
A Correctness Result for Reasoning about One-Dimensional Planning Problems

Yuxiao Hu and Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, Ontario M5S 3G4, Canada
{yuxiao, hector}@cs.toronto.edu

Abstract

A plan with rich control structures like branches and loops
can usually serve as a general solution that solves multiple
planning instances in a domain. However, the correctness of
such generalized plans is non-trivial to define and verify, es-
pecially when it comes to whether or not a plan works for all
of the infinitely many instances of the problem. In this paper,
we give a precise definition of a generalized plan represen-
tation called an FSA plan, with its semantics defined in the
situation calculus. Based on this, we identify a class of infi-
nite planning problems, which we call one-dimensional (1d),
and prove a correctness result that 1d problems can be veri-
fied by finite means. We show that this theoretical result leads
to a practical algorithm that does this verification practically,
and a planner based on this verification algorithm efficiently
generates provably correct plans for 1d problems.

Introduction
Planning with rich control structures like branches and
loops is drawing increasing attention from the AI commu-
nity (Manna and Waldinger 1987; Levesque 2005; Srivas-
tava, Immerman, and Zilberstein 2008). One advantage of
the resulting generalized plan is that the same plan can work
in different initial states with very large numbers of objects.

For example, suppose we have the following variant of
the logistics problem: There are a number of objects at
their source locations (office or home), and the goal is to
move them all to their destinations with a truck. The avail-
able actions include moving the truck to a location, load-
ing and unloading an object, finding the source and destina-
tion locations of an object, and checking whether all objects
have been processed. Then, intuitively, the plan in Figure 1
achieves the goal no matter how many objects there are.

Unfortunately, it is not easy to see formally why this plan
is correct for this problem. The reason is three-fold. First,
we need a formal definition of the plan representation; sec-
ond, we must be precise about what it means for a plan to
be correct; finally, we want to be able to conclude that it
is correct for all of the infinitely many possible objects and
source-destination combinations.

In this paper, we propose a solution to these in terms of
an FSA plan, a generalized plan representation inspired by

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example plan for the logistic problem

and shown more expressive than robot programs (Levesque
1996). The semantics of FSA plans is declaratively defined
in the situation calculus, so we have a foundation to analyze
planning problems, plans, and their correctness. This notion
of correctness, although precise and general, has the disad-
vantage that it uses second-order logic and is thus intractable
in general. The intractability is inevitable, since FSA plans,
like robot programs, are Turing complete in sufficiently ex-
pressive action domains (Lin and Levesque 1998).

However, for restricted action domains, we can do much
better. A number of real-world problems involve indepen-
dently processing an unbounded number of objects: deliv-
ering packages according to their shipping labels (as in the
logistics example above), pushing the buttons on a safe ac-
cording to the digits of a combination, keeping or discarding
eggs according to their smell, etc. In this paper, we identify a
class of planning problems that includes these, based on the
shape of their action theory. We call these action theories
one-dimensional or 1d. We introduce a verification proce-
dure, which we prove is correct for all 1d problems. We
also present empirical evidence that a planner based on this
verification procedure efficiently generates provably correct
plans on planning problems that appear to be beyond the al-
gorithmic reach of other planners.

The rest of this paper is organized as follows. First, we re-
view the situation calculus, robot programs and our variant,
FSA plans. Based on this, we define 1d planning problems,
and prove the main theorems on the correctness of finite rea-
soning about the correctness of FSA plans. We then present
a verification algorithm based on this theoretical result, and
show experimentally that a planner using it efficiently gener-



ates provably correct FSA plans. Finally, we sketch possible
lines for future work, and conclude.

Problem and Plan Representation
In order to represent and reason about the planning problem
sketched above, we need a formal action language. In this
paper, we appeal to the situation calculus, although the re-
sults introduced here could be adapted to other formalisms
like A (Gelfond and Lifschitz 1993), and the fluent calcu-
lus (Thielscher 1998).

The situation calculus is a first-order, multi-sorted logi-
cal language with limited second-order features for repre-
senting and reasoning about dynamical environments (Mc-
Carthy and Hayes 1969; Reiter 2001). Objects in the do-
main of the logic are of three disjoint sorts: situation
for situations, action for actions and object for everything
else. The only situation constant S0 denotes the initial
situation where no action has yet occurred, and do(a, s)
represents the situation after performing action a in sit-
uation s. We use do([a1, · · · , an], s) as an abbreviation
for do(an, do(· · · , do(a1, s))). Functions (relations) whose
value may vary from situation to situation are called func-
tional (relational) fluents, and denoted by a function (rela-
tion) whose last argument is a situation term. Functions and
relations whose value do not change across situations are
called rigids. Without loss of generality, we assume that all
fluents are functional. The special relation Poss(a, s) states
that action a is executable in situation s, and the function
SR(a, s) indicates the sensing result of a when performed in
s. The latter is introduced by Scherl and Levesque (2003) to
accommodate knowledge and sensing in the situation calcu-
lus. We assume that ordinary actions, not intended for sens-
ing purposes, simply return a fixed value (ok). A formula φ
is uniform in s if it does not mention Poss, SR, or any situ-
ation term other than s. We call a fluent formula φ with all
situation arguments eliminated a situation-suppressed for-
mula, and use φ[s] to denote the uniform formula with all
situation arguments restored with term s.

The dynamics of a planning problem is formalized by a
basic action theory (BAT) of the form

D = FA ∪ Σpre ∪ Σpost ∪ Σsr ∪ Σ0 ∪ Σuna

where
• FA is a set of domain-independent axioms defining the

legal situations (Reiter 2001).
• Σpre is a set of action precondition axioms, one for each

action symbol of the form Poss(A(~x), s) ≡ ΠA(~x, s). For
example, the following says that load is possible in s iff
the truck is at the source location and not loaded:
Poss(load, s) ≡ loc(s) = src(s) ∧ loaded(s) = FALSE.

• Σpost is a set of successor state axioms (SSAs), one for
each fluent symbol f of the form

f(~x, do(a, s)) = y ≡ Φf (~x, a, y, s).
For example, the following says that the location of the
truck after performing a in s is either the destination of
move if a is a move action, or its old location if a is not:

loc(do(a, s)) = x ≡ ∃y. x = y ∧ a = move(y) ∨
x = loc(s) ∧ ¬∃y. (a = move(y)).

