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1 INTRODUCTION

A Completeness Result for Reasoning with
Incomplete First-Order Knowledge Bases

We shall therefore say that a program has com-
mon sense if it automatically deduces for it-
self a sufficiently wide class of immediate conse-
quences of anything it is told and what it already
knows.

extremely

vivid reasoning

evaluating

unknown

Converting first-order reasoning problems into propositional
ones remains a possibility (as done in [8], for example), but con-
sider that for KBs with (say) 10 unique names, even a single bi-
nary predicate would generate far too many atomic propositions.
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Perhaps the simplest and most common method
of dealing with incomplete knowledge in AI sys-
tems involves working with a third truth value
standing for “unknown.” By extending the ordi-
nary two-valued truth tables in the obvious way,
what is known about complex logical formulas
can be efficiently calculated as a function of what
is known about the atomic ones. While this form
of reasoning can be shown to be sound, it is noto-
riously incomplete in classical logic. In this pa-
per, we extend this reasoning method to include
quantifiers and equality, and show that efficiency
and soundness are preserved. We also show that
for a wide class of first-order formulas in a certain
normal form, the method is also complete. Fi-
nally, we prove that in the propositional case, ev-
ery formula can be converted to a logically equiv-
alent one in this normal form, and conjecture that
this remains true in the first-order case.

From the very beginnings of AI, the dream of getting a ma-
chine to exhibit common sense was linked to deductive rea-
soning:

— John McCarthy in [14]

Since then, the enthusiasm for deduction has been tempered
somewhat by what has been discovered about its compu-
tational difficulty. Regardless of how one feels about the
relevance of complexity and computability theory to AI,
for knowledge bases (KBs) large enough to hold what is
presumed to be necessary for human-level common sense,

deduction would have to be efficient. Recent lo-
cal search based methods like GSAT [17] do show some
promise on large KBs, but so far (1) they are restricted to
constraint satisfaction tasks not deductive ones, and (2) they
work only on problems that can be formulated in a propo-
sitional language.

To the best of our knowledge, there is so far only one logi-
cally correct (sound and complete) deductive technique ef-
ficient enough to be feasible on KBs of this size: the de-
duction underlying database retrieval. In KR terms, this
amounts to what was called in [11]. In log-
ical terms, the requirements for this form of reasoning are
clear: every relevant atomic formula must be known to be
true or known to be false. That is, the KB must be equiv-
alent to a maximally consistent set of literals. In addition,
this set of literals must be readily computable. In the propo-
sitional case, one obvious way of ensuring this is to store
the positive ones in a database and infer the negative ones
using negation as failure. With every atom known true or
known false, it then follows that every formula can be “ef-
ficiently” (in a sense to be discussed later) determined to be
true or to be false by it, that is, by calculating its
truth value as a function of the truth values of its constituent
atoms.

But this requirement for complete knowledge is very strict.
It would certainly be desirable to allow some atomic for-
mulas to be , with the understanding that other
formulas would need to be unknown as well. Allowing
arbitrary disjunctions (or existential quantifications) in the
KB would obviously require a very different method of rea-
soning. A less radical move, which still allows incomplete
knowledge, is to consider a KB that is equivalent to a finite
consistent set of literals, not necessarily maximal. Unfortu-
nately, although this is a trivial extension to the above, we
can already see that it will not work: for the special case of
a KB equivalent to the empty set of literals, the formulas
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converting a formula
into will be computationally intractable

TRUE TRUE

If we were to allow for inconsistent KBs as well, we would
have a truth value, as in [1, 3, 4, 5, 9, 10, 16], among many
others. From an efficiency point of view, nothing is gained by this
move, so we forego it for simplicity.

that would need to be known are precisely the ones.
Computing these is co-NP hard in the propositional case,
and even if we accept the argument that it may still be fea-
sible in practice (perhaps because the query will always be
small, or for reasons like those discussed in [7]), there is no
escaping the fact that it would be undecidable in the first-
order case.

