QUESTION 1. [5 MARKS]

Define g(n) as:

$$g(n) = \sum_{i=0}^{2n} 5^i.$$

Prove that $g(n) \mod 6$ is equal to 1 for all $n \in \mathbb{N}$. In other words, prove that for each $n \in \mathbb{N}$, there is some integer k such that g(n) = 6k + 1.

SOLUTION: This question closely resembles Assignment 1, Q6. The difference is that here the base is 5, rather than 2.

CLAIM: P(n): "g(n) mod 6 is equal to 1" is true for all $n \in \mathbb{N}$.

PROOF (SIMPLE INDUCTION ON n): P(0) asserts that $\left(\sum_{i=0}^{0} 5^{i}\right)$ mod 6 is equal to 1. In other words, 1 mod 6 = 1, which is certainly true since $1 = 6 \times 0 + 1$. Thus the base case holds.

INDUCTION STEP: In order to prove that P(n) implies P(n+1) for an arbitrary natural number n, I assume P(n). In other words, my induction hypothesis is that $\left(\sum_{i=0}^{2n} 5^i\right) = 6k+1$, for some integer k. Now I can re-write $g(n+1) = \sum_{i=0}^{2(n+1)}$ and use the IH:

$$\sum_{i=0}^{2(n+1)} 5^{i} = 5^{0} + 5^{1} + \left(\sum_{i=2}^{2(n+1)} 5^{i}\right)$$
[factoring out 5^{2}] = $6 + \left(5^{2} \sum_{i=0}^{2n} 5^{i}\right)$
[by IH] = $6 + 5^{2} 6k + 1 = 6(1 + 5^{2}k) + 1$.

So $g(n+1) \mod 6$ equals 1, and $P(n) \Rightarrow P(n+1)$, as wanted. I conclude that P(n) holds for all $n \in \mathbb{N}$. QED.

State and verify basis: 1 mark. -0.5 if g(n) is used as a predicate. -1 for making $\forall n$ part of the predicate. -0.5 if the base case omits n=0 (and starts at n=1).

SET UP INDUCTION: 1 mark. You need to state something equivalent to "I will show that P(n) implies P(n+1)," or "assume P(n) for an arbitrary $n \in \mathbb{N}$, now show P(n+1)."

INDUCTION STEP: 2 marks. Show that $P(n) \Rightarrow P(n+1)$. -1 if step where IH is used is not explicitly shown.

Conclusion: 1 mark. Conclude that P(n) is true for all n.

REMARKS: There is no need to use induction to prove that $5^n + 5^{n+1}$ is divisible by 6 — algebra will do. Also, many answers omitted a term from $\sum_{i=0}^{2m+2} 5^i = (\sum_{i=0}^{2m} 5^i) + 5^{2m+1} + 5^{2m+2}$.

QUESTION 2. [5 MARKS]

For $k \in \mathbb{N}$, define $U(3^k)$ as:

$$U(3^k) = egin{cases} c, & k = 0 \ 3U(3^{k-1}) + d3^k, & k > 0 \end{cases}.$$

Prove that for all $k \in \mathbb{N}$, $U(3^k) = 3^k(c + dk)$.

SOLUTION: This question closely resembles the exercise worked in lecture for the complexity of MergeSort, in the on-line lecture summary for Week 4.

CLAIM: P(k) " $U(3^k) = 3^k(c+dk)$ " is true for all $k \in \mathbb{N}$.

PROOF (SIMPLE INDUCTION ON k): P(0) asserts that U(1) = c, which is true by the definition of $U(3^0)$. Thus the base case holds.

INDUCTION STEP: I want to show that for any $k \in \mathbb{N}$, $P(k) \Rightarrow P(k+1)$, so assume that P(k) is true for some arbitrary $k \in \mathbb{N}$. In other words, I assume that $U(3^k) = 3^k(c+dk)$. Now I can unwind $U(3^{k+1})$ and apply this induction hypothesis

[by definition of
$$U(3^{k+1})$$
] $U(3^{k+1}) = 3U(3^k) + d3^{k+1}$
[by IH] $= 3\left(3^k(c+dk)\right) + d3^{k+1}$
 $= 3^{k+1}c + 3^{k+1}dk + 3^{k+1}d = 3^{k+1}(c+d[k+1]).$

This is exactly what P(k+1) asserts, so $P(k) \Rightarrow P(k+1)$, as wanted. I conclude that P(k) is true for all $k \in \mathbb{N}$.