• Σsr is a set of sensing result axioms, one for each sensing
action of the form SR(A(~x), s) = r ≡ ΘA(~x, r, s). For
example, the following says that check returns yes if the
number of objects left is 0, and no otherwise:

SR(check, s) = r ≡ r = yes ∧ left(s) = 0 ∨
r = no ∧ left(s) 6= 0.

• Σ0 is the initial knowledge base stating facts about S0.
• Σuna is a set of unique names axioms for actions.

Given the dynamics, the planning task is to find a plan that
is executable in the given environment, and whose execution
achieves the desired goal. Here, we only consider planning
problems with final-state goals, defined as follows:
Definition 1 (The Planning Problem). A planning problem
is a pair 〈D, G〉, where D is a basic action theory, and G is
a situation-suppressed formula in the situation calculus.

Figure 2 shows the formal specification for the logistic
problem above.1 In this example, there are four fluents,
loc (the location of the truck), loaded (the loading status
of the truck), parcels left (the number of parcels remaining
to be delivered), and misplaced (whether any processed ob-
ject has been misplaced). The initial value of parcels left
is non-negative but unknown, and the goal G is to make
parcels left = 0 while keeping misplaced = FALSE. There
is a sensing action check done that tells whether or not all
parcels have been processed. In addition to the four fluents,
we assume there are two rigid functions, source and dest
that provide the shipping label for each object. For example,
dest(7) = home would mean that the destination of the 7th
object is home. The values of these functions is not speci-
fied, but the sensing action find src returns the source for the
current object (according to parcels left), and similarly for
find dest.

Since the number of objects, their sources, and their des-
tinations are left open, a planning problem like this is not
soluble with a sequential plan. We thus need a more general
plan representation with branches and loops to handle all the
contingencies.

One candidate representation is Levesque’s robot pro-
grams (Levesque 1996), which is inductively defined with
the empty program nil, sequential execution seq, branch
case, and iteration loop. Recently, Hu and Levesque (2009)
proposed an alternative representation called the FSA plan,
and showed that it is more general than robot programs, in
that all robot programs have an FSA plan representation but
not vice versa. Moreover, they also presented a planning al-
gorithm with this representation, which greatly outperforms
the robot-program based KPLANNER (Levesque 2005). As
a result, we appeal to FSA plans in this paper.
Definition 2 (FSA Plan (Hu and Levesque 2009)).
An FSA plan is a tuple 〈Q, γ, δ,Q0, QF 〉, where
• Q is a finite set of program states;
• Q0 ∈ Q is an initial program state;

1In all example basic action theories presented in this paper,
we omit the foundational axioms FA, the unique names axioms
Σuna, and any domain closure axiom for objects (as introduced in
Definition 6 below).



Precondition Axioms:
Poss(move(x), s) ≡ TRUE

Poss(load, s) ≡ loc(s) = source(parcels left(s)) ∧
loaded(s) = FALSE

Poss(unload, s) ≡ loaded(s) = TRUE

Poss(find src, s) ≡ parcels left(s) 6= 0

Poss(find dest, s) ≡ parcels left(s) 6= 0

Poss(check done, s) ≡ TRUE

Successor State Axioms:
loc(do(a, s)) = x ≡ ∃y. x = y ∧ a = move(y) ∨

x = loc(s) ∧ a 6= move(y)

misplaced(do(a, s)) = x ≡
x = TRUE ∧ a = unload ∧ loc(s) 6= dest(s) ∨
x = misplaced(s) ∧ (a 6= unload ∨ loc(s) = dest(s))

loaded(do(a, s)) = x ≡ x = TRUE ∧ a = load ∨
x = FALSE ∧ a = unload ∨
x = loaded(s) ∧ a 6= load ∧ a 6= unload

parcels left(do(a, s)) = x ≡
x = parcels left(s)− 1 ∧ a = unload ∨
x = parcels left(s) ∧ a 6= unload

Sensing Result Axioms:
SR(find src, s) = r ≡ source(parcels left(s)) = r

SR(find dest, s) = r ≡ dest(parcels left(s)) = r

SR(check done, s) = r ≡
r = yes ∧ parcels left(s) = 0 ∨
r = no ∧ parcels left(s) 6= 0

SR(move(x), s) = r ≡ r = ok
SR(load, s) = r ≡ r = ok
SR(unload, s) = r ≡ r = ok

Initial Situation Axiom:
∀n. (source(n) = home ∨ source(n) = office) ∧

∀n. (dest(n) = home ∨ dest(n) = office) ∧
loc(S0) = home ∧ loaded(S0) = FALSE ∧
parcels left(S0) ≥ 0 ∧ misplaced(S0) = FALSE

Goal Condition:
parcels left = 0 ∧ misplaced = FALSE

Figure 2: Axiomatization of logistic in the situation calculus

• QF ∈ Q is a final program state;
• γ : Q− → A is a function, where Q− = Q \ {QF } and
A is the set of primitive actions;

• δ : Q− × R → Q is a function, where R is the set of
sensing results, that specifies the program state to transi-
tion to for each non-final state and valid sensing result for
the associated action.

The execution of an FSA plan starts from q = Q0, and
executes the action γ(q) associated with program state q. On
observing sensing result r, it transitions to the new program
state δ(q, r). This repeats until QF is reached.

FSA plans can be visualized graphically, where every
node q in the graph is a program state, labeled with its as-
sociated action γ(q). A directed edge labeled with r exists
between q1 and q2 iff δ(q1, r) = q2. The initial state Q0 is
denoted by an arrow pointing to it, and the final state QF by
a double border. Figure 1 illustrates an FSA plan for logistic.

