ECE242F (Fall 2002) Assignment 1:
Polynomial arithmetic

Danny Heap
heap@cs.utoronto.ca

September 20, 2002

You may prefer the HTML version of this document, at
http:/ /www.cs.utoronto.ca/heap/Courses/242F02/A1/al/al.html.

Purpose

You will implement some algorithms to add, multiply, divide and evaluate polynomials over the integers. C
constructs such as loops, conditionals, and structs will be useful.

Description
A polynomial of degree n over the integers has the form:
Anx™ + an_12" 4+ - + a1zt + a2’

...where 1 = z and 2° = 1, and a; (called coefficient i) is an integer, for 0 < i < n. There is a special case
for the zero polynomial which we will define has having degree -1 and no coefficients.

Adding polynomials

Suppose you’d like to add two polynomials: a,z™ + -+ + a1z + ag, and by, z™ + --- + byx + byg. Their
sum has degree k = max(m,n):

ckxk+---+clx+co

...where ¢; = a; + b; (a; is zero if i > n, and b; is zero if ¢ > m).

Implement the function plus specified in Polynomial.h. You need to check that none of your coefficients
fall outside £INT_MAX, specified in <limits.h> (in which case you should return {NULL, OVERFLOW}). For
a polynomial of degree n, your function should have complexity O(n).

Multiplying polynomials

Suppose you’d like to multiply the two polynomials of the previous subsection: a,z™ + --- + a1 + ag, and
bpz™ 4+ --- + bixz + by. Their product has degree k = m + n:

CmanZ™T" + -+ 1T + ¢

...where ¢; = aob; + a1bi—1 + --- + a;bg, where a; is zero unless 0 < j < n, and similarly b; is zero unless
0<j<m

A special case occurs when either polynomial is the zero polynomial. In that case, the product is the
zero polynomial.



Implement the function mult specified in Polynomial.h. You need to be sure that none of your coefficients,
or intermediate calculations, fall outside £INT_MAX, specified in <1imits.h> (in which case you should return
{NULL, OVERFLOW}). For polynomials of degree n and m (assuming that n > m), your function should have
complexity O(n?).

Evaluating a polynomial

Suppose you want to know the value of a,z™ + --- 4+ a1z + a9 when z has a particular value. Here is an
example of a really inefficient way to evaluate the polynomial, once you’ve set x to a particular value (e.g.
x="7):
Ap ¥ T * - - *T+Ap_1 ¥ T*--- %L+ -+ a1 T+ aqop.
—— ——
n times (n—1) times

The problem is that this method usesn —1 4+ n—2 + --- 4+ 1 (for a total of [(n — 1)n]/2) multiplications,
and n additions. You can rewrite the polynomial, using Cramer’s rule, as:

ag+zx(ar+xx(ax+---+zx(ay) --))

This reduces the number of multiplications to n, and preserves the number of additions.

The zero polynomial evaluates to 0 for every .

Implement the function eval specified in Polynomial.h. Be sure to check whether your result, or any
of your intermediate results, falls outside +=INT_MAX (in which case you should return INT_MAX). For a
polynomial of order n, your function should have complexity O(n).

Dividing by a monic polynomial

Division of polynomials P; by P, should behave like division of integers, that is you would like to find
quotient polynomial ) and remainder polynomial R such that:

P, = P, x Q+ R AND deg(R) < deg(P).

This is NOT always possible when P;, Py, @), and R must be polynomials over the integers. For example,
what quotient and remainder would you suggest for P, = 22, and P, = 3z?

In the special case where P, has leading (highest) coefficient either 1 or -1 (that is, P, is monic), and P
has degree no greater than P;, then division is possible. Here’s a recipe:

1. Set the remainder R initially equal to P, and the quotient () initially equal to 0.
2. While the degree of R is no less than the degree of P, do the following steps:

(a) Construct a monomial M (a polynomial with one term) m by raising z (or whatever variable you’re
using) to the exponent equal to the degree of R minus the degree of P, and then multiplying this
power of z by the leading coefficient of R times the leading coefficient of P, (either 1 or -1).

(b) Recalculate @ by adding M to it.

(¢) Recalculate R by subtracting (M x P,) from it. This new remainder will have lower degree than
the old one.

Implement the function monDiv specified in Polynomial.h. For P; or order n, your function should have

complexity O(n?).

What to submit

Submit your implementations of plus, mult, eval, and monDiv (specified in Polynomial.h) in a single file
named Polynomial.c (note both the spelling and upper/lower case). Polynomial.c must include Polyno-
mial.h. Each function must have a function header explaining any non-obvious details of the algorithm and



its implementation. Variables should be named so as to make their purpose obvious, and commented when
this is not possible.

Your Polynomial.c must compile when it is located in the same directory as TestPolynomial.c, Poly-
nomial.h, and makefile, and the commands in makefile are executed. Once you have successfully built
TestPolynomial, you can test drive it by typing:

TestPolynomial < fourByThree.txt

... where you can replace fourByThree.txt with any file (in the same directory as TestPolynomial.c) having
the following format:

nm
a0 al ... an

b0 bl ... bm

cO0 cl ... c(m+n)

d0 d1 ... d(max(m,n))
X

evall

y

eval?2

q0 q1 ... gq(n-m)
r0Orl ... rk

... where the meaning of the cryptic variables is: n and m are the degrees of polyl and poly2 in TestPoly-
nomial.c, a0 ...an are the coefficients of poly1, b0 ...bn are the coefficients of poly2, 0 ...c(m + n) are
the coefficients of mult(polyl, poly2), dO ...dmax(m,n) are the coefficients of plus(polyl, poly2), z
is some integer, and evall is polyl(x), and eval2 is poly2(y). The quotient’s coeflicients are q0, q1i,

.» q(n-m), and r0, rl ...rk are the remainder’s coefficients. poly2 must be monic and of degree no
greater than polyl.

Grading
Here is the distribution of points for this lab, which is worth 4% of your final mark:

Correctness, 50 points: The functions you implement in Polynomial.c will be tested in a manner similar
to TestPolynomial.c. We’ll look at special cases, such as the zero polynomial.

Modularity, 17 points: Your code should be well-organized with an eye to reducing repeated code and
making the meaning clear.

Readability, 17 points: Comments should make your implementation clear, indent to highlight grouping
of code, use meaningful variable and function names.

Efficiency, 17 points: Your implementation should be within the big-Oh constraints given.