So it appears that even a seemingly insignificant increase in
expressive power, allowing for the most basic form of in-
completeness in the KB, already makes deduction too hard.
Despite this, it is precisely this form of incomplete knowl-
edge that we will attempt to handle in this paper, suitably
generalized to deal with quantifiers and equality. What we
will prove is this:

1. when an evaluation-based reasoning procedure is ap-
plied to incomplete KBs of the above sort, it remains
efficient and always provides logically sound answers;

2. for a wide class of queries in a special normal form
( ), it also provides logically complete answers
(and hence is logically correct);

3. we conjecture (and prove in the propositional case)
that this special normal form entails no loss of expres-
sive power, in the sense that every query can be equiv-
alently expressed as a formula in .

We need to clear about one thing at the outset: there is no
free lunch. If the evaluation-based reasoning procedure is
logically correct and efficient, then

. In the first-
order case, if my conjecture is correct, it must be undecid-
able!

So the conversion to normal form is not something we
would want to do online. The application we have in mind
is this: assume we have a knowledge-based program (prob-
lem solver, planner, whatever) that must use a very large ex-
ternal KB for some task. Embedded within the program are
a number of queries to the KB, that is, a number of places
where the program needs to know whether or not some-
thing is true. In an offline manner, we ensure these queries
are in (perhaps by hand) before even approaching the
KB. Once this is done, we can run the program that uses
our deductive procedure with confidence, since we know
it will efficiently generate answers that are logically sound
and complete.

One caveat: even if we perform this conversion to by
hand, it might still be the case that the is exponentially
longer than the original query. We do not see this as a major
problem. In the intended application, like with databases,
we expect the query to be so small compared to the size
of the KB that a worst-case exponential blowup (and the
work this entails) is less of a concern. We will also end up
assuming that within a first-order query, the depth of nest-
ing of quantifiers is small relative to the size of the query.
Note that these assumptions need not hold in a more math-

ematical (or “puzzle-mode”) setting. There, the query (the
theorem to be proved) might be about the same size as the
KB (the given axioms), and the depth of quantifiers might
be significant. For our application, think something like:
depth of quantifiers 4, length of query 18 terms, and
length of KB 10 terms.

In the next section we discuss evaluation-based reasoning
in general terms. In Section 3, we proceed with the devel-
opment in detail for a first-order logic with equality, and
state the main results. Finally, in Section 4 we draw some
conclusions and describe some future work.

The reasoning procedure we have in mind (for KBs with
both complete and incomplete knowledge) is one that de-
cides whether a formula is true or false, by evaluating it,
reducing knowledge of complex formulas to knowledge of
the ground atomic formulas, . Throughout, we will use 0
to mean “known to be false,” 1 to mean “known to be true,”
and to mean “unknown.”

Given an assignment [ 0 1 ] telling us which
atoms are known, we extend the assignment to all boolean
formulas in the obvious way:

1. [ ] = 1 [ ].

2. [ ] = min [ ] [ ] .

This is merely a compact way of expressing the 3-valued
truth tables first presented by Kleene [6]:

Disjunctions, implications, and equivalences can be han-
dled as abbreviations. We will sometimes also use the log-
ical constant , with [ ] = 1.

To handle quantification, assume we are given a finite set
of constants (intuitively, those names mentioned in some

KB), and we define

3. [ ] = min [ ]

Here is the result of replacing free by in , and is
the union of the constants in , those mentioned in , and
one new one outside of and not mentioned in . Thus,



3

4

* *

+ , -.
+

Definition 1:

1
2

1
2

1
2

1
2

1
2

1
2

3

1 1

4

sound

complete

correct

e.g.
KB

KB

�

/�0 
 0 �1 �
2 
3 3 �
2 
3 3 �
2

4 �

 � � � � � 4 � � � �
3

� � � 4 �

� 4 4 � � 4 4 �

� 4

4 �

5 6768695 � 67686 �

%'&(�% $�$ �

�;:<: : :
�$ �

= !
= � ! > ���

> = ! � !> � = � > � = �
> = ! � != � > � = � > �
> = !

� � �� �

� � �  ��? �@? �
 ? � � ?  &��� �

�
 ? � � �

�  ? �  ? � &
�

 ?
�
� �

�

�

% %BA A � A% C
C C

D
We could convert the formula to DNF and remove the com-

plement of tautologous clauses, and that would work here, but not
in the first-order case. See below.

The worst case complexity of this problem does not look
good, but is not an issue here.

to evaluate , we evaluate a finite set of its instances
where the ranges over the constants in the given , over
the constants mentioned in , and over one new constant
that is neither in nor in . We handle existentials as ab-
breviations.

