framework, we require a further assumption,
i.e., that initially the agent does not think that the actual situation is completely
implausible, i.e., B is reflexive.13 This does not mean that we get knowledge
instead of belief, since the actual situation does not have to be most plausible,
but it must not be completely implausible. We use an initial state axiom to
state this assumption:

Axiom 33
Init(s) ⊃ B(s, s).

We add this axiom to Σ, and it follows that B is everywhere reflexive:

Theorem 34
Σ |= ∀sB(s, s).

As an immediate consequence, we have that the agent’s beliefs never become
inconsistent.

Corollary 35
Σ |= ∀s¬Bel(FALSE , s).

Finally, we are now able to show that our translations of the AGM postulates
are satisfied.

Theorem 36 For any model M of Σ, the AGM postulates (K∗1)–(K∗8) are
satisfied, when ∗ is defined as in Definition 32 for any situation t and domain-
dependent uniform formulae φ and ψ.

13Note that strictly speaking, we only need the initial situation that precedes t to be self-
accessible, however the theorem is easier to state if we assume that all initial situations are
self-accessible.
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5.2. KM Postulates

We now turn to defining belief update in our framework, which is defined
analogously to revision but using an update action instead of a revision ac-
tion. The update of a situation t with a consistent formula φ is the situation
that results from performing an update action for φ in t. We can only handle
consistent formulae because according to the definition of an update action A,
Σ |= ∀s.φ[do(A, s)], which must be false if φ is inconsistent. We will assume that
for any consistent φ under consideration, there is at least one update action for
φ with respect to Σ, and that we have a function ua which maps a consistent
formula φ into an update action for φ such that for any ψ, if |= φ ≡ ψ then
ua(φ) = ua(ψ) (we only need this condition for postulate (K ⋄ 5)).

Definition 37 We define the update of t by φ to be:

t ⋄ φ = do(ua(φ), t).

In order to translate postulate (K⋄8) into our framework, we need to define⋂
w∈[K]w ⋄ φ. As we saw above, [K] is the set of complete, consistent (cc)

theories that contain K, and a cc theory can be thought of as a possible world.
We use situations as possible worlds, so given a belief set at a situation t, we
need a set of situations that corresponds to the set of all cc extensions of K(t).
We can easily map situations into cc theories.

Definition 38 (Tr(t)) We define the truths at t (in M) to be:

Tr(t) = {ψ : M |= ψ[t]}.

Since Lnow is propositional, the minimal accessible situations from t coincide
with the cc extensions of K(t). Let MPB(t) denote {t′ : MPB(t′, t)}.

Lemma 39 w ∈ [K(t)] if and only if there exists t′ ∈ MPB(t) such that w =
Tr(t′).

Now, we can translate the equation in the postulate as follows:

K(t ⋄ φ) =
⋂

t′∈MPB(t)

Tr(t′ ⋄ φ).

In other words, the belief set that results from updating t by φ is the same as
the intersection of the truths that result from updating each member of MPB(t)
by φ.

Here is a translation of the KM postulates into our notation:14

14For (K⋄4), note that if φ |= FALSE , then t⋄φ is not defined, since φ has to be consistent.
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(K⋄1) K(t ⋄ φ) is deductively closed
(K⋄2) φ ∈ K(t ⋄ φ)
(K⋄3) If φ ∈ K(t), then K(t ⋄ φ) = K(t)
(K⋄4) K(t ⋄ φ) = Lnow iff K(t) |= FALSE
(K⋄5) If |= φ ≡ ψ, then K(t ⋄ φ) = K(t ⋄ ψ)
(K⋄6) K(t ⋄ (φ ∧ ψ)) ⊆ (t ⋄ φ) + ψ

(K⋄7) If K(t) is complete and ¬ψ 6∈ K(t ⋄ φ),
then (t ⋄ φ) + ψ ⊆ K(t ⋄ (φ ∧ ψ))

(K⋄8) If MPB(t) 6= ∅ then K(t ⋄ φ) =
⋂
t′∈MPB(t) Tr(t′ ⋄ φ).

Theorem 40 K(t ⋄ φ) satisfies KM postulates (K⋄1),(K⋄2), (K⋄4), (K⋄5),
(K⋄8) when ⋄ is defined as in Definition 37 for any situation t and consistent
domain-dependent uniform formulae φ and ψ.

Notice that postulates (K⋄3), (K⋄6), and (K⋄7) are not satisfied because
while an update action for φ is guaranteed to make φ true, it may have other
effects. In fact, it is not possible in our framework to define an update action
that makes an arbitrary φ true and no other changes because our action theories
do not handle disjunctive effects of actions. If φ is of the form ψ1 ∨ψ2, then we
could have an action that only makes ψ1 true and one that only makes ψ2 true,
but not one that only makes the disjunction true.

Boutilier [19] has a problem with (K⋄3) ((U2) in the KM rendering) for
similar reasons. In his framework, (update) actions have plausibilities, and the
most plausible action explaining the new information is assumed to have taken
place. It could be that this action has other effects. To satisfy this postulate, he
introduces a null event and considers a model in which this is the most plausible
event at any world.

5.3. DP Postulates

In our framework, iterated revision corresponds to the performing of at least
two consecutive revision actions. We now show that there is some correspon-
dence with the Darwiche and Pearl [18] account of iterated belief revision. Here
are the DP postulates translated into our notation.

(DP1) If ψ |= φ, then K((t ∗ φ) ∗ ψ) = K(t ∗ ψ)
(DP2) If ψ |= ¬φ, then K((t ∗ φ) ∗ ψ) = K(t ∗ ψ)
(DP3) If φ ∈ K(t ∗ ψ), then φ ∈ K((t ∗ φ) ∗ ψ)
(DP4) If ¬φ 6∈ K(t ∗ ψ), then ¬φ 6∈ K((t ∗ φ) ∗ ψ)

Theorem 41 Postulates (DP1), (DP3) and (DP4) are satisfied when ∗ is de-
fined as in Definition 32 for any situation t and domain-dependent uniform
formulae φ and ψ.

Interestingly, changes of the type described by (DP2) are not defined ac-
cording to our view of belief revision. In the case where ψ |= ¬φ, either t ∗ φ or
t ∗ ψ is undefined, therefore K((t ∗ φ) ∗ ψ) is undefined.
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6. Discussion

There are various aspects of our framework that deserve further consider-
ation. We address what we consider to be some of the more important issues
here.

This work continues the tradition begun by John McCarthy [2, 3, 22] ex-
ploring the use of symbolic representations for representing and reasoning about
dynamic systems. The legacy of the situation calculus has proved an influential
and lasting contribution to research on reasoning about action and change. It
provides the foundations upon which our framework is built. McCarthy’s early
work [2, 3] supplied the basic theory underlying the situation calculus and it
is from here that we take our departure point. His later work [22] identifies
the frame problem and other issues that need to be addressed when using the
situation calculus. While we have not utilized McCarthy’s [23] circumscription
to solve the frame problem but rather followed Reiter’s [4] successor state ax-
iom approach, Reiter’s approach is certainly influenced by the development of
circumscription and its use to solve the frame problem. Our approach is also
built on the insights of Moore [11] who reifies the accessibility relation used
in the semantics for modal logics. This approach to modality is supported by
McCarthy [24].

