CSC236 quiz 7, Tuesday July 12

Name:
Student number:

Prove or disprove the following (no induction needed).

1. If $n>12$, then $1 \leq\lfloor n / 11\rfloor \leq\lceil n / 11\rceil<n$.

SAMPLE SOLUTION: The claim is true.
Proof: Suppose $n>12$. Then $n / 11>1$, so (by the definition of floor) $\lfloor n / 11\rfloor \geq 1$. Also, the definition of floor and ceiling mean that $\lfloor n / 11\rfloor \leq n / 11 \leq\lceil n / 11\rceil$. Thus it only remains to prove that $\lceil n / 11\rceil<n$. Let $n=11 k+j$, where $j, k \in \mathbb{Z}$, and $0 \leq j<11$ (j and k exist, by the division algorithm). Then

$$
\left\lceil\frac{n}{11}\right\rceil=\left\lceil\frac{11 k+j}{11}\right\rceil=\left\{\begin{array}{ll}
k+1, & j>0 \\
k, & j=0
\end{array} \leq \frac{n+10}{11} .\right.
$$

Since $n>12$, certainly $n>10$ and $2 n>10+n$. Thus $11 n>n+10$, so $n>(n+10) / 11 \geq$ $\lceil n / 11\rceil$, as wanted. Putting the pieces together, $1 \leq\lfloor n / 11\rfloor \leq\lceil n / 11\rceil<n$. QED.
2. $\forall n \in \mathbb{N}-\{0\}, 2^{\left\lceil\log _{2} n\right\rceil}<2 n$.

Sample solution: The claim is true.
PROOF: $2 n=2 \times 2^{\log _{2} n}=2^{\left(\log _{2} n\right)+1}$. Since log is strictly monotonic, it only remains to prove that $\left\lceil\log _{2} n\right\rceil<\left(\log _{2} n\right)+1$. Suppose not, in other words, suppose $\left\lceil\log _{2} n\right\rceil \geq\left(\log _{2} n\right)+1$. Then we'd have (subtracting 1 from both sides) $\left\lceil\log _{2} n\right\rceil-1 \geq \log _{2} n$, contradicting the definition of $\left\lceil\log _{2} n\right\rceil$ as the smallest integer that is no smaller than $\log _{2} n$. Therefore $\left\lceil\log _{2}\right\rceil<\left(\log _{2} n\right)+1$, and we have:

$$
2^{\left\lceil\log _{2} n\right\rceil}<2^{\left.\left(\log _{2} n\right)+1\right)}=2 n .
$$