Finally to handle equality formulas, we use the simplest
possible scheme (for ground atomic ones):

4. [ = ] = 1 if is identical to , and 0 otherwise.

So all that is left to completely determine a function is
the set and the value of on atomic formulas. We will
show how to get these from a given KB in Section3.3. Then,
using these four rules, we can evaluate any closed formula,
that is, how to compute what is known about the formula as
a function of what is known about instances of its atoms.

Of course it remains to be seen whether this 3-valued eval-
uation scheme is any good. This is what is addressed in
Sections 3.4 and Sections 3.5.

We should be clear about what we mean by correctness. We
will want to talk about making deductions from a set of for-
mulas (the KB), and getting the correct answer (0, 1, or

) for a class of formulas (the potential queries):

Let , and let [ 0 1 ].
Then

is logically wrt for iff for every ,
if [ ] = 1 then = , and if [ ] = 0 then = ;

is logically wrt for iff for every ,
if = then [ ] = 1, and if = then [ ] = 0;

is logically wrt for iff it is both sound
and complete.

We will see below (after we establish some properties of
quantifiers and equality) that whenever we begin with an
evaluation function that is logically sound for atomic for-
mulas, it will end up logically sound for all formulas. But
this will not be the case for logical completeness: it is a well
known property of multi-valued logics [18] that classically
correct answers for atoms do not guarantee correctness for
all formulas.

Observe, for example, that we would want [ ] to
be 1 even when [ ] = , contrary to what we have above.
This has suggested to some authors that perhaps tautologies
and their negations need to be filtered out separately in the
evaluation (as in [20] and in supervaluations [19]).

But the problem is not merely with tautologies. Suppose
we have that [ ] = , [ ] = 1 and [ ] = 0 (where

= ). Let be the formula

( ( )) ( ( ))

Then, we get [ ] = , whereas completeness requires a
value of 1 (since = ). There is, however, a tautology

hidden here: if we convert to CNF, we get

[ ( )]

which gives a value of 1, after we filter out the tautologous
clause.

But consider the dual of : [( ) ( )]
For logical completeness, this should get value 0, although
again returns . Moreover, the formula here is in CNF,
and there are no hidden tautologous clauses to remove.
However, observe that the clause ( ) is derivable from
these two by Resolution, and if we were to conjoin this new
clause to the formula, logical equivalence would be pre-
served and would now return the correct answer, 0. This
is the idea behind the normal form we will introduce later.

Notice that ( ) (or any other valid formula) is an un-
usual query to appear in a knowledge-based program. We
couldn’t possibly want our program to do one thing when it
was true, and another when it was false, for instance. The
formula ought to be known, arguably, but only for logical
reasons, not because of anything in the KB. Similarly, the
formula above ought to be known, but its truth is hidden
in a logical puzzle. Our conversion to normal form insists
on unpacking these logical puzzles within the query, and
making explicit what we are asking regarding the KB. One
way of saying this is that a disjunction in a query must not
be entailed unless one of the disjuncts in the query is, or
equivalently, the conjuncts in a query must not together en-
tail anything that is not already entailed by one of them.
This is what is behind our notion of “logically separable”
below.

A few words on the efficiency of the above treatment of
knowledge. If the query does not use quantifiers, will
ask for the value of an atom a linear (in the size of the
query) number of times. So non-quantified queries are
handled efficiently, assuming atoms are. But for quanti-
fied queries, the situation is less clear. Consider one like

( ) where the are atoms whose
arguments are among the . Even if we imagine a KB that
is a simple database (a finite set of ground atoms) that uses
constants, the obvious way of handling this requires looking
at all vectors of constants, clearly infeasible for the sort
of large we are considering. In actual database systems,
queries like this can be formulated, but they are handled
in practice using a number of optimizations such as sort re-
strictions on variables (so that not all constants need be con-
sidered for every variable), and bottom-up relational oper-
ations (like merge, join, and project). These types of opti-
mizations will be available to us as well, and coupled with
our assumption that is very small, we take it that quanti-
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3 FIRST-ORDER KBS AND QUERIES
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3.1 QUANTIFIERS AND EQUALITY

Definition 2:

Definition 3:

Lemma 1:

Theorem 2:

Proof:

Corollary 3:

Proof:

Theorem 4:
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TRUE

To make the presentation here general and self-contained, we
use ordinary first-order logic, with additional axioms for equality.
But perhaps a better approach is to use a logical language like
that presented in [9, 13] where equality is a special primitive, and
the language includes “standard names” (in addition to constants
and function symbols), for which the unique-name assumption is
inherent in the semantics.

