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Abstract

The Collatz problem is reformulated in three ways as a non-arithmetic
problem in first-order logic.

1 Introduction

Among the many unsolved problems in mathematics, the Collatz conjecture holds a
position of honour. It is a puzzle that looks quite simple, even trivial, on the surface,
and yet somehow manages to lie beyond the reach of all the mathematicians who
have tried to solve it. (See [4, 5] for surveys of work on it.) It can be stated in terms
of the following program:

while n > 1 do

if n is even

then n := n/2

else n := 3*n + 1

end if

end while

The question is this: will this program terminate regardless of the initial value of
the integer variable n? The conjecture is that it will, and this has been confirmed
so far for all values of n up to 17 × 258 > 4 × 1018. But despite the best efforts of
many mathematicians, there is still no proof that it will always do so. Paul Erdös
famously quipped: “Mathematics is not yet ready for such puzzles.” What makes
the puzzle so baffling is how little mathematics appears to be involved: just the
most basic integer arithmetic, not even prime numbers or exponentiation!
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In this technical note, we try to put the arithmetic aside and present three purely
logical reformulations of the puzzle. This may not contribute much towards actu-
ally solving the puzzle, but the goal here is somewhat more esthetic: the logical
accounts allow us to get close and to admire it from a slightly different angle.

To simplify matters in what follows, we first observe that if n is odd (n = 2i+1),
then 3n+1 must be even (6i+4), and so the next pass through the loop in the above
program will always divide it by 2 (resulting in 3i + 2). So we can skip a pass
through the loop and rewrite the program as follows:

while n > 1 do

if n is odd then n := 3*n + 1

n := n/2

end while

We can of course make the Collatz conjecture precise in a way that does not depend
on programs:

Definition 1 Define the function C ∈ [N→ N] by

C(n) =

{
i if n = 2i
3i + 2 if n = 2i + 1

Conjecture (Collatz) For every n > 0, there is a k ≥ 0, such that Ck(n) = 1.

For example, for n = 5, the k is 4, since C(5) = 8, C(8) = 4, C(4) = 2, C(2) = 1.

2 Theme

Obviously, it is possible to formulate the Collatz conjecture in a logical language
when that language already includes arithmetic. Let us call a logical interpretation
of a language L arithmetic if the domain is N, and the following symbols (assum-
ing they are in L) get their usual interpretations: the constant symbols 0 and 1,
the binary function symbols + and ×, and the binary predicate symbol =. Then
we say that a sentence of L is arithmetically valid if it is true in all arithmetic
interpretations. Now consider the following theory:

Definition 2 Let CA0 be the conjunction of the following first-order sentences:

1. R(1)

2. ∀x. R(x) ⊃ R(x + x)

3. ∀x. R(x + x + x + 1 + 1) ⊃ R(x + x + 1)
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(The + function is written here in infix form and parentheses have been suppressed
in the usual way.) It is not hard to see that the Collatz conjecture is true iff the
sentence (CA0 ⊃ ∀x.R(x + 1)) is arithmetically valid.

This is perhaps not too surprising since this form of logic includes arithmetic.
For example, if the language has just the arithmetic symbols 0, 1, +, × and =, a
sentence is arithmetically valid iff it is true in the standard interpretation. So we
are in the domain of Peano arithmetic and the set of arithmetically valid sentences
is not even recursively enumerable! (See [3], for example.)

If we drop the × symbol (and note that it was not needed in CA0 above), then
we are in the domain of Presburger arithmetic, where the set of arithmetically valid
sentences is recursive [3]. However, if we include even a single unary predicate
(as we did with the R predicate above), the resulting arithmetically valid sentences
need not be recursive in general. (See [1] for results on weak arithmetics.)