Our plausibility function is based on ordinal conditional functions [18, 20]
(particularly Spohn’s κ-rankings). However, our assignment of plausibilities to
situations is fixed, whereas in most frameworks based on assigning plausibilities
to worlds, the plausibility assigned to a world can change when revisions occur.
The dynamics of belief in our framework derives from the dynamics of the B
relation, rather than that of the plausibility assignment. Note that Friedman
and Halpern [25] make similar assumptions to ours. In Darwiche and Pearl’s
framework [18], the κ-ranking of a world that does not satisfy the formula in a
revision increases by 1. However, if the world satisfies the revision formula in
future revisions, the world’s κ-ranking decreases, and if it decreases to 0, the
world will take part in determining the beliefs of the agent. In our framework,
when a sensing action occurs, any situation S′ that disagrees with the actual
value of the sensor is removed from the B relation (actually, its successor is
removed). The successors of S′ will never be readmitted to B, so they will
never help determine the beliefs of the agent. This amounts to saying that
the information that the agent learns from sensing is knowledge, i.e., the agent
will never get new information that contradicts previous sensing information.
However, this is quite reasonable since our framework assumes exact sensing and
that there are no exogenous actions, so the agent should expect that its sensory
information will not be contradicted. For a generalization of our framework to
the noisy sensing case that also allows plausibility update, please see [26]. Our
framework was generalized to handle exogenous actions in [27].

One may think that having a fixed plausibility assignment limits the appli-
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cability of our approach. Consider an example15 where, most plausibly, a cat is
asleep at home, but where after phoning home, most plausibly, the cat is awake.
(Nothing is certain in either case.) This might seem to require adjustment of
the plausibility assignment to situations.

To handle this example, we need first to observe that in the action theory
we are using, actions are taken to be deterministic, with effects described by
successor state axioms, quite apart from properties of belief and plausibility. If
in some situations a phone action wakes the cat, and in others not, then there
has to be some property M such that we can write a successor state axiom of
the following form:

Awake(do(a, s)) ≡ (a = phone ∧M(s)) ∨
[ . . . other actions that can wake cats . . .] ∨
(Awake(s) ∧ [a is not some put-to-sleep action]).

For example, M could represent that “the phone’s ringer is loud enough to wake
the cat”. With this model, we can then arrange the B relation in the initial
situation so that there are four groups of situations s′ B-related to S0, where
the following hold (in order of decreasing plausibility): (1) M(s′)∧¬Awake(s′),
(2) M(s′)∧Awake(s′), (3) ¬M(s′)∧¬Awake(s′), and (4) ¬M(s′)∧Awake(s′).
Then we obtain that

Bel(¬Awake, S0),

holds since the most plausible situations s′ that are B-related to S0 satisfy
M(s′) ∧ ¬Awake(s′). However, the most plausible situations B-related to
do(phone, S0) are those situations do(phone, s′) where s′ is from group (1).
Since M(s′) holds, so does Awake(do(phone, s′)) by the successor state axiom
for Awake above. Therefore,

Bel(Awake, do(phone, S0)),

holds, exactly as desired.16 Of course, in this formalization, we also get that:

Bel(M,S0),

but this is to be expected: why would we believe it most likely that the cat would
be awake after the phone rings, if we did not also believe it most likely that the
ringer was loud enough to waken it? In sum, we can account for changing our
minds about the plausibility of the cat being awake without needing to change
the plausibility ordering over situations.

We can also handle a variant of this example where we change our mind
about whether phoning home wakes the cat. For example, imagine a sensing

15We are indebted to Jim Delgrande for this example.
16We can also handle a variant where nothing is believed about the cat sleeping initially by

making the groups (1) and (2) the most plausible.
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action examineRinger that informs us that M is false initially (e.g., the ringer
on the phone is set to low). Then, we get that

Bel(¬Awake, do(phone, do(examineRinger, S0)))

holds, since the most plausible situations will now be descendants of the s′ that
are B-related to S0 in group (3), where ¬M(s′) ∧ ¬Awake(s′) holds. This is
exactly as desired, and again without needing to change the plausibility assign-
ment.

In the process of developing the approach described in this paper, we experi-
mented with various schemes where the plausibility assigned to situations could
be updated. But as discussed in Section 2.1 we found that this led to problems
for introspection. Consider a scheme where we combine the plausibility assign-
ment with the belief accessibility relation by adding an extra argument to the
B relation, i.e., where B(s′, n, s) means that in situation s the agent thinks s′ is
plausible to degree n. In order to ensure that beliefs are properly introspected,
the relation would have to satisfy the constraint (TE) discussed in Section 2.1,
which is similar to the one given in Theorem 14, but taking plausibilities into ac-
count. That is to say, all the B-related situations to a situation s must have the
same belief structure as s, i.e., they should be B-related to the same situations
with the same plausibilities as s. Unfortunately, this conflicts with some of our
intuitions about how to change plausibilities to accommodate new information.

Consider an example where we have two situations S0 and S1, and where ini-
tially the agent considers situation S1 more plausible than S0, i.e., B(S1, 0, S0),
B(S0, 1, S0), B(S1, 0, S1), B(S0, 1, S1). Notice that S0 and S1 have the same
belief structure. Suppose that Light1(S0)∧ SF(senseLight, S0) holds as does
¬Light1(S1) ∧ ¬SF(senseLight, S1). The natural way to update the plau-
sibilities after sensing would be to make the most plausible situations from
a situation do(senseLight, s) be the ones that agree with s on the value of
SF(senseLight). So, if we let S′

0 denote do(senseLight, S0) and S′

1 denote
do(senseLight, S1), then in S′

0, S
′

0 should be more plausible than S′

1 and in S′

1,
S′

1 should be more plausible than S′

0. But this would violate the constraint that
B-related situations have the same belief structure, and cause introspection to
fail.

One way to avoid this problem would be to update the plausibilities of
all situations based on what holds in the ‘actual’ situations, i.e., S0 and its
successors (this focuses attention on beliefs that hold in actual situations, which
is what we normally do anyway). For the example above, we would look at
how the plausibilities should change in S′

0 and adjust the plausibilities in the
situations B-related to S′

0 (in this case just S′

1) in the same way. We would
then have that S′

0 is more plausible than S′

1 in both S′

0 and S′

1, i.e., B(S′

0, 0, S
′

0),
B(S′

1, 1, S
′

0), B(S′

0, 0, S
′

1), B(S′

1, 1, S
′

1). Notice that S′

0 and S′

1 have the same
belief structure, so the constraint violation mentioned above is resolved.