In order to represent FSA plans in the situation calculus,
we assume that there is a sub-sort of object called program-
state, with Q0 and QF being two constants of this sort, and
two rigid function symbols γ and δ. We use a set of sen-
tences FSA to axiomatize the plan:
Definition 3. FSA is a set of axioms consisting of

1. Domain closure axiom for program states
(∀q). {q = Q0 ∨ q = Q1 ∨ · · · ∨ q = Qn ∨ q = QF };

2. Unique names axioms for program states
Qi 6= Qj for i 6= j;

3. Action association axioms, one for each program state
other than QF , of the form γ(Q) = A

4. Transition axioms of the form δ(Q,R) = Q′

To capture the desired semantics, we introduce a transi-
tion relation T ?(q1, s1, q2, s2), which intuitively means that
from program state q1 and situation s1, the FSA plan will
reach q2 and s2 at some point during the execution. The
formal definition is given in Definition 4.
Definition 4. We use T ?(q1, s1, q2, s2) as abbreviation for
(∀T ).{. . . ⊃ T (q1, s1, q2, s2)}, where the ellipsis is the con-
junction of the universal closure of the following:
• T (q, s, q, s)

• T (q, s, q′′, s′′) ∧ T (q′′, s′′, q′, s′) ⊃ T (q, s, q′, s′)

• γ(q) = a ∧ Poss(a, s) ∧ SR(a, s) = r ∧ δ(q, r) = q′ ⊃
T (q, s, q′, do(a, s))

Notice that this definition uses second-order quantification
to ensure that T ? is the least predicate satisfying the three
properties above. This essentially constrains the set of tuples
satisfying T ? to be the reflexive transitive closure of the one-
step transitions in the FSA plan.

With this transition relation, we can now characterize the
correctness of FSA plans as follows.
Definition 5 (Plan correctness). Given a planning problem
〈D, G〉, a plan axiomatized by FSA is correct iff

D ∪ FSA |= ∃s. T ?(Q0, S0, QF , s) ∧G[s].
The definition essentially says that for an FSA plan to be

correct, it must guarantee that for any model of D, the ex-
ecution of the FSA plan will reach the final state QF , and
the goal is satisfied in the corresponding situation s. (In the
case of logistic, a plan needs to work for any initial value of
parcels left and any value for the functions source and dest.)

This criterion of correctness is general and concise, but
its second-order quantification and the potential existence of
infinitely many models make it less useful algorithmically.
Partly for this reason, existing iterative planners based on
a similar representation, like KPLANNER (Levesque 2005)
and FSAPLANNER (Hu and Levesque 2009), only come
with a very weak correctness guarantee: although the gener-
ated plan tends to work for all problems in the domain, only



certain instances can be proven correct. It is thus interest-
ing to ask whether we can generate provably correct plans
for restricted classes of planning problems. The rest of this
paper gives a positive answer to this question.

One-Dimensional Planning Problems
The major goal of this paper is to identify a class of planning
problems that has a complete procedure to reason about the
correctness of solution FSA plans. In this section, we define
the class of 1d planning problems, which is derived from the
more restricted finite problems.
Definition 6. A planning problem 〈D, G〉 is finite if D does
not contain any predicate symbol other than Poss and equal-
ity, and the sort object has a domain closure axiom of the
form

∀x. x = o1 ∨ · · · ∨ x = ol.

Intuitively, a finite problem has finitely many objects in the
domain. Therefore, the number of ground fluents as well as
their range is finite.

A 1d problem is like a finite problem except that there is
a special distinguished fluent (called the planning parame-
ter) that takes value from a new sort natural number, there
is a finite set of distinguished actions (called the decreasing
actions) which decrement the planning parameter, and some
of the functions (called sequence functions) have an index
argument of sort natural number.2 In the case of the logistic
example, the planning parameter is parcels left, the decreas-
ing action is unload, and the sequence functions are source
and dest. The idea of a 1d planning problem is that the ba-
sic action theory is restricted in how it can use the planning
parameter and sequence functions, as follows:
Definition 7. A planning problem 〈D′, G′〉 is 1d with re-
spect to an integer-valued fluent p, if there is a finite prob-
lem 〈D, G〉 whose functions include fluent f0 and rigids
f1, · · · , fm, and whose actions include A1, · · · , Ad, such
that 〈D′, G′〉 is derived from 〈D, G〉 as follows:

1. Replace the fluent f0 with a planning parameter p:
(a) replace the SSA for f0 by one for p of the form

p(do(a, s)) = x ≡ x = p(s)− 1 ∧ Dec(a) ∨
x = p(s) ∧ ¬Dec(a),

where Dec(a) stands for (a = A1 ∨ · · · ∨ a = Ad);
(b) replace all atomic formulas involving the term f0(s) in

the Π, Φ, Θ and G[s] formulas by p(s) = 0, where s is
the free situation variable in those formulas;

(c) remove all atomic formulas mentioning f0(S0) in Σ0,
and add p(S0) ≥ 0 instead.

2. Replace the rigids f1, · · · , fm with sequence functions
h1, · · · , hm:

(a) replace all terms fi in the Π, Φ, Θ and G[s] formulas
by hi(p(s)), where s is the free variable as above;

(b) replace all fi in Σ0 with hi(n), where n is a universally
quantified variable of sort natural number.

2For simplicity, we assume in this paper that all sequence func-
tions are rigid, but it is not hard to prove that the definitions and
theorems work for sequence fluents as well.

Observe, for example, that in a 1d problem, the occurrence
of the integer planning parameter is limited to its own suc-
cessor state axiom, in Σ0, and as an argument to a sequence
function. Any other use of it is to test whether it is 0. Sim-
ilarly, we can only apply a sequence function to the current
object as determined by the planning parameter (other than
in Σ0 where we must quantify over all natural numbers).
This ensures that the objects can be accessed sequentially
in descending order, and that they do not interact with one
another. It is not hard to see that logistic conforms to these
requirements.

Main Theorems
Given a planning problem and a candidate plan, an impor-
tant reasoning task is to decide whether the plan is guaran-
teed to achieve the goal according to the action theory. In a
1d setting, we need to ensure that the plan achieves the goal
no matter what values the planning parameter p and the se-
quence functions hi take. Unfortunately, there are infinitely
many values that need to be taken into account.

In this section, we prove a correctness result of the fol-
lowing form: if we can prove that a plan is correct under
the assumption that p(S0) ≤ N (for a constant N that we
calculate), it will follow that the plan is also correct without
this assumption. In other words, correctness of the plan for
initial values of p up to N is sufficient.

In the following, we first present a few lemmas character-
izing properties of 1d action theories, and then present two
theorems that capture the intuitive idea above. The proofs to
these lemmas and theorems are sketched in the Appendix.

