CSC236 QUIZ 7, TUESDAY JULY 12

Name:

Student number:

Prove or disprove the following (no induction needed).

1. If n > 12, then $1 \le \lfloor n/11 \rfloor \le \lceil n/11 \rceil < n$.

SAMPLE SOLUTION: The claim is true.

PROOF: Suppose n > 12. Then n/11 > 1, so (by the definition of floor) $\lfloor n/11 \rfloor \ge 1$. Also, the definition of floor and ceiling mean that $\lfloor n/11 \rfloor \le n/11 \le \lceil n/11 \rceil$. Thus it only remains to prove that $\lceil n/11 \rceil < n$. Let n = 11k + j, where $j, k \in \mathbb{Z}$, and $0 \le j < 11$ (j and k exist, by the division algorithm). Then

$$\left\lceil \frac{n}{11} \right\rceil = \left\lceil \frac{11k+j}{11} \right\rceil = \begin{cases} k+1, & j>0\\ k, & j=0 \end{cases} \le \frac{n+10}{11}.$$

Since n > 12, certainly n > 10 and 2n > 10 + n. Thus 11n > n + 10, so $n > (n + 10)/11 \ge \lfloor n/11 \rfloor$, as wanted. Putting the pieces together, $1 \le \lfloor n/11 \rfloor \le \lfloor n/11 \rfloor < n$. QED.

2. $\forall n \in \mathbb{N} - \{0\}, 2^{\lceil \log_2 n \rceil} < 2n$.

SAMPLE SOLUTION: The claim is true.

PROOF: $2n = 2 \times 2^{\log_2 n} = 2^{(\log_2 n)+1}$. Since log is strictly monotonic, it only remains to prove that $\lceil \log_2 n \rceil < (\log_2 n) + 1$. Suppose not, in other words, suppose $\lceil \log_2 n \rceil \ge (\log_2 n) + 1$. Then we'd have (subtracting 1 from both sides) $\lceil \log_2 n \rceil - 1 \ge \log_2 n$, contradicting the definition of $\lceil \log_2 n \rceil$ as the smallest integer that is no smaller than $\log_2 n$. Therefore $\lceil \log_2 \rceil < (\log_2 n) + 1$, and we have:

$$2^{\lceil \log_2 n \rceil} < 2^{(\log_2 n)+1)} = 2n$$