Unfortunately, under this new scheme we have a problem with beliefs about
future beliefs. If we were to redefine Bel in the obvious way to accommodate
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the extra argument in B, our example would entail the very counterintuitive
Bel(¬Light1 ∧ Bel(Light1, do(senseLight,Now)), S0), i.e., in S0, the agent
believes that the light is not on but thinks that after sensing he will believe that
it is on. Our approach—which uses a fixed plausibility ordering on situations and
simply drops situations that conflict with sensing results from the B relation—
avoids both of these problems.

Hunter [28, pp. 67–69] claims that revision operators ∗ as defined by Defini-
tion 32 are, strictly speaking, not functions since given two different situations
t, t′ where K(t) = K(t′) it is not always the case that t∗φ = t′ ∗φ. However, by
Definition 32, t ∗φ is defined as do(Aφ, t) and so each revision function ∗ can be
considered defined relative to a particular situation. We could, as it were, write
this more precisely as ∗t however our interest here is to examine how closely
our framework complies with the AGM framework and not to use it to define
AGM-like revision operators.17

7. Comparison to Other Frameworks

One proposal that is related to ours is that of Demolombe and Pozos Parra
[29]. Rather than reifying the accessibility relation in the style of Moore [11]
and Scherl and Levesque [5, 6] as we do here, they introduce belief modalities Bi
and successor state axioms for these modal operators. For each modal operator
Bi and fluent F two successor state axioms are required:

Bi(F (do(a, s))) ≡ Γ+
i1,F

(a, s) ∨Bi(F (s)) ∧ ¬Γ−

i1,F
(a, s)

Bi(¬F (do(a, s))) ≡ Γ+
i2,F

(a, s) ∨Bi(¬F (s)) ∧ ¬Γ−

i2,F
(a, s)

Furthermore, these modal operators are assumed to obey axioms for the modal
logic KD. Each modal operator can be used to represent the beliefs of a different
agent. In our framework this would be achieved through the introduction of
accessibility relations Bi (as noted in [29]). One issue that Demolombe and
Pozos Parra point to is that our approach assumes that every agent agrees
on the same set of effects (i.e., successor state axioms) for each fluent. More
precisely, our approach is directed towards representing and reasoning about the
beliefs of a single agent. This agent can reason about actions performed by other
agents as these are treated as exogenous actions. To deal with multiple agents,
the axioms for each (precondition, successor state, etc.) would be grouped into
separate action theories and reasoned about separately. This seems appropriate
since each agent reasons about its own beliefs using its own conception of the
world. This does not preclude that agents can also reason about other agents’
beliefs. Demolombe and Pozos Parra [29] also consider that their approach
might be better suited to dealing with noisy sensors.

17Note that Darwiche and Pearl’s [18] revision operators are defined similarly.
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In [30] Demolombe and Pozos Para propose another solution which adopts
an accessibility relation along the lines of Moore [11] and Scherl and Levesque
[5, 6] however, in order to deal with multiple agents, they include a term for
agents. More specifically, their accessibility relation is of the form K(i, s′, s)
meaning that situation s′ is compatible with agent i’s beliefs in situation s.
Their notion of belief B(i, φ(s′, s), s′, s) is defined as follows:

B(i, φ(s′, s), s′, s)
def
= ∀s′(K(i, s′, s) ⊃ φ(s′, s))

Their aim is to deal with belief change in the situation calculus without recourse
to plausibilities. They introduce the notion of real and imaginary situations and
the actions whose occurrence can be witnessed by an agent. Real situations cor-
respond to the actual situations in which the agent is placed18 while imaginary
situations are simply those alternative situations which are compatible with the
agent’s beliefs. Each agent can have different successor state axioms for fluents
and also for real and imaginary situations. The successor state axioms take the
form

∀s∀s′∀a∀~x(real(s) ⊃ (K(i, s′, s) ⊃ (p(~x, do(a, s′)) ≡
Γ+
i,p(i, ~x, a, s

′) ∨ (a = sensep(i) ∧ p(~x, s)) ∨ p(~x, s′)∧
¬(Γ−

i,p(i, ~x, a, s
′) ∨ (a = sensep(i) ∧ ¬p(~x, s))))))

where sensep(i) is a sensing action informing i about the truth of p(~x, s). The
distinction between real and imaginary situations allows the agent to maintain
K-related situations even when they do not accord with the agent’s observations.
Note however that as we have indicated in Section 4, the actual plausibility
values themselves are not important and we provide a way of applying our
framework without having to supply these values explicitly.

Another proposal for handling belief revision in the situation calculus is that
of del Val and Shoham [31]. Their approach models beliefs through formulae of
the form holds(bel(φ), s) and a causal axiom:

∀s∀µ(∃s′.holds(bel(µ), s′)) ⊃ holds(bel(µ), result(learn(µ), s)).

They use a circumscription policy to reason about the effects of performing
actions and to reason about beliefs. Both our approaches are characterized
axiomatically, however theirs does contain an assumption that they did not
axiomatize, namely that every possible valuation of the fluents is witnessed
by a situation. The advantages of our approach over theirs are that they do
not handle belief introspection and our formal apparatus is much simpler than
theirs.

Friedman and Halpern’s [25] approach is to begin with a very general frame-
work that combines state dynamics with belief, and to see what further con-
straints need to be placed in order to capture the standard approaches to belief

18As such, the successor of a real situation is also a real situation.
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revision and update. It is interesting to note that there are several points in com-
mon between our belief revision frameworks. We both generalized an existing
framework for representing knowledge using possible worlds by adding a plausi-
bility structure to the worlds. Both of our possible worlds contain the history of
all actions or events until the current time. We both make the assumption that
the set of accessible worlds at a given time is a subset of the accessible worlds
at earlier times. Friedman and Halpern’s framework, like ours, contains the
assumption that the agent does not revise its assessment of the relative plau-
sibility of situations. Rather, the agent is assumed to have a prior assessment
of the relative plausibility of situations and the dynamics of the agent’s beliefs
arises from dropping possible worlds that conflict with new information. As
a consequence, their agents also cannot recover from inconsistency. However,
they consider this to be a problem with the postulates rather than with their
framework.

Friedman and Halpern have a similar constraint to TE. They require that ac-
cessible situations have the same plausibility structure. Both of our frameworks
are synchronous in that accessible situations have the same “current time”, and
both our agents have perfect recall for past actions. One point of difference
between our frameworks is that they need separate sets of constraints to obtain
revision and update, so they cannot intersperse revisions and updates, whereas
we can.

