
Introduction to the theory of computation
week 9 (Course Notes, chapters 5)

Propositional formulas

Last time we de�ned a set of well-formed propositional formulas,1 in two steps:

1. Let PV = fv1; v2; : : :g be the (possibly in�nite) set of propositional variables, which
are strings over some alphabet. These stand for the most primitive propositions that
we'll be considering, and they are assigned truth values independently of each other.

2. Our set of propositional formulas, FPV is the smallest set such that:

Basis: Any propositional variable in PV belongs to FPV .

Induction step: If p1 and p2 are in FPV , then so are :p1, (p1 $ p2), (p1 ! p2),
(p1 ^ p2), and (p1 _ p2).

The Unique Readability Theorem (Course Notes) guarantees that there is exactly one
way of parsing each propositional formula, but the cost is that we have to write a lot of
parentheses. We add some rules of precedence to allow us to, informally, leave out a few
parentheses without sacri�cing clarity:

1. Remove the outer parentheses.

2. : has higher precedence than the other connectives.

3. ^ and _ have higher precedence than ! or $, and ^ has higher precedence than _.

4. If you have several operators of the same type in a row, group to the right, so
p1 ! p2 ! p3 is parsed as p1 ! (p2 ! p3).

Applying the precedence rules:

(((:x ^ (y _ z)))! (:((x ^ z) _ y)! (x _ z))) ()
:x ^ (y _ z)! :(x ^ z _ y)! x _ z

1



Now we know which propositional formulas are legal, but they are meaningless unless
we assign truth values to the basic elements, the propositional variables. You may think
of assigning truth values as setting up the current state of the universe | what's true,
what's false.

Tabulating truth

Suppose you have propositional formulas, v1 and v2. There are four possible truth as-
signments to these two formulas, and each of these truth assignments extends to new
formulas formed using the �ve connectives:

v1 v2 :v1 :v2 (v1 ^ v2) (v1 _ v2) (v1 ! v2) (v1 $ v2)
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 0 0
1 1 0 0 1 1 1 1

How do v1 and v2 get their truth assignments? If they are propositional variables,
then there is an arbitrary truth assignment, � , corresponding to a particular row of any
truth table that includes v1 and v2, and then � extends to a truth assignment for any
formulas built from v1 and v2. If v1 and v2 are not propositional variables, then their
truth assignment depends on the truth assignment of the propositional variables they are
formed from.

This tells us how to evaluate any formula, from the inside out, once you know the
truth assignment of its propositional formulas. Here's another example, starting from
propositional variables x, y, and z:

x y z (x _ y) :x (:x ^ z) ((x _ y)! (:x ^ z))
0 0 0 0 1 0 1
0 0 1 0 1 1 1
0 1 0 1 1 0 0
0 1 1 1 1 1 1
1 0 0 1 0 0 0
1 0 1 1 0 0 0
1 1 0 1 0 0 0
1 1 1 1 0 0 0

Rows 1, 2 and 4 have a \1" in the column under the formula we are evaluating | those
are the truth assignments that satisfy our formula. In rows 3, 5, 6, 7 and 8 a \0" appears

2



under the formula we are evaluating | those are the truth assignments that falsify our
formula. A tautology is satis�ed by every truth assignment, a contradiction can't
get any satisfaction.

Normal forms

We can do things the other way around. Start with a column in a truth table, and then
derive a formula. In general, there will be more than one way to do this. Our formula
above is satis�ed by the truth assignment in rows 1, 2, and 4 and no others. We could
match our truth assignment to a conjunction of either propositional variables or negations
of propositional variables (these two categories are called literals), and this conjunction
will match exactly one row:

x y z ((x _ y)! (:x ^ z))
0 0 0 1 :x ^ :y ^ :z
0 0 1 1 :x ^ :y ^ z
0 1 0 0
0 1 1 1 :x ^ y ^ z
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Taking the disjunction of the three conjunctions in the last column gives us an equiv-
alent formula:

(:x ^ :y ^ :z) _ (:x ^ :y ^ z) _ (:x ^ y ^ z)

This propositional formula is satis�ed by exactly the same truth assignments as our original
formula. Conjunctions of one or more propositional variables or their negations (literals)
are called minterms. Formulas that are disjunctions of one or more minterms are in
Disjunctive Normal Form (DNF).

Here's a di�erent approach to an equivalent formula for our truth table. For each of
the rows 3, 5, 6, 7, and 8 (where there is a zero in the column under our formula in the
truth table) write a disjunction of propositional variables or their negations, that is not
satis�ed by that truth assignment, but is satis�ed by all others:

3



x y z ((x _ y)! (:x ^ z))
0 0 0 1
0 0 1 1
0 1 0 0 x _ :y _ z
0 1 1 1
1 0 0 0 :x _ y _ z
1 0 1 0 :x _ y _ z
1 1 0 0 :x _ :y _ z
1 1 1 0 :x _ :y _ :z

A formula that is falsi�ed by any one of these formulas, but no others, is the conjunc-
tion:

(x _ :y _ z) ^ (:x _ y _ z) ^ (:x _ y _ :z) ^ (:x _ :y _ z) ^ (:x _ :y _ :z)

Disjunctions of one or more propositional variables, or their negations, are called max-
terms. Formulas that are conjunctions of 1 or more maxterms are in Conjunctive
Normal Form (CNF).