KB

ewffs

standard

A standard interpretation has the following
properties:

;

iff ;

iff for every , .

Suppose is any set of closed wffs, and that
that there is an infinite set of constants that do not appear
in . Then is satisfiable iff it has a standard model.

etc

every

If is finite and for every ,
then

Let be a set of closed wffs, let be a wff with
a single free variable , and let be a set of constants
containing those in , those in , and at least one constant
in neither. Then for every constant , there is a constant

such that iff

fied queries can be handled efficiently (or as efficiently as
can be expected), assuming again that atomic queries are.

We start with a standard first-order language with no
function symbols other than constants and a distinguished
equality predicate. We assume a countably infinite set of
constants = . . . for which we will be making a
unique-name assumption.

Because we will be considering KBs and queries that use
equality, we will end up wanting to compute the entailments
not just of the KB, but of , where we have:

The set is the axioms of equality (reflexitiv-
ity, symmetry, transitivity, substitution of equals for equals)
and the (infinite) set of formulas ( = ) = .

Note that because we are making a unique-name assump-
tion for infinitely many constants, we will not be able to
finitely “propositionalize” first-order KBs, despite the lack
of function symbols. We will use to range over substitu-
tions of all variables by constants, and write as the re-
sult of applying the substitutions to . We will let range
over atoms whose arguments are distinct variables, so that

ranges over ground atoms. We will use to mean the
universal closure of . When is finite, stands for the
conjunction of its elements (and the logical constant ,
when is empty). Finally, we will use to range over

, by which we mean quantifier-free formulas whose
only predicate is equality.

Before discussing KBs and queries, we need to establish
how the quantifiers and substitution behave. First we define
the notion of a standard interpretation:

A interpretation of is one where
= is interpreted as identity, and the denotation relation be-
tween and the domain of discourse is bijective.

The following is easy to show:

=

= =

= =

We get the following theorem:

Suppose we are given a model of . We
will show how to construct a model that is standard. We
assume without loss of generality that the domain of is
countable, and because of , infinite. We begin by parti-
tioning this domain into equivalence classes relative to the
interpretation of = in . The domain of will be these
classes, the interpretation of = in will be the identity re-
lation, and for any predicate , the interpretation of in

is formed by taking the interpretation of in and
moving to the corresponding tuples of equivalence classes.
Finally, to interpret a constant in , we take the equiva-
lence class of its denotation when the constant appears in ;
otherwise, for the remaining countably infinite set of con-
stants, we assign them in systematically to the remain-
ing countably infinite set of equivalence classes, in such a
way that each class is denoted by some constant. Then, it
only remains to be shown that = More generally,
we can show that if is a mapping from variables to the
domain of , and is the corresponding assignment to
equivalence classes for , then for any formula all of
whose constants appear in , we have that = iff

= This is done by induction on the length of .

This is like Herbrand’s Theorem (with being like the
Herbrand Universe) except that is not required to be in
prenex form, can contain arbitrary alternations of quanti-
fiers (which would otherwise introduce Skolem functions)

. Note that this is not simply the Skolem-Lowenheim
Theorem either, since the theorem is false when mentions

constant, as in the set ( ) ( )
This is an example of a satisfiable set that has no standard
model. As a trivial consequence of the theorem, we get

=
=

If = then is satis-
fiable, and since is finite, by the Theorem, has a standard
model . Then, by Lemma 1, for some , = , and
so = .

The second theorem concerns substitutions by constants:

= =
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3.2 KNOWLEDGE BASES

Definition 4:

Definition 5:

Theorem 5:

Proof:

Corollary 6:

Proof:

3.3 ATOMIC QUERIES
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KB

proper

Lits( )

Let be a finite set of formulas of the above
form, and let be any standard interpretation. Then

iff Lits( )

Lits( )
Lits( )

Lits( )

Lits( )

Lits( )

Let be as above. Then has a standard
model iff Lits( ) is consistent.