We have already noted above that the plausibility ordering remains fixed
in our framework, yet this is sufficient to yield some rather desirable proper-
ties. However, several proposals for modifying plausibility orderings have been
put forward in the literature (many stemming from the work of Spohn [20]).
Boutilier [32] and Williams [33] propose a scheme whereby, upon receiving new
information φ, the most plausible φ-worlds become the most plausible worlds
while all other worlds retain their relative levels of plausibility. Spohn [20] (and
Darwiche and Pearl [18]) adopt a method where φ and ¬φ-worlds retain their rel-
ative levels of plausibility amongst themselves, but the two groups are “shifted”
relative to each other, making the most plausible φ-worlds the most plausible
worlds. However, these approaches do not consider belief introspection. While
plausibilities themselves do not change in our framework, it must be kept in
mind that the B-relation is also important in terms of determining belief and
it may certainly change as a result of performing sensing actions. Furthermore,
changes in belief can also be brought about by non-sensing actions which have
the capacity to alter the environment.

The main aspect that distinguishes our work from previous approaches is the
ability to represent belief introspection properties within the object language
together with the facility to achieve iterated revision and update in a unified
framework.

Belief change in the situation calculus has already been dealt with by Scherl
and Levesque [6]. However, as noted previously, while they can handle belief
update, they are limited to belief expansion. del Val and Shoham [31] also
address the issue of belief change in the situation calculus, and their theory
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deals with both revision and update. However, they cannot represent nested
belief and consequently cannot deal with the issues of belief introspection and
mistaken belief.

There are a variety of frameworks that accommodate both belief revision
and belief update. As noted, this is one strength of the proposal by del Val
and Shoham [31]. In a more traditional belief change setting, Boutilier [34]
also provides a general framework that allows for both these forms of change.
However, this framework cannot deal with introspection in the object language.
One approach that supports both belief revision and update and also handles
introspection is Friedman and Halpern [25]. Their approach to revision and
update is fairly standard, but set within a very general modal logic framework
that combines operators for knowledge, belief (interpreted using a plausibility
ordering), and time. But they do not discuss interactions between revision and
update and introspection. The work of Demolombe and Pozos Parra [29, 30]
can also handle belief introspection.

Another avenue of related work is that of modal logic accounts of belief
change. Our account, taking some of its heritage from Moore [11], reifies the ac-
cessibility relation central to modal semantics. In an early work, Segerberg [35]
developed a dynamic doxastic logic in which action modalities [+Bφ], [−Bφ]
and [∗Bφ] denote expansion, contraction and revision of the agent’s belief state
by Bφ respectively. This allows for formulas like [∗Bφ]Bψ with the meaning
that revising the agent’s belief state by belief in φ will result in belief in ψ. In
Segerberg’s framework, expansion, contraction, and revision are treated as ac-
tions working with belief formulas like Bφ. This contrasts with our framework
where there are only physical actions (leading to belief update) and sensing ac-
tions (leading to belief revision). More recent developments in this area include
Herzig and Longin [36] who introduce a modal logic approach to this prob-
lem. Their language is based on propositional dynamic logic and introduces a
modal belief operator Bel and the underlying logic is KD45. They introduce
two successor state axioms:

(perc(a, b) ∧ ¬Aftera ⊥ ∧¬BelAfterb ⊥) ⊃

(FeasibleaBelA ≡ BelAfterbA)

(perc(a, b) ∧ ¬Aftera ⊥ ∧BelAfterb ⊥) ⊃

(FeasibleaBelA ≡ BelAfterenableb
AfterbA)

Their framework is capable of dealing with non-deterministic actions and mis-
perception. Information is acquired when an observation action observe(φ) is
performed. observe(φ) has φ as precondition. A “test action” testIf(φ) (similar
to a sensing action) is treated as a nondeterministic choice between observe(φ)
and observe(¬φ). Thus in their framework, the need for belief revision arises
when an action that is believed not to be executable is nonetheless perceived.
As we can see in the second axiom above, this is handled by performing a special
type of action enablea whose effect is to make action a executable, i.e., make
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a’s preconditions true. This simple approach avoids the need for a plausibility
ordering on epistemic alternatives. But only beliefs in the observed facts (and
more generally the action’s preconditions) are revised. These beliefs may have
arisen due to other incorrect assumptions, but the latter would not be revised,
unlike in a plausibility-based approach. It is not clear whether introspection
about belief change is handled properly.

There has been a lot of work recently on this type of modal logic of knowl-
edge/belief and action, for instance the work of van Ditmarsch et al. [37], where
the paradigm of dynamic epistemic logic, a family of epistemic/doxastic logics
with announcements and assignments/updates is developed. In van Ditmarsch
et al. [38], an optimal regression method is developed for reasoning about knowl-
edge and action within this type of propositional logic. However, most of this
work does not deal with belief revision (one exception is Chapter 3 of [37], which
is based on [35]). van Benthem [39] also develops the correspondence between
AGM-style belief change and dynamic epistemic logic. In particular, he shows
how update rules can be used to modify the plausibility relation between pos-
sible worlds. van Linder et al. [40] show how one can extend a propositional
modal logic of multiagent knowledge, belief, and action to accommodate belief
revision/contraction actions, following a similar approach to Segerberg’s [35].
They also formalize agents’ ability to perform actions (including having the re-
quired information) and how this applies to belief revision actions. However,
they do not discuss how sensing actions might lead to belief revision. Thielscher
[41] introduces a framework for knowledge in the fluent calculus [42]. He in-
troduces a predicate Knows(F, s) and provides knowledge update axioms to
specify the effects of actions on the knowledge of the agent.

8. Conclusions and Future Work

We have proposed an account of iterated belief change that integrates into
a well-developed theory of action in the situation calculus [4]. This has some
advantages, in that previous work on the underlying theory can be exploited for
dealing with issues such as solving the frame problem, performing automated
reasoning about the effects of actions, specifying and reasoning about complex
actions, etc. Our framework supports the introspection of beliefs and ensures
that the agent is aware of when it was mistaken about its beliefs. Our account
of iterated belief change differs from previous accounts in that, for us, the plau-
sibility assignment to situations remains fixed over time. The dynamics of belief
derives from the dynamics of the B modality and of the domain-dependent flu-
ents. We showed that our theory satisfies all of the AGM, and the majority of
the KM and DP postulates.

Our approach does have some limitations. In this paper, we have only looked
at cases of belief change where the sensors are accurate, so that the agent only
revises its beliefs by sentences that are actually true. It is the case that our
successor state axiom for B ensures that the agent believes the output of its
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sensor after sensing. Also, our guarded sensed fluent axioms allow only hard
(but context-dependent) constraints to be specified between the output of the
sensor and the associated fluent; one cannot state that the sensor is only correct
with a certain probability. However, we can also use beliefs to correlate sensor
values to the associated fluents instead of guarded sensed fluent axioms. Thus,
we could specify that the agent prefers histories where the sensors agree with
the associated fluents more often to histories where they agree less often. Some
of these issues are addressed in [26].

The fact that we never update the plausibility assignment, may suggest that
our account has limited expressiveness. But we maintain that this is not the
case. The example of Section 4 shows that we can handle some cases where a
plausibility assignment update seems to be required.