The first property is that in the execution of an FSA plan,
the planning parameter monotonically decreases, and visits
all integers between the initial and final values of p.

Lemma 1. Let M be a model of a 1d action theory D with
planning parameter p. If for some n, n′ ∈ N,

M |= T ?(q, s, q′, s′) ∧ p(s) = n ∧ p(s′) = n′,

then n ≥ n′, and for any n′′ satisfying n′ < n′′ ≤ n, there
exist a constant q′′ and a ground situation term s′′, such that

M |= T ?(q, s, q′′, s′′) ∧ T ?(q′′, s′′, q′, s′) ∧
Dec(γ(q′′)) ∧ p(s′′) = n′′.

During the execution of the plan, there may be multiple
program states and situations where the planning parameter
has the value n′′. Here, Dec(γ(q′′)) identifies a unique con-
figuration where q′′ is a decreasing state, i.e., a state whose
associated action is among A1, · · · , Ad.

The next few properties deal with replacing a situation in
an interpretation with a similar situation in a different inter-
pretation. This similarity measure is defined as follows.

Definition 8 (〈i, j〉-similarity). Let M1 and M2 be models
ofD, s1 and s2 be ground situation terms, and i, j be natural
numbers. Situation s1 in interpretation M1 is 〈i, j〉-similar
to s2 in M2, denoted by M1〈s1, i〉 ∼ M2〈s2, j〉, if

• M1 and M2 have identical domain for actions and objects;
• for all rigid finite functions r, rM1 = rM2 ;
• for all rigid sequence functions h, hM1(i) = hM2(j);



• for all finite fluents f , fM1(sM1
1 ) = fM2(sM2

2 );
• for p, pM1(sM1

1 ) = i and pM2(sM2
2 ) = j.

Intuitively, the situations s1 and s2 are indistinguishable
in their respective interpretations, except for the differences
in the planning parameter, since all finite fluents, as well as
sequence functions at the current indexes, take identical val-
ues. As a result, the execution of an FSA plan at a particular
program state will be indistinguishable in the two cases.

The 〈i, j〉-similarity relation is commutative and transi-
tive, as formalized in Lemma 2. The proof of this lemma
simply follows from multiple applications of Definition 8.
Lemma 2.

1. If M1〈s1, i〉 ∼ M2〈s2, j〉, then M2〈s2, j〉 ∼ M1〈s1, i〉.
2. If M1〈s1, i〉 ∼ M2〈s2, j〉 and M2〈s2, j〉 ∼ M3〈s3, k〉,

then M1〈s1, i〉 ∼ M3〈s3, k〉.

The 〈i, j〉-similarity relation only require the sequence func-
tions to agree at indexes i and j, respectively. Sometimes,
we want to compare, between models, the values of se-
quence functions at multiple indexes. For this purpose, we
introduce the following ξ-relationship.
Definition 9. Let ξ ⊂ N×N be a set of pairs of natural num-
bers, and M1 and M2 be two models of D. We say that M1

ξ-relates to M2, denoted by M1{ξ}M2, if for all sequence
functions h and all 〈i, j〉 ∈ ξ, hM1(i) = hM2(j).

Notice that 〈i, j〉-similarity relates two situations (in their
respective interpretations), whereas ξ-relationship compares
two interpretations. Two interpretations can be ξ-related,
even if the finite fluents and the planning parameters are very
different.

Given the concepts of 〈i, j〉-similarity and ξ-relationship,
the next lemma captures the following intuition: given a
model M of D, we can construct another model M ′ of D,
which is almost the same as M , but with different values for
the planning parameter and sequence functions.
Definition 10. A binary relation R is functional, if for any
x, y, z such that 〈x, z〉 ∈ R and 〈y, z〉 ∈ R, x = y holds.
Lemma 3. For any 1d theory D, if M is a model of D with
M |= p(S0) = n, then for any n′ ∈ N and functional rela-
tion ξ ⊂ N×N such that 〈n, n′〉 ∈ ξ, there is another model
M ′ of D such that M {ξ}M ′ and M 〈S0, n〉 ∼ M ′〈S0, n

′〉.
Intuitively, M ′ in Lemma 3 is similar to M , in the sense

that the initial values of all finite fluents are identical in both
interpretations, the planning parameters is n′ instead of n,
and the values of the sequence functions in M ′ at some in-
dexes are mapped from their values in M at possibly other
indexes according to ξ. Later in the proof of the theorems,
we shall use this property and show that the (in)correctness
of an FSA plan for a “larger” interpretation can be reduced
to the (in)correctness for a “smaller” interpretation.

Finally, we are ready to present a property about the ex-
ecution of an FSA plan in a 1d theory. Suppose we have
two situations in two models where the planning parameter
is positive in both, all sequence functions agree at these and
smaller indexes, and all the other fluents have identical val-
ues. Then starting from the same plan state, the execution

of the FSA plan will be the same in each model. Lemma 4
formalizes this intuition.
Lemma 4. Let M1 and M2 be two models of a 1d action
theory D, and s1 and s2 be two situation terms. Suppose
M1〈s1, n1〉 ∼ M2〈s2, n2〉 for n1, n2 > k, and M1{ξ}M2

where 〈n1− i, n2− i〉 ∈ ξ for all 0 < i ≤ k. For any states
q, q′ and action sequence σ such that p(s′i) = ni− k, where
s′i = do(σ, si), we have

M1 |= T ?(q, s1, q
′, s′1) iff M2 |= T ?(q, s2, q

′, s′2).
Furthermore, M1〈s′1, n1 − k〉 ∼ M2〈s′2, n2 − k〉.

A special case of Lemma 4 is when n1 = n2. Then s
in M and s′ in M ′ become isomorphic, that is, they are not
only similar, but also have the same value for p. In this case,
the execution trace will be identical, even after the planning
parameter reaches 0. This leads to the following:
Corollary 1. Let M1〈s1, n〉 ∼ M2〈s2, n〉 and M1{ξ}M2,
where 〈i, i〉 ∈ ξ for all 0 ≤ i ≤ n. For any constants q, q′
and action sequence σ, let s′i = do(σ, si), then
M1 |= T ?(q, s1, q

′, s′1) iff M2 |= T ?(q, s2, q
′, s′2).