Lits( ) Lits( )
Lits( )
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It is sufficient to show that if and are two
constants that do not appear in or , then

= iff =

To prove this, first let be any bijection from to . Let
mean with replaced by . Let mean .
Finally, for any interpretation , let mean the inter-
pretation exactly like except that the denotation of in

is changed to that of in . Then, we can prove by
induction that for any , and any assignment to variables ,

= iff =

Now to prove the theorem, suppose that = , and
suppose that is any interpretation such that = .
We will show that = . To do so, let be the bijection
that swaps and and leaves all other constants unchanged.
Then ( ) = ( ), and so = ( ) . By the
above, we get that = and so = Applying
the above again, we get that = ( ) and so =
which completes the proof.

It is this theorem that will allow us to restrict our attention
a finite set of constants in when we do substitutions, as
we will show below. Note that the theorem is false if
contains just the constants in and . For example, let
be ( ), and be ( = ( )) . In this case, the
only constant in or is , and = , but =

. The theorem is also false if does not contain the
constants in . For example, let be ( ), and be

( = ) ( ) Here, = , but for
every other constant , = .

Since we are considering a KB containing equality, vari-
ables, and universal quantifiers, we will not be able to do
simple retrieval to find out what is known about the atoms.
For example, let be the formula

( = = ) ( )

If contains then we want ( ) to be known. So
we must first be clear about the form of KB we will be using:

We call a set of formulas if
is consistent and is a finite set of formulas of the form

( ) or ( ).

We will be interested in KBs that are proper. Observe that
as a special case, we can represent any finite consistent set
of literals as a proper KB: simply replace (or its com-
plement) by ( ) where is of the form ( = ).
We can also represent a variety of infinite sets of literals,
as the formula does above. We are free to characterize
some of the positive instances of by using ( ), and
leave the status of the rest open. We can do the same for

negative instances. We can also make a closed world as-
sumption about a predicate if we so choose, by using both

( ) and ( ), for some and .

It might appear that proper KBs are overly restrictive, and
ought to be easy to reason with. It is worth remember-
ing that deciding whether a proper KB entails a formula is
recursively unsolvable, unless the formula is restricted in
some way, as we intend to do.

Although proper sets are not the same as sets of literals, they
can be used to represent them in the following way:

Let be any finite set of ( ) formulas
as above, but not necessarily consistent. Define

= ( ) =

Then we get the following:

= =

For the only-if direction, observe that entails
every element of Thus, because = and by
Lemma 1, = , it follows that = .

For the if-direction, assume that = , and suppose
that ( ) , where is either or . Assume that
for some = . Then by Lemma 1, = , so

, and = . Since this works for any , and the
model is standard, we get by Lemma 1 that = ( ),
and so satisfies .

So and are satisfied by the same standard interpre-
tations (although there will be non-standard interpretations
where they diverge). As corollary, we get

The only-if direction is immediate.

For the if-direction, let be the standard interpretation
whose domain is the constants , where each constant is
interpreted as itself, where = is interpreted as identity, and
where any predicate is interpreted as the set of tuples

( ) . Since, is assumed to be con-
sistent, we get that = , and so = by the
Theorem.

Now we want to define how atomic queries will be handled
for proper KBs. We will use the fact that has already
been defined for closed ewffs, and (by a simple induction
argument) satisfies the following:
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Lemma 7:

Definition 6:

3.4 SOUNDNESS OF QUERY EVALUATION

Theorem 8:

Proof:

Theorem 9:

Proof:

Corollary 10:

Proof:

3.5 NORMAL FORM

Definition 7:

Definition 8:
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KB evaluation
KB

KB

KB

KB

KB

KB KB

KB

KB

For any proper KB, the evaluation associated
with KB is logically correct for ground atomic queries wrt

KB.

KB
KB

KB

KB

Lits(KB)
Lits(KB)

KB

KB

Suppose KB is proper. Then the evaluation
associated with KB is logically sound for any closed for-
mula wrt KB.

KB KB

KB
KB

KB

KB

Suppose KB is proper, and that for every
and every taken from some set of predicates, KB
or KB . Then the evaluation associated with KB
is logically complete wrt KB for any closed formula that
uses just those predicates.

KB KB KB

KB

separable

[ ] = 1 =

This establishes that is logically correct for ewffs.