We could extend the framework by having multiple agents that act indepen-
dently and impart information to each other. Instead of beliefs changing only
through sensing, they would also change as a result of inform actions. Shapiro et
al. [43] provide a framework for belief expansion resulting from the occurrence
of inform actions in the situation calculus, which we would like to generalize to
handle belief revision.

Lakemeyer and Levesque [7] incorporate the logic of only knowing into the
Scherl and Levesque framework of belief update and expansion. The traditional
belief (and knowledge) operator specifies formulae that are believed (or known)
by the agent, but there could be others. The ‘only knows’ operator is used to
describe all that the agent knows, i.e., a formula that corresponds exactly to
the knowledge state of the agent. In future work, we would like to define an
analogous ‘only believes’ operator that could be used to describe exactly what
the agent believes in a framework that supports belief revision as well as belief
expansion.
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Appendix A. Proofs

Theorem 14

{Axioms 1, 6, and 13} |= ∀s, s′.B(s′, s) ⊃ (∀s′′.B(s′′, s′) ≡ B(s′′, s)).

Proof Suppose M |= {Axioms 1, 6, and 13}. The proof is by induction on
s. The base case follows directly from Axiom 13. Now suppose that for some
situation S:

M |= ∀s′.B(s′, S) ⊃ (∀s′′.B(s′′, s′) ≡ B(s′′, S)). (A.1)

We need to show that for any action A:

M |= ∀s′.B(s′, do(A,S)) ⊃ (∀s′′.B(s′′, s′) ≡ B(s′′, do(A,S))).

Let S′′

1 be a situation such that M |= B(S′′

1 , do(A,S)). Then, by the successor
state axiom for B (Axiom 1), there exists an S′

1 such that:

M |= B(S′

1, S) ∧ S′′

1 = do(A,S′

1) ∧ (SF(A,S′

1) ≡ SF(A,S)).

We need to show that M |= ∀s′′.B(s′′, S′′

1 ) ≡ B(s′′, do(A,S)). We will prove
the ⊃ direction; the other case is similar. Suppose that for some situation S′′

2 ,
M |= B(S′′

2 , S
′′

1 ). By the successor state axiom for B and (A.2), there exists a
situation S′

2, such that:

M |= B(S′

2, S
′

1) ∧ S
′′

2 = do(A,S′

2) ∧ (SF(A,S′

2) ≡ SF(A,S′

1)).

It follows from (A.1), (A.2), and (A.2) thatM |= B(S′

2, S). From this, (A.2) and
(A.2), and the successor state axiom for B, it follows that M |= B(S′′

2 , do(A,S)).
�
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Lemma 20 Let φ∗ be domain-dependent formula, and A be a revision action
for some formula φ. Then,

Σ |= ∀s.φ∗[s] ≡ φ∗[do(A, s)].

Proof By induction on φ∗. �

Theorem 21 Let φ be a domain-dependent, uniform formula, and A be a
revision action for φ wrt Σ. It follows that:

Σ |= [∀s.φ[s] ⊃ Bel(φ, do(A, s))] ∧ [∀s.¬φ[s] ⊃ Bel(¬φ, do(A, s))]

Proof We will prove the first conjunct; the proof of the second is similar.
Let M |= Σ and suppose that S and S′′ are situations such that M |= φ[S] ∧
MPB(S′′, do(A,S)). By the successor state axiom for B, there is a situation S′

such that M |= B(S′, S) ∧ S′′ = do(A,S′) ∧ (SF(A,S′) ≡ SF(A,S)). Therefore,
since M |= φ[S] and A is a revision action for φ, M |= φ[S′]. By Lemma 20,
M |= φ[S′′]. �

Theorem 22 Let A be a revision action for a domain-dependent, uniform
formula φ wrt Σ. The following set of sentences (which we denote by Γ) is
satisfiable:

Σ ∪ {Bel(¬φ, S0),Bel(φ, do(A,S0)),¬Bel(FALSE , do(A,S0))}.

Proof Let S1 and S2 be situation constants. Since Σ does not contain initial
state axioms, we can construct a model M of Σ such that:

M |= (∀s′.B(s′, S0) ≡ (s′ = S1 ∨ s′ = S2)) ∧ ¬φ[S1] ∧ φ[S2] ∧
pl(S1) < pl(S2).

It is easy to verify that M |= Γ. �

Theorem 24 Let A be an update action for φ. Then:

Σ |= ∀s. Bel(φ, do(A, s)).

Proof Let M be a model of Σ, and S, S′′ be situations such that M |=
MPB(S′′, do(A,S)). By the successor state axiom for B, there is a situation S′

such that M |= S′′ = do(A,S′). Since A is an update action for φ, M |= φ[S′′].
�
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Theorem 25 Let A be a ground action term, and φ, φ′ be uniform formulae.
Then:

Σ |= ∀s.Bel(φ, s) ∧ ∀s′SF(A, s′) ∧ (∀s′.φ[s′] ⊃ φ′[do(A, s′)]) ⊃
Bel(φ′, do(A, s)).

Proof Let M be a model of Σ and S be a situation such that:

M |= Bel(φ, S) ∧ ∀s′SF(A, s′) ∧ (∀s′.φ[s′] ⊃ φ′[do(A, s′)]). (A.2)

Suppose that for some situation S′′:

M |= MPB(S′′, do(A,S)). (A.3)

We need to show that M |= φ′[S′′]. By the successor state axiom for B, there
is a situation S′ such that:

M |= B(S′, S) ∧ S′′ = do(A,S′). (A.4)

Now, if we could show that M |= MP(S′, S), then the theorem would follow be-
cause we could infer from (A.2) that M |= φ[S′] and also M |= φ′[S′′]. Suppose
S′

1 is a situation such that:
M |= B(S′

1, S). (A.5)

We need to show that M |= pl(S′) ≤ pl(S′

1). It follows from the second
conjunct of (A.2), (A.5), and the successor state axiom for B that M |=
B(do(A,S′

1), do(A,S)). We can infer from this, (A.3), and (A.4) that M |=
pl(do(A,S′) ≤ pl(do(A,S′

1)). This and the successor state axiom for pl imply
M |= pl(S′) ≤ pl(S′

1), as desired. �

Theorem 26

Σ |= [Bel(φ, s) ⊃ Bel(Bel(φ), s)] ∧ [¬Bel(φ, s) ⊃ Bel(¬Bel(φ), s)].

Proof This follows directly from Theorem 14. �

Theorem 27 Let A be a revision action for a domain-dependent, uniform
formula φ wrt Σ. Then:

Σ |= ∀s.Bel(¬φ, s) ∧ Bel(φ, do(A, s)) ⊃
Bel(Prev(φ ∧ Bel(¬φ)), do(A, s)).