Moreover, M1〈s′1, n′〉 ∼M2〈s′2, n′〉, for some n′.
With the properties above, we are ready to present the two

main theorems of this paper.

Theorem 1. Suppose 〈D, G〉 is a 1d planning problem with
planning parameter p, and that D contains FSA axioms for
some plan. Let N0 = 2 + k0 · lm, where k0 is the number
of decreasing program states in the FSA plan, m is the total
number of finite and sequence functions, and l is the total
number of values that they can take. Then we have:

If D ∪ {p(S0) ≤ N0} |= ∃s.T ?(Q0, S0, QF , s) ∧G[s],

then D |= ∃s.T ?(Q0, S0, QF , s) ∧G[s].

The intuition behind this theorem is that both the number
of program states and the number of indistinguishable situ-
ations are finite, so if the initial planning parameter is large
enough, we will discover two identical configurations during
the execution of the FSA plan. This is illustrated by the two
black dots in the original execution line in Figure 3, repre-
senting the configurations after executing γ1 and γ2 from the
initial situation, respectively. This enables us to construct a
new initial state with smaller p, where the execution of γ1
directly leads to 〈q, s2〉, so that γ3 can follow and achieve
the goal. In this way, the correctness of the FSA plan for a
“larger” model can be reduced to that of a “smaller” model,
which has been verified according to the assumptions of the
theorem. The proof of Theorem 1 is elaborated in the Ap-
pendix.

The bound N0 in this theorem is exponential in the num-
ber of ground functions, and thus can be extremely large
even for relatively simple action theories.

In order to obtain a tighter bound, we can narrow down the
number of values finite and sequence functions may take by
observing their successor state axioms, instead of assuming
that they range over all finite objects. Suppose function fj



Figure 3: The intuition behind Theorem 1.

(or hj(n)) only takes lj different values, then we can prove
a variant of Theorem 1 with a bound N ′0 = 2 + k0

∏m
j=1 lj ,

which is usually much smaller than N0. We omit the details
here, as N ′0 is still exponential in the number of functions.

To obtain a more practical bound in a similar flavor, we
introduce another theorem, where we do not declaratively
specify the bound, but instead only spell out the necessary
condition for an integer Nt to be a valid bound.

Theorem 2. Suppose 〈D, G〉 is a 1d planning problem with
planning parameter p, and that D contains FSA axioms for
some plan. Let Seen(q, s) be the abbreviation for

∃s′. T ?(Q0, S0, q, s
′) ∧ p(s′) > 1 ∧∧

f(s) = f(s′) ∧
∧
h(p(s)) = h(p(s′))

where the first conjunction is over the finite fluents f , and the
second over sequence functions h. Suppose Nt > 0 satisfies

D ∪ {p(S0) = Nt} |=
∀q, s. T ?(Q0, S0, q, s) ∧ p(s) = 1 ⊃ Seen(q, s)

Then we have the following:
If D ∪ {p(S0) ≤ Nt} |= ∃s.T ?(Q0, S0, QF , s) ∧G[s],

then D |= ∃s.T ?(Q0, S0, QF , s) ∧G[s].

Intuitively,Nt has to be large enough so that a similar situ-
ation to the one that decrements the planning parameter from
1 to 0 occurs earlier in the execution trace. The proof sketch
in the Appendix shows that this condition alone suffices to
guarantee the existence of the splicing points illustrated in
Figure 3 above.

Experimental Results
Given an FSA plan for a 1d planning problem, Theorems 1
and 2 suggest two algorithms to verify its correctness, which
can then be used for plan generation.

Plan verification
To utilize the idea in Theorem 1, we only need to execute the
FSA plan for p(S0) = 0, 1, · · · , N0 (or up toN ′0). If the goal
is achieved in all cases, then the FSA plan is correct in gen-
eral, according to the theorem, and otherwise, it is incorrect.
However, when the bound is large, this algorithm becomes
impractical, since the number of possible initial worlds is ex-
ponential in the planning parameter. In the logistic example,

function verify(P )
Conf := {}; q := Q0;
for Nt = 1, 2, 3, · · · , N0

modified := FALSE;
while q 6= QF

a := γ(q); c := 〈q,~v〉;∗
if a = Ai and p = 1 and c 6∈ Conf then

modified := TRUE;
Conf := Conf ∪ {c};

endIf
execute action a
if error then return FALSE
forEach possible sensing result r

q := δ(q, r);
endWhile
if modified = FALSE then return TRUE

endFor
return TRUE

*: ~v is the list values of all finite and sequence functions in the
state.

Figure 4: The verification algorithm using Theorem 2

for instance, each parcel has four possible source-destination
combinations, so if we consider a problem containing 514
parcels (see the bounds for logistic below), the total number
of possible combinations would be 4514.

Fortunately, the bound N0 is a very loose, worst-case es-
timate, and Theorem 2 offers a much tighter bound. It sug-
gests an algorithm, shown in Figure 4, to incrementally ver-
ify the FSA plan, until a number satisfying the Nt criterion
is reached.

In practice, we start from p(S0) = 0, 1, 2, · · · , and run
the FSA plan for each value. In each execution, whenever
the planning parameter p decreases from 1 to 0, we record
the program state, as well as the value of all finite and se-
quence functions in a table. If for some Nt, the execution
for p(S0) = Nt does not add any new row into the table,
then this Nt satisfies the criterion of Theorem 2, and thus,
the plan is guaranteed to be correct in general. If the FSA
plan fails before reaching such anNt, then it is proved incor-
rect. Notice that when the plan is correct, the algorithm will
terminate, since in the worst case, if we verify till Nt = N0,
then it is guaranteed correct by Theorem 1.

Plan generation
With the complete verification algorithms in hand, we can
now generate plans that are correct for 1d planning prob-
lems. This is done by slightly modifying FSAPLANNER
introduced by Hu and Levesque (2009).

The FSAPLANNER works by alternating between a gen-
eration and a testing phase: it generates plans for values of
the planning parameter up to a lower bound, and then tests
the resulting candidate plans for a higher value of the plan-
ning parameter. Although this appears to work for many ap-
plications, it has at least two serious problems: (1) the lower
and higher bounds must be set by hand and (2) the only for-
mal guarantee is that the plan works for the given values.