For any proper , the atomic
associated with is the function where the (for han-
dling quantifiers) is the set of constants mentioned in ,
and such that for any ground atom

[ ] =

1 if there is a ( )
such that [ ] = 1

0 if there is a ( )
such that [ ] = 1

otherwise

This function is well-defined, in that, if there were formulas
( ) ( ) such that [ ] = [ ] =

1, we would have by Lemma 7 that = , and so
= , violating the consistency of .

Furthermore, the function (as a procedure) runs in time that
is no worse than linear in the size of the . Given the
considerations discussed in the previous section, this settles
the efficiency question as far as we are concerned: using the
evaluation associated with a KB, arbitrary closed queries
can be answered efficiently.

We now turn to the correctness of .

We begin by showing that the evaluation associated with
a always returns logically correct answers for atomic
queries.

For soundness, assume that [ ] = 1. Then by
Lemma 7, we have that = , where ( ) ,
from which it follows that = . The case when

[ ] = 0 is analogous. For completeness, assume that
= . It follows that

( = )

is inconsistent, for the appropriate variables and constants.
This set therefore has no standard models, and by Corol-
lary 6, is inconsistent. Thus,

, from which it follows that [ ] = 1. The case
when = is analogous.

Next we show that the evaluation associated with a al-
ways returns logically sound answers for any query:

The proof is by induction on the length of the
query. The only tricky case is when the query is . If

[ ] = 0, then for some , [ ] = 0, and so
by induction, = , and so = . If

[ ] = 1 then for every , [ ] = 1, and so
by induction, for every , = . Then, by
Theorem 4, we have that for every = ,
and by Corollary 3, = .

As a simple consequence of this soundness, we also have
that when the happens to have complete knowledge of
some set of predicates, the evaluation is logically complete:

=
=

First observe that [ ] = for any query us-
ing just those predicates (by induction on the length of the
query). If = , then since is proper, = ,
and so by soundness, [ ] = 0 and so [ ] = 1. The case
where = is analogous.

This theorem shows that for complete knowledge repre-
sented as above, evaluation provides an efficient and log-
ically correct deductive reasoning procedure.

However, as we already argued, we cannot expect to have
logical correctness when knowledge is incomplete. In the
next section, we show that we do get it for the special case
of queries in normal form.

This is the normal form we will be using:

A set of closed formulas is logically
iff for every consistent set of ground literals ,

if is consistent for every , then has a
standard model.

The normal form formulas is the least
set such that

1. if is a ground atom or ewff, then ;

2. if , then ;

3. if , is logically separable, and is finite,
then ;

4. if , is logically separable, and for some ,
= , then .

Before explaining how the definition works, we prove the
main theorem:
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Suppose KB is proper. Then the evaluation
associated with KB is logically complete for any normal
form formula wrt KB.
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KB KB
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The proof is by induction on the length of the
query. For atoms, ewffs, and negations, the argument is
clear.

For conjunctions (other than ewffs), if = ( )
then = and = , and so by induction

[ ] = 1 and [ ] = 1, meaning [ ] = 1. If on
the other hand, = ( ) then
has no standard models. By Theorem 5,
has no standard models either. Since ( ) , either

or is inconsistent, and has
no standard models. By Theorem 5, either
or has no standard models. By Theorem 2,

= or = , and so by induction, [ ] =
0 or [ ] = 0, implying [ ] = 0.

For quantifications, if = then for every ,
= and so by induction, [ ] = 1, and then

[ ] = 1. If on the other hand, = then
has no standard models. By Theorem 5,

has no standard models either. Since
, for some , is inconsis-

tent, and has no standard models. By Theorem 5, for some
, has no standard models. By Theo-

rem 2, for some , = , and therefore by
Theorem 4, for some , = . Then, by
induction, we have that for some , [ ] = 0 and
so [ ] = 0.

This theorem shows that as long as the query is in normal
form, we have an efficient deductive reasoning procedure
for first-order KBs with incomplete knowledge that is guar-
anteed to be logically correct. In other words, we can eval-
uate a query to determine if it or its negation is entailed, and
always get answers that are logically correct.