What this shows is that there is a strong (and well known) connection between
arithmetic and certain forms of logic. This is seen most clearly in the case of
second-order logic where arithmetic can be defined in the language. For example,
starting with just the constant symbol 0 and a unary function symbol s, we can
restrict the domain to be isomorphic to the natural numbers by considering logical
entailments of the following sentence (the so-called “induction axiom”):

∀N. [N(0) ∧ ∀x. N(x) ⊃ N(s(x))] ⊃ ∀x. N(x).

We can define addition by letting α + β = γ stand for the following formula:

∀P. [∀x P(0, x, x) ∧ ∀x, y, z. P(x, y, z) ⊃ P(s(x), y, s(z))] ⊃ P(α, β, γ)

Multiplication can defined similarly (using addition). It follows that we are able
to write a sentence of second-order logic that is logically valid iff the Collatz con-
jecture is true. So we do not really need the notion of arithmetic validity; ordinary
validity in second-order logic will do the job. (It follows, of course, that the logi-
cally valid sentences of second-order logic are also not recursively enumerable.)

But returning to the Collatz conjecture, the question is not whether it can be
stated in a language that can already express all of arithmetic; the question is how
to reformulate it in less expressive formalisms, which we now turn to.

3 First Variation

In this first variation, we consider the following logical language:

Definition 3 ByL1 we mean the logical language with one constant symbol o, one
unary function symbol s, one unary predicate symbol R, and one ternary predicate
symbol T .
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What we will be concerned with are the logically valid sentences of L1 and, in
particular, the logical consequences in L1 of the following:

Definition 4 Let CA1 be the conjunction of the following four first-order sentences
of L1 (where variables x, y, z are universally quantified from the outside):

1. T (o, o, o)

2. T (x, y, z) ⊃ T (s(x), s(s(y)), s(s(s(z))))

3. R(s(o))

4. T (x, y, z) ⊃ . (R(x) ⊃ R(y)) ∧ (R(s(s(z))) ⊃ R(s(y)))

We can see what is intended by CA1 by looking at the following arithmetic inter-
pretation of L1:

Definition 5 Let G1 be the interpretation of L1 defined as follows:

• the domain of G1 is N;

• oG1 = 0;

• sG1 = {(n, n + 1) | n ≥ 0};

• TG1 = {(n, 2n, 3n) | n ≥ 0};

• RG1 = {n | n > 0 and for some k ≥ 0, Ck(n) = 1}.

Clearly G1 |= CA1 and the Collatz conjecture is true iff G1 |= ∀x. R(s(x)). But
unlike before, we are now interested in ordinary logical validity inL1, which means
allowing for interpretations of L1 that are less standard, like this one:

Definition 6 Let B be the interpretation of L1 defined as follows:

• the domain of B is N × N;

• oB = (0, 0);

• sB = {((n,m), (n,m + 1)) | n,m ≥ 0}

• TB = {((n,m), (2m, 2m), (3n, 3m)) | n,m ≥ 0}

• RB = {(2n, 2n) | n ≥ 0} ∪ {(0, n) | n > 0}.

In this case, the domain elements are pairs (n,m). We can think of the (0,m) pairs
as corresponding to ordinary numbers, and satisfying the intended properties with
respect to s, and T, as in G1. But pairs (1,m) are like non-standard integers: they
have successors and can be doubled and tripled, but are missing certain properties.
For example, pairs of the form (1,m) are not “even” in that there is no u and v
such that (u, (1,m), v) ∈ TB, and not “odd” in that there is no u and v such that
(u, (1,m + 1), v) ∈ TB. However, we do have the following:
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Lemma 1 B |= CA1.

Proof: The first three sentences of CA1 are obviously satisfied by B.
For CA(4)

1 , note that if x ∈ RB, then x = (0, n) or x = (2k, 2k). So if (x, y, z) ∈ TB,
then y = (0, 2n) or y = (2k+1, 2k+1), and z = (0, 3n) or z = (3 · 2k, 3 · 2k+1). Either
way, y ∈ RB. Furthermore, if σ(σ(z)) ∈ RB, where σ = sB, then z = (0, 3n) since
(3 · 2k, 3 · 2k+ 2) < RB. But in this case y = (0, 2n), and so (0, 2n + 1) ∈ RB.