Precondition Axioms:
Poss(look, s) ≡ TRUE

Poss(chop, s) ≡ chops needed(s) 6= 0 ∧ axe(s) = out
Poss(store, s) ≡ axe(s) = out

Successor State Axioms:
axe(do(a, s)) = x ≡ x = stored ∧ a = store ∨

x = axe(s) ∧ a 6= store
chops needed(do(a, s)) = x ≡

x = chops needed(s)− 1 ∧ a = chop ∨
x = chops needed(s) ∧ a 6= chop

Sensing Result Axioms:
SR(look, s) = r ≡ r = up ∧ chops needed 6= 0 ∨

r = down ∧ chops needed = 0

SR(chop, s) = r ≡ r = ok
SR(store, s) = r ≡ r = ok

Initial Situation Axiom:
axe(S0) = out ∧ chops needed(S0) ≥ 0

Goal Condition:
axe = stored ∧ chops needed = 0

Figure 5: Axioms and a solution plan for treechop

The verification algorithms proposed above resolve both
of these problems. The idea is to replace the test phase of
FSAPLANNER by this verification. Then whenever a plan
passes the testing phase, it is guaranteed to be correct. No-
tice that in both cases, the boundsN0 andNt can be obtained
mechanically from the planning problem itself without man-
ual intervention. The former only depends on the number of
fluents and constants that appear in Σ0 and Σpost, whereas
the latter is identified by table saturation.

We ran several experiments with variants of FSAPLAN-
NER on four example domains: treechop, variegg, safe and
logistic. (The first two are adapted from (Levesque 2005).)

treechop: The goal is to chop down a tree, and put away
the axe. The number of chops needed to fell the tree is un-
known, but a look action checks whether the tree is up or
down. Intuitively, a solution involves first look and then
chop whenever up is sensed. This repeats until down is
sensed, in which case we store the axe, and are done. Fig-
ure 5 shows the problem definition and a solution FSA
plan for treechop.

variegg: The goal is to get enough good eggs in the bowl

from a sequence of eggs, each of which may be either
good or bad, in order to make an omelette. A sensing
action check bowl tests if there are enough eggs in the
bowl, and another smell dish tests whether the egg in the
dish is good or bad. Other actions include breaking an egg
in the sequence to the dish, moving the egg from dish to
bowl and dumping the dish. Figure 6 shows the problem
definition and a solution FSA plan for variegg.

safe: The goal is to open a safe whose secret combination is
written on a piece of paper as a binary string. The action
pick paper picks up the paper, and the sensing action read
reads the first unmarked bit of the combination and return
either 0 or 1, or “done” if the end of string is reached.
The action process(x) crosses the current bit on the pa-
per, and pushes button x on the safe, where x can be 0
or 1. Finally, the actions open unlocks the safe if the cor-
rect combination is pushed, and jams the safe otherwise.
Figure 7 shows the problem definition and a solution FSA
plan for safe.

We summarize the parameters/bounds and computation
times on the four sample problems in Figure 8. Here, Nman
is the manually specified test parameter in the original FSA-
PLANNER,N0 andN ′0 are the exponential bounds obtained
from Theorem 1, andNt is the tighter bound based on table-
saturation derived from Theorem 2. The corresponding CPU
time to generate a correct plan is listed below each parame-
ter/bound. (All runs are in SWI-Prolog under Ubuntu Linux
8.04 on a Intel Core2 3.0GHz CPU machine with 3.2GB
memory.)

Comparing the three bounds that have guarantees, Nt is
much tighter thanN ′0, which is in turn much tighter thanN0.
The loose bounds N0 and N ′0 become impractical for larger
planning problems like safe and logistic, whereas Nt is con-
sistently small for all problems. Note that this planner can do
even better than the original FSAPLANNER in cases where
the manually specified test bound is overestimated. In sum,
the table saturation based verification algorithm enables us
to efficiently generate correctness-guaranteeing FSA plans
for these 1d problems.

Related Work
The work most similar to ours in this paper is the theorem
that “simple problems” can be finitely verified (Levesque
2005). However, the definition of simple problems is based
on properties of the plan, and thus somewhat ad hoc. Our
definition of 1d problems, in contrast, is rooted in the situa-
tion calculus, and therefore inherits its rigorous proofs.

Another closely related work is Lin’s proof technique for
goal achievability for rank 1 action theories by model sub-
sumption (Lin 2008). His rank 1 action theory is more gen-
eral than our 1d theory, but the type of plan that can be rea-
soned about is more restricted: plans with all actions located
in a non-nested loop. Efficiently generating iterative plans is
also outside of the scope of his work.

The planner Aranda (Srivastava, Immerman, and Zilber-
stein 2008) learns “generalized plans” that involve loops by
using abstraction on an example plan. They prove that their



Precondition Axioms:
Poss(next to dish, s) ≡ dish(s) = empty ∧ eggs left 6= 0

Poss(dump dish, s) ≡ dish(s) 6= empty
Poss(dish to bowl, s) ≡ dish(s) 6= empty
Poss(sniff dish, s) ≡ dish(s) 6= empty
Poss(check bowl, s) ≡ TRUE

Successor State Axioms:
dish(do(a, s)) = x ≡

x = empty ∧ (a = dish to bowl ∨ a = dump dish) ∨
x = egg seq(eggs left(s)) ∧ a = next to dish ∨
x = dish(s) ∧ a 6= dish to bowl ∧ a 6= dump dish ∧

a 6= next to dish
misplaced(do(a, s)) = x ≡

x = yes ∧
(a = dump dish ∧ dish(s) = good egg ∨
a = dish to bowl ∧ dish(s) = bad egg) ∨

x = misplaced(s) ∧
¬(a = dump dish ∧ dish(s) = good egg ∨
a = dish to bowl ∧ dish(s) = bad egg)

eggs left(do(a, s)) = x ≡
x = eggs left(s)− 1 ∧ a = next to dish ∨
x = eggs left(s) ∧ a 6= next to dish