So see how the definitions of logically separable and normal
form work, it is best to start with the propositional case (and
ignore “standard” in the definition). Notice that any literal
will be in normal form. If and are both consistent sets
of literals and is inconsistent, then they contain com-
plementary literals, and so is inconsistent for some

. It follows that is logically separable, according to
the definition. So if is a finite consistent set of literals (in-
cluding the empty set), and . Thus

contains all non-tautologous clauses and their comple-
ments. On the other hand, is not logically separa-
ble since is inconsistent, but and
are both consistent. So does not contain tautologous
clauses and their complements.

Now the next question is which conjunctions of non-

tautologous clauses will be in normal form. Consider the
set = ( ) ( ) . Let be . Then
is inconsistent, but both ( ) and ( )
are consistent, so is not logically separable. But consider

= ( ) . In this case, it can be shown that any
consistent set of literals that is inconsistent with will also
be inconsistent with one of the clauses in . The result is
that and As we will see more gen-
erally below, to guarantee separability in the propositional
case, it is sufficient that a set of non-tautologous clauses be
closed under Resolution.

To see what work this constraint will do, observe that for
any and any and , we have that

if = ( ), then = and = .

This suggests that if gets the correct value for and ,
it will get the correct value for ( ). But the following
does hold in general:

if = ( ), then = or = ,

for example, as above when = , = ( ),
and = ( ). However, the above property hold
when the query is in , and this will give us completeness
for all normal form queries.

In the first order case, the considerations are similar, with
universal quantification behaving somewhat like infinite
conjunction. For any and any we have that

if = , then = , for every .

But the following does not hold in general:

if = , then = for some .

A simple example is when is the formula

( ( ) ( ))

or expressed in terms of existentials, when the query is
( ( ) ( )). This existential is entailed by the

empty KB, but no substitution instances are (nor, for that
matter, are disjunctions of substitution instances). The im-
plication is that even if gets the correct value for every

, it need not get the correct value for . The definition
of rules out such formulas as queries.

One subtlety in the definition is the requirement for the
model of to be . When is finite, as in
the case of conjunction, this imposes no additional con-
straint. But its importance can be seen from the example
of above. Here = , and when
is consistent for every , does unfortunately have a
model: it is a non-standard one where ( ) comes out false
for every , but ( ) comes out true. However, is
not logically separable, since cannot have a
model, as itself does not have one. Consequently, neither

nor its negation are in normal form, as desired.
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3.5.2 The expressive range of

Lemma 12:

Proof:

Theorem 13:

Proof:

Theorem 14:

Proof:

Definition 9:

Theorem 15:

Proof:
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Suppose is a finite set of ground clauses that
is closed under Resolution, in the sense that

If , , and and resolve to , then
either is tautologous or there is a such
that .

Then is logically separable.

In the propositional sublanguage, for every
, there is such that .

Blake Canonical Form

KB
Lits(KB)

If is proper, then .

Lits( )
Lits( )

conflict-free

If all the literals in are conflict-free, then
.

This is variant of the “3 block problem” discussed in [15]. In
our case, from the given KB, we know that the in question must
be or , but we cannot say which.

Observe that the conversion to required conjoining a non-
subsumed entailed clause to the universal formula, as we do with
the BCF. To prove the theorem, it would suffice to show that only
finitely many such clauses, perhaps with new variables and equal-
ities, are ever required.

A literal appears in if the corresponding atom appears
within the scope of an appropriate number (odd or even) of nega-
tion operators.

As a final topic, we consider the expressive range of .
We can prove that in the propositional sublanguage, the re-
striction to normal form is without loss of expressive power:

Suppose that is inconsistent for some con-
sistent set of literals . We will show that for some ,

is inconsistent. Let . . . be a Resolu-
tion refutation of , with no tautologies, and with all
uses of moved to the end. Because is consistent, there
must be at least one clause of used. So there will be some

, 1 , where is derivable using only the clauses
in , and uses just the literals in to get to the empty
clause. Thus, is inconsistent. Since is closed
under Resolution, there is an , such that , and
so is inconsistent too.

= ( )

Consider the following operation on : convert
to CNF, and starting with this set of clauses, run Reso-

lution repeatedly on the resulting clauses, deleting any tau-
tologous or subsumed ones until no new clauses are gen-
erated. Call the (finitely many) resulting clauses . Since
each element of is non-tautologous, as noted above,

. Further, is closed under Resolution, and so by the
Lemma, is logically separable. Now let be . Then,

, and = ( ), which completes the proof.