As a consequence, we have the following:

Theorem 1 The sentence (CA1 ⊃ ∀x. R(s(x)) ⊃ R(s(s(x)))) is not logically valid.

Proof: By Lemma 1, B |= CA1. Now consider x = (1, 0). We have (1, 1) ∈ RB

but (1, 2) < RB. So B 6|= ∀x. R(s(x)) ⊃ R(s(s(x))).

Corollary 1 The sentence (CA1 ⊃ ∀x. R(s(x))) is not logically valid.

So the existence of “non-standard” models like B shows that CA1 is not strong
enough to force R(s(x)) to be true for every x. In fact, it is not even strong enough
to force an inductive version of this: just because R(s(x)) holds, it need not be the
case that its immediate successor R(s(s(x))) holds.

It might then be argued that CA1 is just too weak, that it fails to capture the
Collatz puzzle. But it does capture it, as the following theorem shows.

Definition 7 For every n ≥ 0, let n stand for the ground term of L1 consisting of n
applications of s to o, that is, the term s(s(s(· · · o · · ·))), with s repeated n times.

Lemma 2 Let M be an interpretation such that M |= CA1. Then for any n ≥ 0,
M |= T (n, 2n, 3n).

Proof: By induction on n.
Base case: If n = 0, then n = 2n = 3n = o. So by CA(1)

1 , M |= T (n, 2n, 3n).
Induction step: Suppose that n ≥ 0 and that M |= T (n, 2n, 3n). Then, by CA(2)

1 ,
M |= T (s(n), s(s(2n)), s(s(s(3n)))). Therefore, M |= T (n + 1, 2n + 2, 3n + 3).

Lemma 3 Let M be an interpretation such that M |= CA1. Then for every k ≥ 0
and n > 0, if Ck(n) = 1 then M |= R(n).

Proof: By induction on k.
Base case: If k = 0 and Ck(n) = 1 then n = 1 and M |= R(n) by CA(3)

1 .
Induction step: Suppose k ≥ 0 and for every n > 0, if Ck(n) = 1 then M |= R(n).

Now suppose n > 0 and Ck+1(n) = 1. This means there is a u > 0 such that C(n) = u
and Ck(u) = 1. By the induction hypothesis, M |= R(u). There are two cases for n:
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• n is even, and n = 2u. Then M |= T (u, 2u, 3u) by Lemma 2. Since M |= R(u),
it follows that M |= R(2u) by CA(4)

1 .

• n is odd, say n = 2v + 1, where u = 3v + 2. Then M |= T (v, 2v, 3v) by
Lemma 2 Since, u = 3v + 2, M |= R(s(s(3v))). So M |= R(s(2v)) by CA(4)

1 .

This completes the proof.

Now we can state the main result of this section, showing that ordinary logical
validity is sufficient to capture the Collatz conjecture:

Theorem 2 Collatz is true iff for every n > 0, the formula (CA1 ⊃ R(n)) is a
valid sentence of first-order logic.

Proof: In the if direction, suppose that n > 0. Since Collatz is true, there is a
k such that Ck(n) = 1. Now let M be any interpretation. If M |= CA1, then
M |= R(n) by Lemma 3. Since this holds for any M, (CA1 ⊃ R(n)) is valid.

In the only-if direction, assume that (CA1 ⊃ R(n)) is valid for every n > 0.
Then since G1 |= CA1, it follows that G1 |= R(n) for every n > 0. Hence n ∈ RG1

for every n > 0, and so by virtue of how RG1 is defined, Collatz is true.

