CSC236 quiz 6, Tuesday July 5

Name:
Student number:

Consider the method seventeenTicker, below. Prove the following loop invariant holds given the precondition:
$P(i)$ "If there are i iterations of the loop, then $17 q_{i}+r_{i} \leq t$ and $r_{i} \leq 16$. If there are $i+1$ iterations of the loop, then $17 q_{i}+r_{i}<17 q_{i+1}+r_{i+1}$." Then $\forall i \in \mathbb{N}, P(i)$.

Explain how to use $P(i)$ to show that seventeenTicker correct with respect to its precondition/postcondition. You may assume that the java type int is the same as the integers.

Proof (induction on i): If $i=0$, then $P(i)$ asserts that $17 q_{i}+r_{i}=17(0)+0 \leq t$ (true, since by the precondition $t \geq 0$), that $r_{i} \leq 16$ (true, since $r_{0}=0$), and if there is an $(i+1) t h$ loop iteration, then $17 q_{i}+r_{i}=0<17 q_{i+1}+r_{i+1}=17(0)+1$, which is true, since $0<1$. Thus the base case holds.

Induction step: Assume that $P(i)$ holds for some arbitrary $i \in \mathbb{N}$. I wish to show that this implies $P(i+1)$. If there is no $(i+1)$ thth iteration of the loop, then $P(i+1)$ holds vacuously. Otherwise, by the IH, $17 q_{i}+r_{i} \leq t$, and (since there is another iteration) $17 q_{i}+r_{i} \neq t$, so $17 q_{i}+r_{i}<t$. This means that $17 q_{i}+r_{i}+1 \leq t$. Consider two cases:

CASE 1, $r_{i}<16$: In this case the " $r<16$)" branch is executed, so $r_{i+1}=r_{i}+1, q_{i+1}=q_{i}$, so $17 q_{i}+r_{i}$ $<17 q_{i}+r_{i}+1=17 q_{i+1}+r_{i+1} \leq t$. Also, $r_{i+1} \leq 16$, since $r_{i}<16$.

CASE 2, $r_{i} \geq 16$: By the IH, $r_{i} \leq 16$, so this implies $r_{i}=16$. In this case the " $(r<16)$ else" branch is executed, and $r_{i+1}=0, q_{i+1}=q_{i}+1$, so $17 q_{i}+r_{i}<17 q_{i}+r_{i}+1=17\left(q_{i}+1\right)+r_{i}-16=$ $17 q_{i+1}+r_{i+1} \leq t$. Also, $r_{i+1}=0 \leq 16$.

In both cases $17 q_{i+1}+r_{i+1} \leq t$ and $r_{i+1} \leq 16$, as claimed. Furthermore, if there is an $(i+2)$ th iteration of the loop, then there are two cases to consider:

CASE $1, r_{i+1}<16$: In this case the " $(r<16)$ " branch is executed, so $q_{i+2}=q_{i+1}$ and $r_{i+2}=r_{i+1}+1$. Thus $17 q_{i+2}+r_{i+2}=17 q_{i+1}+r_{i+1}+1>17 q_{i+1}+r_{i+1}$, as wanted.
CASE 2, $r_{i+1} \geq 16$: In this case the " $(r<16)$ else" branch is executed, so $q_{i+2}=q_{i+1}+1$ and $r_{i+2}=0$. Thus $17 q_{i+2}+r_{i+2}=17 q_{i+1}+17+0=17 q_{i+1}+r_{i+1}+1$ (since we showed above that $r_{i+1} \leq 16$, so in this case it must equal 16).

In all cases we have $P(i+1)$, so $P(i) \Rightarrow P(i+1)$, as wanted.
I concluded that $P(i)$ is true for all $i \in \mathbb{N}$.
Loop invariant $P(i)$ shows that the sequence $\left\langle t-\left(17 q_{i}+r_{i}\right)\right\rangle$ is non-negative and strictly decreasing. Since the sequence involves sums, differences, and multiples of integers, each term is an integer. Thus it is a strictly decreasing sequence of natural numbers, hence finite (by PWO) - there is some last term k. Thus there is no $(k+1)$ th iteration of the loop, and the loop terminates.

