
Digging for Diamonds in the Mines of Collatz

Hector J. Levesque
Dept. of Computer Science

University of Toronto

November 17, 2022

The Collatz Conjecture, sometimes called the 3x + 1 problem [2], is one that appeals imme-
diately to math hobbyists. Unlike other famous conjectures such as Goldbach or P vs NP, Collatz
does not mention prime numbers, Turing machines, or any other rich topics. It thus lends itself
to explorations using basic mathematics (essentially high-school algebra), as will be done here.
While there is evidence that the conjecture will only be cracked by new techniques not yet in the
professional mathematician’s toolkit (see the 2011 blog by Fields Medal winner Terence Tao), we
amateurs can still discover tantalizing things about it using more elementary means.

We begin with the presentation of the problem used by Terras [3]. Define the function T from
N+ to N+ as follows:

T (n) =

{
n/2, if n is even
(3n + 1)/2, if n is odd

We say that n evolves to m in k steps iff T k(n) = m. A step is called even or odd according to
whether the argument to T at that point is even or odd. The Collatz Conjecture is that every integer
n > 1 evolves to 1. Terras uses the function χ(n), the stopping time of n, defined as the smallest
k ∈ N+ such that T k(n) < n. (If no such integer exists, set χ(n) = ∞.) It is not hard to see that
the Collatz Conjecture is true iff χ(n) is finite for all n > 1. The conjecture has been verified by
computer to hold for all 1 < n < 268 [1]. In this paper, we develop a variant way of confirming
the conjecture up to some large bound N in terms of what we call diamonds.

The fundamental property used throughout is that once we know about the evolution of an
integer, we immediately know the evolution of infinitely many larger ones:

Theorem 1: Suppose r evolves to s after k steps of which m are odd. Then for every b ∈ N, the
integer a = 2kb + r evolves to c = 3mb + s with the same sequence of steps.

Proof: By induction on k. If k = 0 then r = s and the claim clearly holds. Otherwise, suppose
k > 0, in which case 2kb is even. There are two cases:

• If r is even, then it evolves in one step to r ′
= r/2 which evolves to s after (k − 1) steps

of which m are odd. Then a = 2kb + r is also even and evolves in one step to 2k−1b + r ′

which, by induction, evolves to c with the same steps as from r ′ to s. So a evolves to c with
the same steps as from r to s.
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• If r is odd, then it evolves in one step to r ′
= (3r + 1)/2 which evolves to s after (k − 1)

steps of which (m − 1) are odd. Then a = 2kb + r is also odd and evolves in one step to
[3(2kb + r)+1]/2 = 2k−13b + r ′ which, by induction, then evolves to 3m−13b + s = c with
the same steps as from r ′ to s. So a evolves to c with the same steps as from r to s.

Lemma 2: Suppose r evolves to s after k steps of which m are odd. Then s/r ≥ 3m/2k .

Proof: By induction on k. If k = 0, then r = s and the claim clearly holds. Otherwise, suppose
there is a least one step, from r to some r ′ which then evolves to s. There are two cases:

• If r is even, then r ′
= r/2 and r ′ evolves to s after (k − 1) steps of which m are odd. By

induction, s/r ′
≥ 3m/2k−1. But then we have that

s
r

=
s

2r ′
≥

3m

2 · 2k−1 =
3m

2k .

• If r is odd, then r ′
= (3r + 1)/2 and r ′ evolves to s after (k − 1) steps of which (m − 1) are

odd. By induction, s/r ′
≥ 3m−1/2k−1. But then we have that

s
r

=
3s
3r

>
3s

3r + 1
=

3s
2r ′

≥
3 · 3m−1

2 · 2k−1 =
3m

2k .

Corollary 3: Suppose r, s, a, c are as in the theorem. If r > s then a > c.

Proof: If r > s then 1 > s/r and so 1 > 3m/2k by Lemma 2. It then follows that 2k > 3m and
therefore that 2kb + r > 3mb + s.

The converse to this corollary might appear to hold as well, but there are some (rare) counter-
examples. Here is the smallest one: the integer r = 7 evolves to s = 8 in k = 8 steps with m = 5
odd steps. Consequently, a = 256 + 7 evolves to c = 243 + 8 with the same sequence of steps.
As can be seen in this case, a > c but r < s.