Proof Let M be a model of Σ and S be a situation such that:

M |= Bel(¬φ, S) ∧ Bel(φ, do(A,S)). (A.6)
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Suppose for some situation S′′:

M |= MPB(S′′, do(A,S)). (A.7)

By the successor state axiom for B, there is a situation S′ such that:

M |= B(S′, S) ∧ S′′ = do(A,S′). (A.8)

We need to show that M |= (φ ∧ Bel(¬φ))[S′]. It follows from (A.6) and (A.7)
that M |= φ[S′′], and from this, (A.8), and Lemma 20 that M |= φ[S′]. Now,
let S′

1 be a situation such that:

M |= MPB(S′

1, S
′). (A.9)

It follows from this, (A.8), and Theorem 14 that M |= B(S′

1, S). If we could
show that M |= MP(S′

1, S) then the theorem would follow since we could infer
from (A.6) that M |= ¬φ[S′

1]. Let S′

2 be a situation such that M |= B(S′

2, S).
It follows from (A.8) and Theorem 14 that M |= B(S′

2, S
′). We can now infer

from (A.9) that M |= pl(S′

1) ≤ pl(S′

2). �

Theorem 34
Σ |= ∀sB(s, s).

Proof By induction on s. �

Theorem 36 For any model M of Σ, the AGM postulates (K∗1)–(K∗8) are
satisfied, when ∗ is defined as in Definition 32 for any situation t and domain-
dependent uniform formulae φ and ψ.

We prove this theorem by proving each postulate as a separate lemma.

Lemma 42 (K∗1) Under the assumptions of Theorem 36, K(t ∗ φ) is deduc-
tively closed.

Proof This lemma follows from the fact that the Bel operator is closed over
logical entailment. �

Lemma 43 (K∗2) Under the assumptions of Theorem 36, φ ∈ K(t ∗ φ).

Proof This follows directly from Theorem 21.
�

In the following lemma, we show conditions under which a most plausible,
accessible situation remains so after a revision action for φ is performed.

Lemma 44 Let A be a revision action for φ. Then, Σ |= ∀s, s′.φ[s] ∧ φ[s′] ∧
MPB(s′, s) ⊃ MPB(do(A, s′), do(A, s)).

Proof Let M |= Σ and t, t′ be situations such that M |= φ[t] ∧ φ[t′] ∧
MPB(t′, t). Since A is a revision action for φ, M |= SF(A, t) ∧ SF(A, t′).
Then, M |= B(do(A, t′), do(A, t)) follows from the successor state axiom for
B. To see that do(A, t′) is most plausible, let t′′1 be a situation such that
M |= B(t′′1 , do(A, t)). By the successor state axiom for B, there is a situa-
tion t′1 such that M |= t′′1 = do(A, t′1). By assumption, M |= pl(t′) ≤ pl(t′1). By
the successor state axiom for pl, M |= pl(do(A, t′)) ≤ pl(t′′1 ). �
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Lemma 45 (K∗3) Under the assumptions of Theorem 36, K(t ∗ φ) ⊆ t+ φ.

Proof Suppose ψ ∈ K(t ∗ φ), i.e., M |= Bel(ψ, do(A, t)). We need to show
that M |= Bel(φ ⊃ ψ, t). Let t′ be a situation such that M |= MPB(t′, t)∧φ[t′].
Since t ∗ φ is defined, M |= φ[t], therefore, it follows from Lemma 44 that
M |= MPB(do(A, t′), do(A, t)). This, together with the hypothesis, imply that
M |= ψ[do(A, t′)]. It follows from Lemma 20 that M |= ψ[t′]. �

The following lemma identifies conditions under which the predecessor (un-
der a revision action for φ) of a most plausible and accessible situation is also
most plausible and accessible.

Lemma 46 Let A be a revision action for φ. Then,

Σ |= ∀s.φ[s] ∧ ¬Bel(¬φ, s) ⊃
[∀s′′.MPB(s′′, do(A, s)) ⊃ ∃s′.MPB(s′, s) ∧ s′′ = do(A, s′) ∧ φ[s′]].

Proof Suppose for some situation t, M |= Σ ∧ φ[t] and M 6|= Bel(¬φ, t).
Then, for some situation u, M |= MPB(u, t) ∧ φ[u]. Further suppose that for
some situation t′′, M |= MPB(t′′, do(A, t)). Since M satisfies the successor state
axiom for B, there is a situation t′ such that M |= B(t′, t) ∧ t′′ = do(A, t′) ∧
SF(A, t′) ≡ SF(A, t). Since A is a revision action for φ, it follows that M |= φ[t′].
It remains to show that M |= MP(t′, t). Suppose to the contrary that there is
a situation t∗ such that M |= B(t∗, t) ∧ pl(t∗) < pl(t′). Since M |= MPB(u, t),
it follows that M |= pl(u) ≤ pl(t∗), and therefore M |= pl(u) < pl(t′). By the
successor state axiom for pl, M |= pl(do(A, u)) < pl(t′′). It follows from the
assumptions and Lemma 44 that M |= B(do(A, u), do(A, t)), which contradicts
M |= MPB(t′′, do(A, t)). �

Lemma 47 (K∗4) Under the assumptions of Theorem 36, if ¬φ 6∈ K(t) then
t+ φ ⊆ K(t ∗ φ).

Proof Suppose ¬φ 6∈ K(t), i.e., M |= ¬Bel(¬φ, t), and ψ ∈ t+ φ, i.e.,

M |= Bel(φ ⊃ ψ, t). (A.10)

We need to show that M |= Bel(ψ, do(A, t)). Suppose that for some situation
t′′, M |= MPB(t′′, do(A, t)). Since t ∗ φ is defined, M |= φ[t]. Therefore, by
Lemma 46, M |= ∃s′.MPB(s′, t) ∧ t′′ = do(A, s′) ∧ φ[s′]. Let t′ be a situation
such that M |= MPB(t′, t) ∧ t′′ = do(A, t′) ∧ φ[t′]. It follows from (A.10) that
M |= ψ[t′]. By Lemma 20, M |= ψ[t′′]. �

Lemma 48 (K∗5) Under the assumptions of Theorem 36, K(t ∗ φ) 6= Lnow .

Proof This follows directly from Corollary 35. �

Lemma 49 (K∗6) Under the assumptions of Theorem 36, if |= φ ≡ ψ, then
K(t ∗ φ) = K(t ∗ ψ).

Proof This follows from the fact that the Bel operator preserves logical equiv-
alence. �

42



Lemma 50 (K∗7) Under the assumptions of Theorem 36, K(t ∗ (φ ∧ ψ)) ⊆
(t ∗ φ) + ψ.