By the recipe just given, you can construct DNF or CNF formulas to match any truth
table. Your choice of which to construct might be in
uenced by the number of zeros or
ones in the column under the formula you are devising an equivalent formula for.

Logical equivalence

In the previous section we de�ned three di�erent formulas with the same entries in a truth
table | every truth assignment that satis�ed one satis�ed the other two. We should be
able to save ourself some work by working out some standard equivalences.

Here are some \laws" that state special cases of equivalent formulas | any truth
assignment that satis�es one satis�es the other. You can take my word for these laws, or
write out the appropriate truth table to check them (none of the tables will have more
than 8 rows). These formulas can be generalized, since anywhere you see formula P , Q,
or R, you can substitute any propositional formula you want, and the equivalence will be
maintained so long as you apply the equivalence law. Also, the leqv relation (logically
equivalent) is symmetrical, so you can read each law from left to right, or from right to
left.

Double negation law: ::P leqv P .

De Morgan's laws: :(P ^Q) leqv :P _:Q. Symmetrically, :(P _Q) leqv :P ^:Q.

Commutative laws: P ^Q leqv Q ^ P . Symmetrically, P _Q leqv Q _ P .

4



Associative laws: P ^ (Q ^ R) leqv (P ^ Q) ^ R. Symmetrically P _ (Q _ R) leqv
(P _Q) _R.

Distributive laws: P ^ (Q_R) leqv (P ^Q)_ (P ^R). Symmetrically (!) P _ (Q^R)
leqv (P _Q) ^ (P _R).

Identity laws: P leqv P ^ (Q _ :Q). Symmetrically, P leqv P _ (Q ^ :Q).

Idempotency laws: P leqv P _ P . Symmetrically, P leqv P ^ P .

! law: P ! Q leqv :P _Q.

$ law: P $ Q leqv (P ^Q) _ (:P ^ :Q).

Here's an example (Exercise 3c from the Course Notes) of using these laws to prove two
formulas are logically equivalent. Notice how De Morgan's law is used in both directions.

x ^ :y ! :z leqv :(x ^ :y) _ :z [! law]
leqv (:x _ y) _ :z [De Morgan's law]
leqv :x _ (y _ :z) [Associativity]
leqv :x _ (:z _ y) [Commutativity]
leqv (:x _ :z) _ y [Associativity]
leqv :(x ^ z) _ y [De Morgan's law]
leqv x ^ z ! y [! law]

Proving that two propositional formulas are not equivalent has a completely di�erent

avour. In this case it is necessary (and su�cient) to exhibit a truth assignment that
satis�es one formula and falsi�es the other.

Suppose you are asked to show that (y ! x) ^ (z ! x) is not logically equivalent to
(y ^ z) ! x. You may be able to see a truth assignment that satis�es one but not the
other (and then you'd be done), or you could try manipulating the �rst formula a bit:

(y ! x) ^ (z ! x) leqv (:y _ x) ^ (:z _ x) [! law]
leqv (:y ^ :z) _ x [Distributive law]
leqv :(y _ z) _ y [De Morgan's law]
leqv (y _ z)! x [! law]

Now you need to �nd a truth assignment that satis�es exactly one of (y ^ z) ! x or
(y _ z)! x. Certainly � (x; y; z) = (0; 1; 0) satis�es the �rst but not the second, so you've
shown that they are not equivalent.

5



Boolean functions

A function that takes arguments from f0; 1gn and returns values in f0; 1g is called a
boolean function. If n is not too big, you can specify a boolean function with a truth
table. Here's one for n = 3, together with a DNF formula:

x y z f(x; y; z)
0 0 0 1 :x ^ :y ^ :z
0 0 1 0
0 1 0 0
0 1 1 1 :x ^ y ^ z
1 0 0 0
1 0 1 1 x ^ :y ^ z
1 1 0 1 x ^ y ^ :z
1 1 1 0

Here's the DNF formula:

(:x ^ :y ^ :z) _ (:x ^ y ^ z) _ (x ^ :y ^ z) _ (x ^ y ^ :z):

This DNF formula represents the boolean function speci�ed in the truth table. The
DNF formula can also be represented as a tree, where the leaves are variables x, y, or z
and the interior nodes are symbols ^, _, or :.

x

:

y

:

z

:
,

,
l
l

^
!!!!

l
l

^

x

:

y z

,
,

l
l

^
!!!!

l
l

^

x

y

: z

,
,

l
l

^
!!!!

l
l

^

x

y

z

:
,

,
l
l

^
!!!!

l
l

^
»»»»»»

XXXXXX

_
((((((((((

XXXXXX

_
(((((((((((((((

XXXXXX

_

Now the parse tree can be turned into a circuit diagram, by replacing :, _, and ^ by
the symbols for an inverter, or-gate, and and-gate, and then drawing input lines to tie
together all the x, y, and z inputs.

6



Since every boolean function can be represented by a DNF formula (we have a recipe
for doing so), this means that every boolean function can be represented by a propositional
formula containing only ^, _, and : symbols, and implemented by a circuit containing
only and or and not gates. We say that f^;_;:g is a complete set of connectives
(every boolean function can be represented using these connectives). In the Course Notes
you can see that f^;:g is a complete set of connectives, but f^;_g is not.

7



Notes

1aka formulae | it depends on whether you use the Latin or Germanic formula for
forming plurals.

8