This theorem (and the fact that CA1 consists of Horn clauses) shows that the Collatz
conjecture reduces to whether or not the following non-arithmetic Prolog program
terminates for all queries of the form r(n):

t(o,o,o).

t(s(X),s(s(Y)),s(s(s(Z)))) :- t(X,Y,Z).

r(s(o)).

r(Y) :- t(X,Y,_), r(X).

r(s(Y)) :- t(_,Y,Z), r(s(s(Z))).

4 Second Variation

Although the theory CA1 did not have arithmetic built-in, it did include axioms
for the predicate T characterizing the doubling and tripling of numbers. At best,
this is a weak form of arithmetic. (It is not at all clear that even addition can be
defined in terms of T. I believe that it cannot, but I do not have a proof.) But it is
still arithmetic. In this section, we consider a variation of the puzzle even further
removed from numbers.

Definition 8 By L2 we mean the logical language with four constant symbols, o,
a, b, and c, one binary function symbol s, and one binary predicate symbol U.
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As will become clear below, the intended interpretation of this language is in terms
of strings over the alphabet Σ = {A, B, C}. But before getting to this, it is useful
consider the following binary relations over these strings:

Definition 9 Let PR = {(A, BC), (B, A), (C, AAA)}.

Definition 10 Let → = {(uvα, αβ) | u, v ∈ Σ, α, β ∈ Σ∗, (u, β) ∈ PR}.

Definition 11 For any k ≥ 0, let k
→ ⊆ [Σ∗ × Σ∗] be defined inductively by:

•
0
→ = {(α, α) | α ∈ Σ∗};

•
k+1
→ = {(α, β) | for some γ, (α, γ) ∈ → and (γ, β) ∈ k

→}.

These three definitions provide a compact formulation of what is called a 2-tag sys-
tem (invented by Emil Post [6] as a formal model of computation), here restricted
to the following production rules (via the set PR):

A => BC

B => A

C => AAA

This particular 2-tag system was studied by Liesbeth De Mol [2]. She showed that
A2i k
→ Ai for k = 2i, and that A2i+1 k

→ A3i+2 for k = 2i + 2. This then follows:

Theorem 3 (de Mol) Collatz is true iff for every n > 0, An k
→ A for some k ≥ 0.

This means that the Collatz conjecture can be formulated in terms of the termina-
tion of the following program (written here using Python string notation):

x = ’A’*n

while len(x) > 1 do

if x[0]==’A’ then x += ’BC’

if x[0]==’B’ then x += ’A’

if x[0]==’C’ then x += ’AAA’

x = x[2:]

end while

We now turn to a logical statement of these ideas. Note that a straightforward
encoding of the above would require axioms characterizing the operation of ap-
pending a string onto the end of another arbitrarily large string:

A(o, x, x)
A(x, y, z) ⊃ A(s(u, x), y, s(u, z))
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(where o here means the empty list). This is of course just a disguised version of
the axioms for addition:

P(o, x, x)
P(x, y, z) ⊃ P(s(x), y, s(z))

(where o now means 0). This is to be expected since strings of the form An represent
numbers in unary notation where appending represents addition. However, in what
follows, we characterize the string operations without a separate append/addition
predicate (inspired by difference lists in Prolog [7]).

Definition 12 For any α ∈ Σ∗ and term t, let α·t stand for the term ofL2 consisting
of applications of s according to the characters in α and ending with t.

So, for example, ACCB·x is an abbreviation for s(a, s(c, s(c, s(b, x)))).

Definition 13 Let CA2 be the conjunction of the following two first-order sentences
of L2 (where variables x, y are universally quantified from the outside):

1. U(A·o, o)

2. U(x, y) ⊃
U(AA·x, BC·y) ∧ U(AB·x, BC·y) ∧ U(AC·x, BC·y) ∧
U(BA·x, A·y) ∧ U(BB·x, A·y) ∧ U(BC·x, A·y) ∧
U(CA·x, AAA·y) ∧ U(CB·x, AAA·y) ∧ U(CC·x, AAA·y)

Lemma 4 Let M be an interpretation such that M |= CA2. Then for every k ≥ 0
and α ∈ Σ∗, if α k

→ A, then M |= ∃zU(α·z, z).

