CSC236 quiz 6, Tuesday July 5

Name: ___________________________ Student number: ___________________________

Consider the method seventeenTicker, below. Prove the following loop invariant holds given the precondition:

\[P(i) \text{ “If there are } i \text{ iterations of the loop, then } 17q_i + r_i \leq t \text{ and } r_i \leq 16. \text{ If there are } i + 1 \text{ iterations of the loop, then } 17q_i + r_i < 17q_{i+1} + r_{i+1}.” \text{ Then } \forall i \in \mathbb{N}, P(i). \]

Explain how to use \(P(i) \) to show that seventeenTicker correct with respect to its precondition/postcondition. You may assume that the java type \(\text{int} \) is the same as the integers.

Proof (Induction on \(i \)): If \(i = 0 \), then \(P(i) \) asserts that \(17q_0 + r_0 = 17(0) + 0 \leq t \) (true, since by the precondition \(t \geq 0 \)), that \(r_0 \leq 16 \) (true, since \(r_0 = 0 \)), and if there is an \((i + 1)\)th loop iteration, then \(17q_i + r_i = 0 < 17q_{i+1} + r_{i+1} = 17(0) + 1 \), which is true, since \(0 < 1 \). Thus the base case holds.

Induction Step: Assume that \(P(i) \) holds for some arbitrary \(i \in \mathbb{N} \). I wish to show that this implies \(P(i+1) \). If there is no \((i + 1)\)th iteration of the loop, then \(P(i+1) \) holds vacuously. Otherwise, by the IH, \(17q_i + r_i \leq t \), and (since there is another iteration) \(17q_i + r_i \neq t \), so \(17q_i + r_i < t \). This means that \(17q_i + r_i + 1 \leq t \). Consider two cases:

Case 1, \(r_i < 16 \): In this case the \((r < 16)\)” branch is executed, so \(r_{i+1} = r_i + 1 \), \(q_{i+1} = q_i \), so \(17q_i + r_i < 17q_i + r_i + 1 = 17q_{i+1} + r_{i+1} \leq t \). Also, \(r_{i+1} \leq 16 \), since \(r_i < 16 \).

Case 2, \(r_i \geq 16 \): By the IH, \(r_i \leq 16 \), so this implies \(r_i = 16 \). In this case the \((r < 16)\)” else” branch is executed, and \(r_{i+1} = 0 \), \(q_{i+1} = q_i + 1 \), so \(17q_i + r_i < 17q_i + r_i + 1 = 17(q_i + 1) + r_i - 16 = 17q_{i+1} + r_{i+1} \leq t \). Also, \(r_{i+1} = 0 \leq 16 \).

In both cases \(17q_{i+1} + r_{i+1} \leq t \) and \(r_{i+1} \leq 16 \), as claimed. Furthermore, if there is an \((i+2)\)th iteration of the loop, then there are two cases to consider:

Case 1, \(r_{i+1} < 16 \): In this case the \((r < 16)\)” branch is executed, so \(q_{i+2} = q_{i+1} \) and \(r_{i+2} = r_{i+1} + 1 \). Thus \(17q_{i+2} + r_{i+2} = 17q_{i+1} + r_{i+1} + 1 > 17q_{i+1} + r_{i+1} \), as wanted.

Case 2, \(r_{i+1} \geq 16 \): In this case the \((r < 16)\)” else” branch is executed, so \(q_{i+2} = q_{i+1} + 1 \) and \(r_{i+2} = 0 \). Thus \(17q_{i+2} + r_{i+2} = 17q_{i+1} + 17 + 0 = 17q_{i+1} + r_{i+1} + 1 \) (since we showed above that \(r_{i+1} \leq 16 \), so in this case it must equal 16).

In all cases we have \(P(i+1) \), so \(P(i) \Rightarrow P(i+1) \), as wanted.

I concluded that \(P(i) \) is true for all \(i \in \mathbb{N} \).

Loop invariant \(P(i) \) shows that the sequence \(t - (17q_i + r_i) \) is non-negative and strictly decreasing. Since the sequence involves sums, differences, and multiples of integers, each term is an integer. Thus it is a strictly decreasing sequence of natural numbers, hence finite (by PWO) — there is some last term \(k \). Thus there is no \((k+1)\)th iteration of the loop, and the loop terminates.