Sensing Result Axioms:
SR(check bowl, s) = r ≡

r = enough eggs ∧ eggs left(s) = 0 ∨
r = need eggs ∧ eggs left(s) 6= 0

SR(sniff dish, s) = r ≡ r = dish(s) ∧ eggs left(s) 6= 0
r = good egg ∧ eggs left(s) = 0 ∨

SR(next to dish, s) = r ≡ r = ok
SR(dump dish, s) = r ≡ r = ok
SR(dish to bowl, s) = r ≡ r = ok

Initial Situation Axiom:
∀n. (egg seq(n) = good egg ∨ egg seq(n) = bad egg) ∧

dish(S0) = empty ∧ eggs left(S0) ≥ 0 ∧
misplaced(S0) = no

Goal Condition:
eggs left = 0 ∧ misplaced = no

Figure 6: Axioms and a solution plan for variegg

Precondition Axioms:
Poss(pick paper, s) ≡ have paper(s) = FALSE

Poss(open, s) ≡ safe(s) = locked
Poss(read, s) ≡ have paper(s) = TRUE

Poss(process(x), s) ≡ buttons left 6= 0

Successor State Axioms:
have paper(do(a, s)) = y ≡

a = pick paper ∧ y = TRUE ∨
a 6= pick paper ∧ y = have paper(s)

safe(do(a, s)) = y ≡ a = open ∧ buttons left(s) = 0 ∧
(mistkn(s) = TRUE ⊃ y = jammed) ∧
(mistkn(s) = FALSE ⊃ y = unlocked) ∨

(a 6= open ∨ buttons left(s) 6= 0) ∧ y = safe(s)

mistkn(do(a, s)) = y ≡
y = TRUE ∧
∃x. a = process(x) ∧ bit seq(buttons left(s)) 6= x ∨
y = mistkn(s) ∧
¬∃x. a = process(x) ∧ bit seq(buttons left(s)) 6= x

buttons left(do(a, s)) = y ≡
∃x. a = process(x) ∧ y = buttons left(s)− 1 ∨
¬∃x. a = process(x) ∧ y = buttons left(s)

Sensing Result Axiom:
SR(read, s) = r ≡ buttons left(s) = 0 ∧ r = done ∨

buttons left(s) 6= 0 ∧ r = bit seq(buttons left(s))
SR(pick paper, s) = r ≡ r = ok
SR(open, s) = r ≡ r = ok
SR(process(x), s) = r ≡ r = ok

Initial Situation Axiom:
have paper(S0) = FALSE ∧ safe(S0) = locked ∧

mistkn(S0) = FALSE ∧ buttons left(S0) ≥ 0 ∧
∀n.

(
bit seq(n) = 0 ∨ bit seq(n) = 1

)
Goal Condition:
safe = unlocked

Figure 7: Axioms and a solution plan for safe



Problem treechop variegg safe logistic
Nman 100 6 4 5

Time (secs) 0.1 0.12 0.09 3.93
N0 18 345 4098 514

Time (secs) 0.03 > 1 day > 1 day > 1 day
N ′0 4 12 36 34

Time (secs) 0.01 8.68 > 1 day > 1 day
Nt 2 3 2 2

Time (secs) 0.01 0.08 0.08 3.56

Figure 8: Comparison of FSAPLANNER using different
verification modules

planner generates correct plans for problems in “extended-
LL” domains. However, it not clear what sort of action theo-
ries can or cannot be characterized as extended-LL. It is thus
interesting future work to compare the relative expressive-
ness between extended-LL and 1d problems, and identify a
more general class that accommodates both formalisms.

There is also important work on planning in domains
where loops are required but correctness in general is not
considered at all. The planner loopDistill (Winner and
Veloso 2007) learns from an example partial-order plan.
Similarly, the planner introduced by Bonet, Palacios and
Geffner (2009) synthesizes finite-state controllers via con-
formant planning. In both cases, the resulting plans can usu-
ally solve problems similar to the examples used to generate
them, but under what conditions they will be applicable is
not addressed.

Earlier work on deductive synthesis of iterative or recur-
sive plans represents another approach to the problem based
on theorem proving. For example, Manna and Waldinger
(1987) finds recursive procedures to clear blocks in the clas-
sical blocks world, and the resulting plan comes with a
strong correctness guarantee. Unfortunately, the price to pay
is typically manual intervention (for example, to identify
induction hypotheses) and poor performance. Magnusson
and Doherty recently proposed to use heuristics to automati-
cally generate induction hypotheses for temporally-extended
maintenance goals (2008). However, their planner is incom-
plete, and for which subclass their approach is complete re-
mains to be investigated.

Finally, there is a separate branch of research in model
checking for automatically verifying correctness of com-
puter programs (Clarke, Grumberg, and Peled 1999). It is
concerned with correctness of programs in predefined com-
puter languages instead of general action domains, and does
not aim for program synthesis. However, results and tech-
niques from this community may shed light on our goal of
iterative plan verification and generation in the long run.

Conclusion and Future Work
In this paper, we identified a class of planning problems
which we called 1d, and proved that plan correctness for un-
bounded 1d problems could be checked in a finite and prac-
tical way. Based on this theoretical result, we developed
a variant of FSAPLANNER, and showed that it efficiently

generates provably correct plans for 1d problems.
In the future, we intend to investigate planning problems

beyond the 1d class. Consider, for example, the following:
We start with a stack A of blocks, with the same number
of blue and red ones. We can pick up a block from stack
A or B, and put a block on stack B or C. We can also
sense when a stack is empty and the color of a block
being held. The goal is to get all the blocks onto stack
C, alternating in color, with red on the bottom.

What makes this problem challenging is that we may need
to put a block aside (onto stack B) and deal with any number
of other blocks before we can finish with it. In a still more
general example, consider the Towers of Hanoi. In this case,
we spend almost all our time finding a place for disks that are
not ready to be moved to their final location. In the future,
we hope to develop finite techniques for such problems too.