Proof: The proof is by induction on k.
Base case: If α 0

→ A, then α = A and the result holds by virtue of CA(1)
2 .

Induction step: Assume that for any α, if α k
→ A then M |= ∃z. U(α·z, z). Now

suppose αk+1
→ A. Therefore, there is a λ ∈ Σ∗ such that α→ λ and λ k

→ A. So by the
induction hypothesis, M |= ∃z. U(λ·z, z). Since α→ λ, there is u, v ∈ Σ and β ∈ Σ∗

such that α = uvα′ and λ = α′β, where (u, β) ∈ PR.
Given PR, there are three cases for u. If u = A, then α = Avα′ and β = BC, and

thus M |= ∃z. U(α′BC ·z, z). Then by CA(2)
2 (where we let x be α′vB ·z and y be z),

M |= ∃z. U(Avα′BC·z, BC·z). Therefore (letting z′ be BC·z), M |= ∃z′. U(α·z′, z′).
The other two cases of PR are similar.

We now turn to our intended interpretation of the symbols in L2. We will use
the following binary relation on strings:

Definition 14 Let Z = {(u1v1 . . . unvnA, β1 . . . βn) | n ≥ 0, ui, vi ∈ Σ, (ui, βi) ∈ PR}.
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Note that if (uvα, βγ) ∈ Z where (u, β) ∈ PR, then (α, γ) ∈ Z. We also have the
following:

Lemma 5 If (αγ, γ) ∈ Z where |α| > 1, then for some k > 0, α k
→ A.

Proof: The proof is by induction on |αγ|.
Base case: When |αγ| = 0, the lemma trivially holds since |α| ≯ 1.
Induction: Assume that |αγ| = m and that the lemma holds for any α′, γ′ such

that |α′γ′| < m. Now assume that (αγ, γ) ∈ Z where |α| > 1, so that α = uvα′ for
some u, v ∈ Σ. Therefore, γ = βγ′ where (u, β) ∈ PR. There are three cases for u:

• u = A. In this case, β = BC. So (Avα′BCγ′, BCγ′) ∈ Z, and therefore
(α′BCγ′, γ′) ∈ Z. Then |α′BC| > 1 and |α′BCγ′| < m. So by induction,
there is a k such that α′BC k

→ A. Since, α→α′BC, it follows that αk+1
→ A.

• u = B. In this case, β = A. There are two sub cases. If α′ = ε, then since
Bv→ A, α 1

→ A. Otherwise, we have that (Bvα′Aγ′, Aγ′) ∈ Z, and therefore
(α′Aγ′, γ′) ∈ Z. Since α′ , ε, |α′A| > 1 and |α′Aγ′| < m. So by induction,
there is a k such that α′A k

→ A. Since, α→α′A, it follows that αk+1
→ A.

• u = C. In this case, β = AAA, and the rest is like the case u = A.

This completes the proof

Corollary 2 For any n > 0, if (Anγ, γ) ∈ Z, then for some k ≥ 0, An k
→ A.

Proof: For n = 1, we have that A 0
→ A. For n > 1, Lemma 5 applies.

Here is the intended interpretation of the symbols in L2:

Definition 15 Let G2 be the interpretation of L2 defined as follows:

• the domain of G2 is Σ∗, where Σ = {A, B, C}

• oG2 = the empty string;

• aG2 = the string A;

• bG2 = the string B;

• cG2 = the string C;

• sG2 = {(u, α, uα) | u ∈ Σ, α ∈ Σ∗} ∪ {(u, α, α) | u < Σ, α ∈ Σ∗}

• UG2 = Z.

This interpretation clearly satisfies CA2 and leads to the main result of this section:
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Theorem 4 Collatz is true iff for every n > 0, the formula (CA2 ⊃ ∃x.U(An·x, x))
is a valid sentence of first-order logic.