Proof Suppose γ ∈ K(t ∗ (φ ∧ ψ)), i.e.,

M |= Bel(γ, do(Aφ∧ψ , t)). (A.11)

We need to show that γ ∈ (t ∗ φ) +ψ, i.e., M |= Bel(ψ ⊃ γ, do(Aφ, t)). Suppose
to the contrary that there is a situation t′′ such that:

M |= MPB(t′′, do(Aφ, t)) ∧ (ψ ∧ ¬γ)[t′′]. (A.12)

Since t ∗ φ is defined, M |= φ[t]. Therefore, it follows from the successor state
axiom for B and (A.12) that there is a situation t′ such that:

M |= B(t′, t) ∧ t′′ = do(Aφ, t
′) ∧ φ[t′]. (A.13)

We can infer from Lemma 20, (A.12), and (A.13) that:

M |= (ψ ∧ ¬γ)[t′], and thus (A.14)

M |= ¬γ[do(Aφ∧ψ, t
′)]. (A.15)

Now, it remains to show that M |= MPB(do(Aφ∧ψ, t
′), do(Aφ∧ψ , t)), since this

along with (A.15) contradicts (A.11). Since t∗(φ∧ψ) is defined, M |= (φ∧ψ)[t].
Therefore, the successor state axiom for B together with (A.13) and (A.14)
imply that M |= B(do(Aφ∧ψ , t

′), do(Aφ∧ψ, t)). Suppose t∗∗ is such that:

M |= B(t∗∗, do(Aφ∧ψ , t)). (A.16)

We need to show that M |= pl(do(Aφ∧ψ, t
′)) ≤ pl(t∗∗). Since M |= (φ ∧ ψ)[t], it

follows from the successor state axiom for B and (A.16) that there is a situation
t∗ such that:

M |= B(t∗, t) ∧ t∗∗ = do(Aφ∧ψ , t
∗) ∧ (φ ∧ ψ)[t∗]. (A.17)

Similarly, it follows from the successor state axiom for B and (A.17) that M |=
B(do(Aφ, t

∗), do(Aφ, t)). From this and (A.12), we can infer that M |= pl(t′′) ≤
pl(do(Aφ, t

∗)). We can now use the successor state axiom for pl with (A.13) and
(A.17) to infer that M |= pl(do(Aφ∧ψ, t

′) ≤ pl(t∗∗) as required. �

Lemma 51 (K∗8) Under the assumptions of Theorem 36, if ¬ψ 6∈ K(t ∗ φ),
then (t ∗ φ) + ψ ⊆ K(t ∗ φ ∧ ψ).

Proof Suppose that ¬ψ 6∈ K(t ∗ φ), i.e.:

M |= ¬Bel(¬ψ, do(Aφ, t)), and (A.18)

for some formula γ, γ ∈ (t ∗ φ) + ψ, i.e.:

M |= Bel(ψ ⊃ γ, do(Aφ, t)). (A.19)
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We need to show that γ ∈ K(t ∗ φ ∧ ψ), i.e.:

M |= Bel(γ, do(Aφ∧ψ , t)). (A.20)

Suppose that for some situation t′′:

M |= MPB(t′′, do(Aφ∧ψ , t)). (A.21)

We need to show that M |= γ[t′′]. Since Aφ∧ψ is a revision action for φ∧ψ and
t ∗ (φ∧ψ) is defined, it follows from the successor state axiom for B and (A.21)
that there is a situation t′ such that:

M |= B(t′, t) ∧ t′′ = do(Aφ∧ψ, t
′) ∧ (φ ∧ ψ)[t′]. (A.22)

We can infer from Lemma 20 that:

M |= (φ ∧ ψ)[do(Aφ, t
′)]. (A.23)

If we can show thatM |= MPB(do(Aφ, t
′), do(Aφ, t)), then by (A.19) and (A.23),

M |= γ[do(Aφ, t
′)], and the theorem follows from Lemma 20 and (A.22), i.e.,

M |= γ[t′]∧γ[t′′]. Since Aφ is a revision action for φ, it follows from (A.22) and
the successor state axiom for B that M |= B(do(Aφ, t

′), do(Aφ, t). Now let t∗∗

be a situation such that:

M |= B(t∗∗, do(Aφ, t)). (A.24)

It remains to show that pl(do(Aφ, t
′)) ≤ pl(t∗∗). From (A.18) and (A.24), it

follows that there is a situation u′′ such that:

M |= B(u′′, do(Aφ, t)) ∧ ψ[u′′] ∧ pl(u′′) ≤ pl(t∗∗). (A.25)

Since t∗φ is defined, M |= φ[t]. Therefore, since Aφ is a revision action for φ, it
follows from (A.25), the successor state axiom for B, and Lemma 20 that there
is a situation u′ such that:

M |= B(u′, t) ∧ u′′ = do(Aφ, u
′) ∧ (φ ∧ ψ)[u′]. (A.26)

Since t ∗ (φ ∧ ψ) is defined, M |= φ ∧ ψ[t]. Therefore, since Aφ∧ψ is a revision
action for φ ∧ ψ, we can apply the successor state axiom for B again to yield:

M |= B(do(Aφ∧ψ , u
′), do(Aφ∧ψ , t)).

This together with (A.21) implies that M |= pl(t′′) ≤ pl(do(Aφ∧ψ, u
′)). Using

the successor state axiom for pl along with (A.22) and (A.26), we obtain M |=
pl(do(Aφ, t

′)) ≤ pl(u′′) This, together with (A.25), yields M |= pl(do(Aφ, t
′)) ≤

pl(t∗∗), as desired. �

Lemma 39 w ∈ [K(t)] iff there exists t′ ∈ MPB(t) such that w = Tr(t′).

Proof The “if” part is obvious. For the “only if” part, we fix w ∈ [K(t)].
Since Lnow is propositional and finite, let F be the the conjunction of literals
in w. Suppose, towards a contradiction, that there is no t′ ∈ MPB(t) such that
w = Tr(t′). Then it is easy to see that M |= Bel(¬F, t). Therefore, ¬F ∈ K(t),
which implies w 6∈ [K(t)]. Contradiction. �
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Theorem 40 K(t ⋄ φ) satisfies KM postulates (K⋄1), (K⋄2), (K⋄4), (K⋄5),
(K⋄8) when ⋄ is defined as in Definition 37 for any situation t and consistent
domain-dependent uniform formulae φ and ψ.

We prove this theorem by proving each postulate as a separate lemma.

Lemma 52 (K⋄1) K(t ⋄ φ) is closed.

Proof This lemma follows from the fact that the Bel operator is closed over
logical entailment. �

Lemma 53 (K⋄2) φ ∈ K(t ⋄ φ).

Proof This lemma follows directly from Theorem 24. �

After an update action is performed, the accessible situations are simply pro-
jected forward. In particular, as the following lemma shows, the most plausible
accessible situations are preserved.

Lemma 54 Let A be an update action for φ and t be a ground situation term.
Then,

Σ |= ∀s.MPB(s, t) ≡ MPB(do(A, s), do(A, t)).

Proof This follows from the definition of an update action and the successor
state axioms for B and pl. �

Lemma 55 (K⋄4) K(t ⋄ φ) = Lnow iff K(t) |= FALSE.

Proof This follows from Lemma 54. �

Lemma 56 (K⋄5) If |= φ ≡ ψ, then K(t ⋄ φ) = K(t ⋄ ψ).