Let now us a define an odd integer p > 1 to be χ -prime iff p does not evolve to an odd integer
n with 1 < n < p. So for example, 3 and 5 are χ -prime, but 7 is not, since 7 evolves to 5.
Intuitively, an integer is χ -prime if it evolves through a sequence of larger integers until it hits a
power of 2 (or continues forever). The reason we care about χ -primes is that they seem to be rare.
It is easy to check with a computer that there are only 34 of them less than 240. Moreover they are
“sufficient” in the following sense:

Lemma 4: Let N be any positive integer. Suppose that every χ -prime p < N has finite stopping
time. Then every integer a where 1 < a < N has finite stopping time.

Proof: We prove this by induction on a. For a = 2, χ(a) = 1. Now suppose that 2 < a < N . If
a is even, then 1 < a/2 < a. By induction, a/2 has finite stopping time and so a does too. If a is
χ -prime, then a is given to have finite stopping time. If a is odd but not χ -prime, then a evolves
to some odd b such that 1 < b < a. By induction, b has finite stopping time, so a does too.
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So to confirm that the Collatz conjecture holds up to some bound N , it is sufficient to confirm that
the χ -primes up to N have finite stopping time. (Note that although χ -primes are rare, with a bit
of algebra, it can be shown that there are infinitely many of them. See the Appendix.)

We can go further to a special sort of χ -prime. Let us call a positive integer q basic iff there
is no χ -prime p > 3 where for some positive integers u and v, q = 2uv + p where p < 2u. So
all even numbers are basic (since 2uv is even and p is odd). Among the odd numbers, 5 and 7 are
basic, but 13 = 23

+ 5 and 21 = 24
+ 5 are not basic. (Note that 5 and 21 are χ -prime, but 7 and

13 are not.) Finally, let us define a diamond to be any integer that is both χ -prime and basic.
These numbers are appropriately named in that they seem to be very rare. There are only 8

diamonds between 5 and 240:

5, 75, 151, 227, 184111, 276167, 13256071, and 26512143.

It is not even clear that there are infinitely many of them. (Observe that there are none at all
between 225 and 240.) Nonetheless, they have the following property:

Lemma 5: Let N be any positive integer. Suppose that every diamond p where 3 < p < N
satisfies χ(p) < log2(p). Then every χ -prime p where 3 < p < N satisfies χ(p) < log2(p).

Proof: The proof is by by induction on the χ -primes. When p = 5, we have χ(5) = 2. If
5 < p < N , then there are two cases. If p is a diamond, then p is given to satisfy χ(p) < log2(p).
Otherwise, p is not basic, and so there is a χ -prime p′ > 3, and positive integers u and v such that
p = 2uv + p′, where p′ < 2u . Since 3 < p′ < p, p′ satisfies χ(p′) < log2(p′) by induction. Let
k = χ(p′). Then k < log2(p′) < u < log2(p). So p′ evolves to some q ′ < p′ in k steps of which
some m are odd. By Theorem 1, for any positive integer b, 2kb + p′ also evolves to 3mb + q ′ in
the same steps. Now since k < u, let b = 2u−kv, so that p = 2kb + p′ and let q = 3mb + q ′. So
p evolves to q in k steps and q < p by Corollary 3. So χ(p) ≤ k < log2(p).

So from Lemmas 4 and 5, to confirm that the Collatz conjecture holds up to some bound N , it
is sufficient to confirm that every diamond p where 3 < p < N has logarithmic stopping time. In
other words, if someone were able to prove that all diamonds had logarithmic stopping time, this
would completely solve the Collatz problem. Here is the conjecture for the record:

Diamond Conjecture: Every diamond p > 3 satisfies χ(p) < log2(p).

Note that this is different from the Collatz conjecture: it could be false even if Collatz is true.
(And recall that there are integers that are known not to have small stopping times. For example,
χ(27) = 59.) At any rate, it is easy to check that the 8 numbers above do in fact have small
stopping times, and therefore that the Collatz conjecture holds up to 240 at least.