Proof: In the if direction, suppose Collatz is true and that n > 0. By Theorem 3,
there is a k such that An k

→ A. Now let M be any interpretation. If M |= CA2, then
M |= ∃x. U(An ·x, x) by Lemma 4. Thus (CA2 ⊃ ∃x. U(An ·x, x)) is valid.

In the only-if direction, assume that (CA2 ⊃ ∃x. U(An ·x, x)) is valid for every
n > 0. Then since G2 |= CA2 it follows that G2 |= ∃x.U(An·x, x) for every n > 0. So
for every n > 0, there is a γ ∈ Σ∗, such that (Anγ, γ) ∈ UG2 . Then, by Corollary 2,
there is a k ≥ 0 such that An k

→ A. Therefore by Theorem 3, Collatz is true.

It then follows that the Collatz conjecture reduces to whether or not the following
Prolog program terminates for all queries of the form u([a,. . .,a|X],X):

u([a],[]).

u([a,_|R],[b,c|T]) :- u(R,T).

u([b,_|R],[a|T]) :- u(R,T).

u([c,_|R],[a,a,a|T]) :- u(R,T).

5 Third Variation

In this third and final variation, we return to the first variation in terms of zero and
successor, but using the insights of the second variation to avoid separate axioms
for the doubling and tripling of numbers.

Definition 16 By L3 we mean the logical language with one constant symbol o,
one unary function symbol s, and one ternary predicate symbol Q.

Definition 17 Let CA3 be the conjunction of the following four first-order sen-
tences of L3 (where x, y, z are universally quantified from the outside):

1. Q(s(o), o, o)

2. Q(x, o, o) ⊃ Q(o, x, z)

3. Q(s(s(x)), o, o) ⊃ Q(s(o), y, x)

4. Q(x, s(y), s(s(s(z)))) ⊃ Q(s(s(x)), y, z)

Again we will use n to stand for the ground term of L3 consisting of n applications
of s to o. We have the following:

Lemma 6 Let M be an interpretation such that M |= CA3. Then for n,m ≥ 0,
M |= Q(m, n, 3n) ⊃ Q(2n + m, o, o)
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Proof: Apply axiom CA(4)
3 n times.

Lemma 7 Let M be an interpretation such that M |= CA3. Then for any n ≥ 0,
M |= Q(n, o, o) ⊃ Q(2n, o, o)

Proof: Suppose M |= CA3 and M |= Q(n, o, o). Then by CA(2)
3 , M |= Q(o, n, 3n).

Then by Lemma 6, M |= Q(2n, o, o).

Lemma 8 Let M be an interpretation such that M |= CA3. Then for any n ≥ 0,
M |= Q(3n + 2, o, o) ⊃ Q(2n + 1, o, o)

Proof: Suppose M |= CA3 and M |= Q(3n + 2, o, o). By CA(3)
3 , M |= Q(1, n, 3n).

Then by Lemma 6, M |= Q(2n + 1, o, o).

Lemma 9 Let M be an interpretation such that M |= CA3. Then for every k ≥ 0
and n > 0, if Ck(n) = 1 then M |= Q(n, o, o).

Proof: By induction on k.
Base case: If k = 0 and Ck(n) = 1 then n = 1 and M |= Q(n, o, o) by CA(1)

3 .
Induction step: Suppose k ≥ 0 and if Ck(n) = 1 then M |= Q(n, o, o). Now

suppose n > 0 and Ck+1(n) = 1. This means there is a u > 0 such that C(n) = u
and Ck(u) = 1. By the induction hypothesis, M |= Q(u, o, o). There are two cases
for n: if n is even, where n = 2u, then M |= Q(n, o, o) by Lemma 7; if n is odd, say
n = 2v + 1, where u = 3v + 2, then M |= Q(n, o, o) by Lemma 8.