References
Bonet, B.; Palacios, H.; and Geffner., H. 2009. Automatic
derivation of memoryless policies and finite-state con-
trollers using classical planners. In Proceedings of Interna-
tional Conference on Automated Planning and Scheduling.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999.
Model Checking. MIT Press.
Gelfond, M., and Lifschitz, V. 1993. Representing actions
and change by logic programs. Journal of Logic Program-
ming 301–323.
Hu, Y., and Levesque, H. 2009. Planning with loops: Some
new results. In ICAPS Workshop on Generalized Planning:
Macros, Loops, Domain Control.
Levesque, H. 1996. What is planning in the presence of
sensing. In Proceedings of National Conference on Artifi-
cial Intelligence.
Levesque, H. 2005. Planning with loops. In Proceedings
of International Joint Conference on Artificial Intelligence.
Lin, F., and Levesque, H. 1998. What robots can do:
robot programs and effective achievability. Artificial In-
telligence.
Lin, F. 2008. Proving goal achievability. In Proceedings of
International Conference on the Principles of Knowledge
Representation and Reasoning.
Magnusson, M., and Doherty, P. 2008. Deductive planning
with inductive loops. In Proceedings of National Confer-
ence on Artificial Intelligence.
Manna, Z., and Waldinger, R. 1987. How to clear a
block: a theory of plans. Journal of Automated Reason-
ing 3(4):343–377.
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. Ma-
chine Intelligence 463–502.
Pirri, F., and Reiter, R. 1999. Some contributions to the
metatheory of the situation calculus. Journal of the ACM
46(3):261–325.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.



Scherl, R., and Levesque, H. 2003. Knowledge, action,
and the frame problem. Artificial Intelligence 144.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In Pro-
ceedings of National Conference on Artificial Intelligence.
Thielscher, M. 1998. Introduction to the fluent calcu-
lus. Electronic Transactions on Artificial Intelligence 2(3-
4):179–192.
Winner, E., and Veloso, M. 2007. LoopDISTILL: Learning
domain-specific planners from example plans. In Proceed-
ings of ICAPS-07 Workshop on AI Planning and Learning.

Appendix
Proof of Theorems
Proof of Lemma 1. This follows from the shape of the SSA
for p, which constrains the actions to either leave the value
of p unchanged or decrease it by 1.

Proof of Lemma 3. Let M0 be the sub-model of M with all
objects involving non-initial situations removed. We need
only construct a model M ′0, which is the same as M0 except
that M ′0 |= p(S0) = n′ and the sequence functions h all sat-
isfy this: for any k and any 〈i, j〉 ∈ ξ, ifM0 |= h(i, S0) = k
then M ′0 |= h(j, S0) = k. The existence of M ′ from M
then follows by applying the Relative Satisfiability Theo-
rem (Pirri and Reiter 1999).

Proof of Lemma 4. By induction over the length of σ.

Proof of Theorem 1. Suppose, for the sake of contradiction,
that D 6|= ∃s.T ?(Q0, S0, QF , s) ∧ G[s]. Then there is a
smallest n > N0 such that for some model M of D we have
M |= p(S0) = n ∧ ¬

(
∃s.T ?(Q0, S0, QF , s) ∧G[s]

)
.

By Lemma 3, there exists another model M1 of D satis-
fying M 〈S0, n〉 ∼ M1〈S0, n − 1〉 and M {ξ1}M1, where
〈i, i− 1〉 ∈ ξ1 for all 1 ≤ i ≤ n.

Since M1 |=p(S0) = n−1 < n, according to our assump-
tion, M1 |= T ?(Q0, S0, QF , s) ∧ G[s] for some situation
term s. Based on the value of p(s), there are two cases:
Case 1: M1 |= p(s) = n′ > 0:
By Lemma 4, M |= T ?(Q0, S0, QF , s), and furthermore
M1〈s, n′〉 ∼ M 〈s, n′ + 1〉, so M |= G[s]. This contradicts
the assumption that M 6|= ∃s.T ?(Q0, S0, QF , s) ∧G[s].
Case 2: M1 |= p(s) = 0:
By Lemma 1, there is an action sequence σ and decreasing
state q such that

M1 |= T ?(Q0, S0, q, do(σ, S0)) ∧ p(do(σ, S0)) = 1.

By Lemma 4,

M |= T ?(Q0, S0, q, do(σ, S0)) ∧ p(do(σ, S0)) = 2.

Since σ reduces p from n to 2 in M , by Lemma 1, it must
contain more than k0 · lm decreasing actions. So there must
be two points in the execution of σ with the same state: there
is some program state q′ and σ = αβγ such that

M |= T ?(Q0, S0, q
′, do(α, S0)) ∧

T ?(q′, do(α, S0), q′, do(αβ, S0)),

where M 〈do(α, S0), u〉 ∼ M 〈do(αβ, S0), v〉〉, for some
u > v. Furthermore,

M |= ¬∃s.T ?(q′, do(αβ, S0), QF , s) ∧G[s].

By Lemma 3 again, there is a model Mu of D such that
M 〈S0, n〉 ∼ Mu〈S0, n − (u − v)〉 and M {ξu}Mu, where
〈i, i− (u− v)〉 ∈ ξu for all u ≤ i ≤ n and 〈i, i〉 ∈ ξu for all
0 ≤ i < v. By Lemma 4 again, we have that

Mu |= T ?(Q0, S0, q
′, do(α, S0)).

By Lemma 2, M 〈do(αβ, S0), v〉 ∼ Mu〈do(α, S0), v〉.
Therefore, by Corollary 1,

Mu |= ¬∃s.T ?(q′, do(α, S0), QF , s) ∧G[s].

So we obtain

Mu |= p(S0) = n−(u−v)∧¬∃s.T ?(Q0, S0, QF , s)∧G[s],

which contradicts the assumption that M |= p(S0) = n has
the smallest n that fails the FSA plan.

Proof of Theorem 2. The proof is the same as the one for
Theorem 1, except for the way we decompose σ.

Let M be the smallest interpretation failing the FSA plan,
and M 〈S0, n〉 ∼ Mt〈S0, Nt〉. Further let

Mt |= T ?(Q0, S0, q, do(σ, S0)) ∧ p(do(σ, S0)) = 1

where q is a decreasing state, then by the constraint on Nt,
there must be a decomposition σ = αβ such that

Mt |=T ?(Q0, S0, q, do(α, S0)) ∧
T ?(q, do(α, S0), q, do(αβ, S0)),

and Mt〈do(α, S0), u〉 ∼ Mt〈do(αβ, S0), v〉, where u > 1
and v = 1. The rest of the proof follows as in Theorem 1.