So this is where we conclude our study. In testing the Collatz conjecture up to some large bound
like N = 280 say, we are suggesting a slightly different way to proceed. Instead of looking for
integers with no stopping time, we can instead go digging for diamonds beyond the 8 listed above.
For future work, there are some interesting patterns among the 8 diamonds above to follow up on.
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For one thing, there are close pairs, x and 2x + 1, that occur twice: for x = 75 and x = 13256071.
There are even closer pairs, x and (3x + 1)/2, that also occur twice: for x = 151 and x = 184111.
Do either of these patterns persist? Do they occur infinitely often? Another curious fact is that 5
of the 8 diamonds are actually primes in the traditional sense (all but 75, 276167, and 26512143).
A coincidence? Of course, if someone could show that there were only finitely many diamonds in
total, the Collatz Conjecture might then be confirmed to hold for all n > 1 in a finite way.
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Appendix
In this appendix, we prove that there are infinitely many χ -prime numbers.

Lemma 6: For every n ≥ 2, the number 2n
− 1 evolves to 3n

− 1 in n steps all of which are odd.

Proof: The proof is by induction on n. For n = 2, we have that 3 evolves to 5 to 8. For n > 2,
assume that 2n

− 1 evolves to 3n
− 1 in n steps all of which are odd. By Theorem 1, when b = 1,

2n
+2n

−1 evolves to 3n
+3n

−1 in n steps all of which are odd. So 2n+1
−1 evolves to 2 ·3n

−1 in
n steps all of which are odd. The number 2 ·3n

−1 evolves in one odd step to 3 ·3n
−1 = 3n+1

−1.
So 2n+1

− 1 evolves to 3n+1
− 1 in (n + 1) steps all of which are odd.

Corollary 7: For every n ≥ 2 and for every b ∈ N+, the number 2nb − 1 evolves to 3nb − 1 in n
steps all of which are odd.

Proof: Immediate from Lemma 6, Theorem 1, and the facts that 2nb + 2n
− 1 = 2n(b + 1) − 1,

and 3nb + 3n
− 1 = 3n(b + 1) − 1.

Lemma 8: For every n ∈ N+, 23n−1
≡ −1 mod 3n.

Proof: The proof is by induction on n. For n = 1, 2 ≡ −1 mod 3. Now let v = 3n−1 and
assume that 2v

≡ −1 mod 3n. Therefore, for some d ∈ N, 2v
= 3nd − 1. So for some e ∈ N,

23n
= (2v)3

= (3nd − 1)3
= (3nd)3

− 3(3nd)2
+ 3(3nd) − 1 = 3n+1e − 1.

Consequently, 23n
≡ −1 mod 3n+1.
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Theorem 9: For every n ≥ 2, the set { x ∈ N | x ≡ −1 mod 2n
} contains infinitely many χ -prime

numbers.

Proof: By Corollary 7, for every b ∈ N+, the integer a = 2nb − 1 evolves to c = 3nb − 1 in n
steps all of which are odd, and thus, where the numbers up to and including c are all greater than
a. Let v = 3n−1. By Lemma 8, 2v

≡ −1 mod 3n, and so for every i ∈ N, 2v(2i+1)
≡ −1 mod 3n .

So letting

b =
1
3n · [2v(2i+1)

+ 1],

then b ∈ N+. Furthermore, for these values of b,

c = 3nb − 1 = 2v(2i+1).

So for these values of b, the integer c is a power of 2, and evolves to 1 passing only through even
numbers. Thus, for each choice of i , we get a value of b for which a = 2nb − 1 is χ -prime.

A few observations about the theorem. First, note that the χ -prime numbers generated in
the proof, for various choices of n and i, tend to be large. For n = 3, the smallest χ -primes
(for i = 0, 1, 2) are 151 (a diamond), 39768215 (a non-diamond), and 10424999137431 (larger
than 240). For n = 5, the smallest χ -prime generated for i = 0 is larger than 278. The next
thing to notice is that there are χ -primes beyond those claimed to exist by the theorem, such as
5 ̸≡ −1 mod 2n for any n ≥ 2. Finally, the formula in the proof generates χ -primes that evolve to
1 according to a specific pattern: all the odd steps come before any of the even steps. Of course, not
all χ -primes work this way (if they did, this would settle the Collatz Conjecture): the χ -prime 75
(a diamond) does not, and neither does 19884107 (a non-diamond). Nonetheless, what the theorem
shows is that there are infinitely many χ -primes that do follow this strict pattern.
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