We now turn to the intended interpretation of L3. We need the following sets:

Definition 18 Let C = {n | for some k ≥ 0, Ck(n) = 1}. and Q = Q1 ∪ Q2 ∪ Q3
where
Q1 = {(n, 0, 0) | n ∈ C},
Q2 = {(2i, n − i, k) | k ≥ 0, n ∈ C, i ≤ n},
Q3 = {(2i + 1, k, n − 3i) | k ≥ 0, n + 2 ∈ C, 3i ≤ n}.

Lemma 10 For any n > 0, if (n, 0, 0) ∈ Q then n ∈ C.

Proof: Recall that by definition of C, if i ∈ C then 2i ∈ C, and if 3i + 2 ∈ C then
2i + 1 ∈ C. Now assume (x, 0, 0) ∈ Q. There are three cases: If (x, 0, 0) ∈ Q1, then
x ∈ C. If (x, 0, 0) ∈ Q2, then x = 2i where i = n and n ∈ C, and so i ∈ C, in which
case x = 2i ∈ C also. Finally, if (x, 0, 0) ∈ Q3, then x = 2i + 1 where 3i = n and
n + 2 ∈ C, and so 3i + 2 ∈ C, in which case x = 2i + 1 ∈ C also.
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Definition 19 Let G3 be the interpretation of L3 defined as follows:

• the domain of G3 is N;

• oG3 = 0;

• sG3 = {(n, n + 1) | n ≥ 0};

• QG3 = Q.

Lemma 11 G3 |= CA3.

Proof: For CA(1)
3 , because 1 ∈ C, (1, 0, 0) ∈ Q1.

For CA(2)
3 , suppose that (x, 0, 0) ∈ Q. Then by Lemma 10, x ∈ C. Then letting

i = 0, (0, x, k) ∈ Q2 for every k.
For CA(3)

3 , suppose that (x + 2, 0, 0) ∈ Q. Then by Lemma 10, (x + 2) ∈ C.
Then letting i = 0, (1, k, x) ∈ Q3 for every k.

Finally, for CA(4)
3 , suppose that (x, y + 1, z + 3) ∈ Q. There are two cases for x:

• if x is even, then (2i, n− i, k) ∈ Q2, where x = 2i, y + 1 = n− i, z + 3 = k and
n ∈ C. So i + 1 ≤ n and k ≥ 3. Letting i′ = i + 1 and k′ = k − 3, we have that
(2i′, n − i′, k′) ∈ Q2, that is, (x + 2, y, z) ∈ Q2.

• if x is odd, then (2i+1, k, n−3i) ∈ Q3, where x = 2i+1, y+1 = k, z+3 = n−3i
and n + 2 ∈ C. So 3i + 3 ≤ n and k ≥ 1. Letting i′ = i + 1 and k′ = k − 1, we
have that (2i′ + 1, k′, n − 3i′) ∈ Q3, that is, (x + 2, y, z) ∈ Q3.

So either way, (x + 2, y, z) ∈ Q.

Here then is the main result of this section:

Theorem 5 Collatz is true iff for every n > 0, the formula (CA3 ⊃ Q(n, o, o)) is
a valid sentence of first-order logic.

Proof: In the if direction, suppose that n > 0. Since Collatz is true, there is a k
such that Ck(n) = 1. Now suppose M |= CA3. Then M |= Q(n, o, o) by Lemma 9.
Since this holds for any interpretation, (CA3 ⊃ Q(n, o, o)) is valid.

In the only-if direction, assume that (CA3 ⊃ Q(n, o, o)) is valid for every n > 0.
Then by Lemma 11, G3 |= CA3 and so G3 |= Q(n, o, o) for every n > 0. Hence
(n, 0, 0) ∈ Q for every n > 0. So by Lemma 10, n ∈ C for every n > 0, and hence
Collatz is true.