STATE AND VERIFY BASE CASE: 1 mark. -0.5 if you don't state what claim your algebra is verifying.

SET UP INDUCTION: 1 mark. Either assume P(n) for some arbitrary n, or say you will show that $P(n) \Rightarrow P(n+1)$. -1 mark for assuming P(n) for all n.

INDUCTION STEP: 2 marks. Show that $P(n) \Rightarrow P(n+1)$. -1 mark if you don't indicate where IH is used. -1 mark if you don't indicate where definition of U is used.

Conclusion: 1 mark. Conclude that P(n) holds for all $n \in \mathbb{N}$.

QUESTION 3. [5 MARKS]

Let $PV = \{v, w, x, y, z\}$ be a set of propositional variables. Define a special set of propositional formulas \mathcal{F}^* as the smallest set such that

Basis: Any propositional variable in PV belongs to \mathcal{F}^* .

INDUCTION STEP: If P_1 and P_2 belong to \mathcal{F}^* , then so do $(P_1 \wedge P_2)$, $(P_1 \vee P_2)$, $(P_1 \to P_2)$ and $(P_1 \leftrightarrow P_2)$.

For a propositional formula f, define $\mathbf{cn}(f)$ as the number of instances of connectives from $\{\vee, \wedge, \rightarrow, \leftrightarrow\}$ in f. Define $\mathbf{p}(f)$ as the number of parentheses in f.

Use structural induction to prove that for all $f \in \mathcal{F}^*$, $\mathbf{p}(f) = 2\mathbf{cn}(f)$.

SOLUTION: This question resembles the example worked in lecture (see lecture summary for Week 6).

CLAIM: P(f): "p(f) = 2cn(f)" is true for all $f \in \mathcal{F}^*$.

PROOF (STRUCTURAL INDUCTION ON f): For the basis it is enough to verify that P(f) holds for f = v, f = w, f = x, f = y, and f = z. In each case there are no connectives or parentheses in f, so $\mathbf{p}(f) = 2\mathbf{cn}(f) = 0$. Thus the base case holds.

INDUCTION STEP: Assume that $P(f_1)$ and $P(f_2)$ hold, and that $f = (f_1 * f_2)$, where $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$. Notice that in each case, f has two more parentheses and one more connective than f_1 and f_2 have combined, so the following two observations (observation 1 on the left, observation 2 on the right) hold:

$$p(f) = p(f_1) + p(f_2) + 2$$
 $cn(f) = cn(f_1) + cn(f_2) + 1.$

Using these two observations, you can see that

[by observation 1]
$$\mathbf{p}(f) = \mathbf{p}(f_1) + \mathbf{p}(f_2) + 2$$

[by IH for f_1 and f_2] = $2\mathbf{cn}(f_1) + 2\mathbf{cn}(f_2) + 2 = 2(\mathbf{cn}(f_1) + \mathbf{cn}(f_2) + 1)$
[by observation 2] = $2\mathbf{cn}(f)$.

Thus $P(f_1)$ and $P(f_2)$ imply P(f), as wanted.

I conclude that P(f) holds for all $f \in \mathcal{F}^*$. QED.

STATE AND VERIFY BASIS: 0.5 marks. Check that P(f) holds when f is a propositional variable.

SET UP INDUCTION: 1 mark. Show the connection between a new formula and formulas about which the property, P, is assumed.

INDUCTION STEP: 3 marks. Show that $P(f_1)$ and $P(f_2)$ imply P(f). -1 for not indicating where IH is used. -0.5 if observations about number of connectives, parentheses, or variables in f versus those in subformulas are not explained.

Conclusion: 0.5 marks. Conclude that property P holds for all $f \in \mathcal{F}^*$.

REMARKS: There were some attempts to use simple induction on pv(f) (this won't work). There were some incorrect basis cases (not propositional variables).

Total Marks = 15

Student #: _____