The formula used in the proof of this theorem is
in what is called (BCF) [2]. Using
later terminology (due to Quine), it is the conjunction of the
non-tautologous prime implicates of . Note, however, that
while includes BCF, it goes beyond it, in that it is closed
under negation, and has formulas of arbitrary alternations of

and . As a very simple example, suppose that and
are in BCF and share no atoms. Then it is easy to show that

is logically separable, and so ( ) .

I have as yet been unable to prove or disprove that the above
theorem generalizes to the first-order case. To see some
of the complications, consider, for example, the formula

( ) ( ) as a query. This is in prenex form,
has a matrix that is both in CNF and in DNF, and does not
appear to involve hidden valid formulas or their negations.
This seemingly innocuous formula is not in , however.

To see why it presents difficulties, suppose we have a
where is ( ) ( ) . Although this KB
does not entail any instance of the query, by reasoning by
cases with ( ), we can see that it entails the existential.
Clearly we would not be able to perform the deduction in
this case by finding an appropriate substitution, and so our
evaluation-based reasoning method fails on this formula.

It is not, however, a counterexample to the first-order ver-
sion of the above theorem because there is a formula equiv-
alent to it that is in . It is easiest to start with the dual,

( ) ( ) Observe that this formula is logi-
cally equivalent to

( ( ) ( )) ( ( ) ( ))

which, with some effort, can be shown to be in . So the
negation of this formula is an existential that is equivalent
to the query and is in .

Although I cannot prove that every first-order formula has
an equivalent normal form variant, it is useful to consider
some special cases guaranteed to be in normal form. For
example, we have

It is not hard to see that . To see that
is logically separable, suppose that for some consistent

set of literals , has no standard model. Then by
Theorem 5, has no standard model. Thus, there
is whose complement is . This implies that

( ) is inconsistent, for the appropriate .

Another special case is as follows:

Two literals are iff either they
have the same polarity, or they use different predicates, or
they use different constants at some argument position.

(sketch) Put into a prenex CNF form. It suf-
fices to show that if we have clauses . . . , all of
whose literals are conflict-free, then the set of instances of

. . . is logically separable.
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As a further special case of this theorem, if we have a query
where every predicate letter appears only positively or only
negatively, we are guaranteed to be in normal form, and so
to get logically correct answers.

In this paper, we have proposed a new way of doing de-
ductive reasoning. Rather, we have proved some properties
of an existing and well known method (in the propositional
case, at least) for efficiently dealing with incomplete knowl-
edge: to determine whether or not a formula is known, we
evaluate it, reducing the question to what is known about
(instances of) its atomic components. Of course, other more
general methods do exist for handling incomplete knowl-
edge efficiently, and our results say nothing about the sort
of incomplete knowledge that arises from disjunctions or
existentials in a KB. For these, one needs to use a more
complex deductive procedure to guarantee efficiency, such
as the one described in [9, 16]. I suspect that similar com-
pleteness theorems could be proved about that system as
well.

The results here can be thought of as one possible approach
to the expressiveness / tractability tradeoff [12], especially
for large KBs: we allow a very limited (but arguably, quite
useful) form of incompleteness in the KB, but to preserve
tractability, we insist that the query be in a certain normal
form.

In my opinion, it is useful to think of the results here
as suggesting some sort of two-phased approach to reason-
ing with incomplete knowledge: first, perform query opti-
mization by putting the query into , and second, perform
evaluation-based reasoning. The first phase is too difficult
to do in an online automated way. A good analogy is with
programs that terminate properly. We would not expect a
system that programs to first filter out those pro-
grams that run forever. Rather, we make it responsi-
bility to write programs that terminate properly, and where
necessary prove (by hand, usually) that they terminate be-
fore even submitting them for execution.

As to future work, I believe that it would not be overly dif-
ficult to generalize our KB to include predicates that are

in terms of more basic ones (in a stratified way),
preserving both correctness and efficiency. Incorporating
Skolem constants (null values) in the KB is another possi-
ble extension. It would also be useful to characterize other
easy-to-check special cases of normal form queries. But
the more pressing open question, perhaps, is the expressive
range of these queries: does every closed formula have an
equivalent normal form? Should the normal form defined
here be shown to be less than fully general, the obvious next
step would be to look for a more expressive one that remains
tractable.
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