As a consequence of this theorem, the Collatz conjecture reduces to the claim that
the following program terminates for any initial value of the variable n:
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while n > 1 do

i := j := 0

while n > 1 do

n := n - 2

i := i + 1

j := j + 3

end while

n := if n < 1 then i else j + 2

end while

Here, we see the Collatz conjecture at its purest. Multiplication and division are
certainly not needed, but neither is full addition! The conjecture can be stated quite
concisely in terms of adding or subtracting the constants 1, 2, and 3.

6 Coda

In each of the three variations above, we ended up with theorems of this form:

The following formula φ[x] with free variable x has the property that
the Collatz conjecture is true iff for every n > 0, the sentence φ[n] is
logically valid in first-order logic.

It would have been nicer, of course, if we had been able to reduce the conjecture
not to an infinite set of validity questions but to the validity of a single sentence.

We can, of course, do this in second-order logic. It is perhaps worth noting in
conclusion that the full power of second-order logic is not needed to do this. For
example, a small extension to first-order logic will do the trick:

Definition 20 Single-value transitive-closure logic is exactly like first-order logic
except that for any unary function symbol f , we allow f ∗ to be used as a binary
predicate. Formulas are interpreted as usual, except that the predicate f ∗ is always
interpreted as the reflexive transitive closure of the function f .

Now returning to the language L1, for example, we have the following:

Theorem 6 Collatz is true iff (CA1 ⊃ ∀x. s∗(o, x) ⊃ R(s(x))) is a valid sentence
of first-order single-value transitive-closure logic.

Proof: In the if direction, assume that Collatz is true. Let M be any interpretation
with domain E such that M |= CA1. Let σ = sM and e0 = oM. Now suppose that
e is any element of E such that M, µx

e |= s∗(o, x). Then (e0, e) is in the reflexive
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transitive closure of σ, so there is an n ≥ 0 such that e = σn(e0). Since Collatz is
true, there is a k ≥ 0 such that Ck(n + 1) = 1. By Lemma 3, M |= R(s(n)) and so
M, µx

e |= R(s(x)). Thus, for any e ∈ E, if M, µx
e |= s∗(o, x), then M, µx

e |= R(s(x)).
So M |= ∀x.s∗(o, x) ⊃ R(s(x)). Since this holds for any M such that M |= CA1, it
follows that (CA1 ⊃ ∀x. s∗(o, x) ⊃ R(s(x))) is valid.

In the only-if direction, assume that (CA1 ⊃ ∀x. s∗(o, x) ⊃ R(s(x))) is valid.
Since G1 |= CA1, it follows that G1 |= ∀x. s∗(o, x) ⊃ R(s(x)). Since for every n ≥ 0,
G1 |= s∗(o, n), it follows that for every n ≥ 0, G1 |= R(s(n)). Hence n ∈ RG for
every n > 0, and so by definition of RG, Collatz is true.

Comparing this to Corollary 1, we see that the real difficulty in reducing Collatz
to a single sentence of pure first-order logic is not the arithmetic at all; it is the
problem of restricting quantification to just the successors of zero.

7 Conclusion

In the world of mathematics, nothing is more basic than arithmetic over the nat-
ural numbers. To teach mathematics to children, we start with 1 + 1 = 2 and go
from there. But while arithmetic is the starting point in pedagogical terms, it is
not the starting point in logical terms. More basic than a logic with arithmetic is
one without. In this paper, we looked at the Collatz conjecture with this in mind,
showing three ways that it could be reformulated in logic without assuming all the
machinery of arithmetic.

Reducing Collatz to logic in this way raised some questions that we have not
answered. Perhaps the most fundamental is the one touched on in the coda, namely,
whether or not we can write a single sentence ψ of first-order logic such that the
Collatz conjecture is true iff ψ is logically valid. Of course such a sentence ψ must
exist: if the conjecture is true, any tautology will do; if it is false, the negation of
any tautology will do. More interesting is whether we can exhibit such a ψ without
having to solve the puzzle.
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