Proof This follows from the definition of ua. �

Lemma 57 (K⋄8) If MPB(t) 6= ∅ then K(t ⋄ φ) =
⋂
t′∈MPB(t) Tr(t′ ⋄ φ).

Proof Let A denote ua(φ). Note that K(t ⋄ φ) =
⋂
t′∈MPB(do(A,t)) Tr(t′)

and t′ ⋄ φ = do(A, t′), therefore we need to show that:

⋂

t′′∈MPB(do(A,t))

Tr(t′′) =
⋂

t′∈MPB(t)

Tr(do(A, t′)).

This follows from Lemma 54. �
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Theorem 41 Postulates (DP1), (DP3) and (DP4) are satisfied when ∗ is
defined as in Definition 32 for any situation t and domain-dependent uniform
formulae φ and ψ.

We prove this theorem as a series of lemmas.

Lemma 58 (DP1) Under the conditions of Theorem 41, if ψ |= φ, then K((t∗
φ) ∗ ψ) = K(t ∗ ψ).

Proof Suppose γ ∈ K((t ∗ φ) ∗ ψ), i.e.:

M |= Bel(γ, do(Aψ , do(Aφ, t))). (A.27)

We need to show that γ ∈ t∗ψ, i.e., M |= Bel(γ, do(Aψ , t)). Let t′′ be a situation
such that

M |= MPB(t′′, do(Aψ , t)). (A.28)

We need to show that M |= γ[t′′]. Since Aψ is a revision action for ψ and t ∗ψ
is defined, by the successor axiom for B, there is a situation t′ such that

M |= B(t′, t) ∧ t′′ = do(Aψ , t
′) ∧ ψ[t′]. (A.29)

Also, since ψ |= φ, it follows that M |= φ[t′]. By Lemma 20 and (A.29), M |=
ψ[do(Aφ, t

′)]. Therefore, we can apply the successor state axiom for B twice
to obtain M |= B(do(Aψ , do(Aφ, t

′)), do(Aψ, do(Aφ, t))). Now, if it were also
the case that M |= MP(do(Aψ , do(Aφ, t

′)), do(Aψ , do(Aφ, t))), then the theorem
would follow since we could infer from (A.27) that M |= γ[do(Aψ , do(Aφ, t

′))],
and M |= γ[t′′] would follow from this, Lemma 20, and (A.29). Suppose to the
contrary that there is a situation t∗∗∗ such that:

M |= B(do(Aψ , do(Aφ, t
′)), do(Aψ , do(Aφ, t))) ∧

pl(t∗∗∗) < pl(do(Aψ , do(Aφ, t
′))). (A.30)

Since Aψ is a revision action for ψ, and (t ∗φ) ∗ψ is defined, it follows from the
successor state axiom for B that there is a situation t∗∗ such that:

M |= B(do(Aφ, t
∗∗), do(Aφ, t)) ∧ t

∗∗∗ = do(Aψ , t
∗∗) ∧ ψ[t∗∗]. (A.31)

We can infer from this and the successor state axiom for B that there is a
situation t∗ such that: M |= B(t∗, t) ∧ t∗∗ = do(Aφ, t

∗). It follows from
this, (A.31), and Lemma 20 that M |= ψ[t∗]. Also, since t ∗ ψ is defined,
M |= ψ[t]. Therefore, we can use the successor state axiom for B again to
obtain: M |= B(do(Aψ , t

∗), do(Aψ , t)). We can now see from (A.28) that
M |= pl(t′′) ≤ pl(do(Aψ , t

∗)). However, it follows from (A.30), the situation
equations, and repeated application of the successor state axiom for pl that:
M |= pl(do(Aψ , t

∗)) < pl(t′′). Contradiction. �
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Lemma 59 Under the conditions of Theorem 41, φ ∈ K((t ∗ φ) ∗ ψ).

Proof We need to show that M |= Bel(φ, do(Aψ , do(Aφ, t))). Let t′′′ be a
situation such that:

M |= MPB(t′′′, do(Aψ , do(Aφ, t))). (A.32)

Since Aφ is a revision action for φ and t ∗ φ is defined, it follows from two
applications of the successor state axiom for B that there is a situation t′ such
that:

M |= B(t′, t) ∧ t′′′ = do(Aψ , do(Aφ, t
′)) ∧ φ[t′].

It follows from Lemma 20 that M |= φ[t′′′]. �

(DP3) follows as a corollary.

Corollary 60 (DP3) Under the conditions of Theorem 41, if φ ∈ K(t ∗ ψ),
then φ ∈ K((t ∗ φ) ∗ ψ).

Lemma 61 (DP4) Under the conditions of Theorem 41, if ¬φ 6∈ K(t ∗ ψ),
then ¬φ 6∈ K((t ∗ φ) ∗ ψ).

Proof Suppose that there is a situation t∗∗ such that:

M |= MPB(t∗∗, do(Aψ, t)) ∧ φ[t∗∗]. (A.33)

We need to show that there is a situation t+ such that:

M |= MPB(t+, do(Aψ , do(Aφ, t))) ∧ φ[t+].

Since Aψ is a revision action for ψ and t ∗ ψ is defined, it follows from the
successor state axiom for B, Lemma 20, and (A.33), there is a t∗ such that:

M |= B(t∗, t) ∧ t∗∗ = do(Aψ , t
∗) ∧ (φ ∧ ψ)[t∗]. (A.34)

Since t ∗ φ and (t ∗ φ) ∗ ψ are defined, it follows from two applications of the
successor state axiom for B that M |= B(do(Aψ, do(Aφ, t

∗)), do(Aψ , do(Aφ, t))).
Now, if we can show that M |= MP(do(Aψ , do(Aφ, t

∗)), do(Aψ , do(Aφ, t))), then
the theorem would follow because Lemma 20 implies that:

M |= φ[t∗] ≡ φ[do(Aψ , do(Aφ, t
∗))],

and M |= φ[do(Aψ , do(Aφ, t
∗))] follows from this and (A.34). Let t′′′ be a

situation such that:

M |= B(t′′′, do(Aψ , do(Aφ, t))). (A.35)

We need to show that M |= pl(do(Aψ , do(Aφ, t
∗))) ≤ pl(t′′′). It follows from the

successor state axiom for B, Lemma 20, and (A.35) that there is a situation t′

such that:

M |= B(t′, t) ∧ t′′′ = do(Aψ , do(Aφ, t
′)) ∧ ψ[t′]. (A.36)
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We can use the successor state axiom for B again to yield:

M |= B(do(Aψ, t
′), do(Aψ, t)).

From this and (A.33), it follows that M |= pl(t∗∗) ≤ pl(do(Aψ , t
′)). Using

(A.34), (A.36), and the successor state axiom for pl, we can infer that M |=
pl(do(Aψ, do(Aφ, t

∗))) ≤ t′′′, as desired. �
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