
Introduction to the theory of computation
week 8 (Course Notes, chapters 3 & 5)

MergeSort complexity: loose ends

Last time we considered MergeSort:

MergeSort(A; f; l)
# Precondition: 0 � f � l � length(A)� 1
# Postcondition: A[f::l] has the same elements as before the invocation,

in sorted order; and all other elements of A are unchanged

if f = l then # already sorted

return

else

m := (f + l) div 2 # m is the middle index of A[f::l]
MergeSort(A; f;m) # sort the first half

MergeSort(A;m+ 1; l) # sort the second half

Merge(A; f;m; l) # merge the two sorted halves

end if

. . . and decided that the number of steps it took was bounded by T (n), de�ned by:

T (n) =

(
c; n = 1
T (dn=2e) + T (bn=2e) + dn; n > 1

:

Although the formula for T (n) neglects some constant steps from each call to T (n) (the overhead of the if

statement, and time to calculate m), this doesn't a�ect T (n)'s validity as a lower bound. If you want to use
T (n) as an upper bound, increasing the parameter d more than accounts for these constant steps.

There are a few issues we have to deal with before coming up with a closed-form bound on T (n).

Issue 1: Does the given de�nition work? Since the de�nition is given recursively, it is enough to verify that
1 � bn=2c � dn=2e < n when n > 1, to see that T (n) is well-de�ned (a short proof by induction will
do this). Lemma 3.5 from the Course Notes show us that:

Claim: For any integer n > 1, you have 1 � bn=2c � dn=2e < n.
Proof: For odd n, dn=2e = (n + 1)=2, and for even n, dn=2e = n=2 < (n + 1)=2, so in either

case dn=2e � (n+ 1)=2. By assumption, n > 1, so 2n > n+ 1, and n > (n+ 1)=2 � dn=2e.
Thus, dn=2e < n if n > 1. By de�nition, bn=2c � dn=2e, and when n > 1, you have n � 2,
so n=2 � 1, so bn=2c � 1. Putting these inequalities together gives you

1 � bn=2c � dn=2e < n for n > 1.

This is what was to be proved. QED.
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Issue 2: Does the algorithm break n roughly in half (or at least into strictly smaller pieces)? In other words,
if n = l� f + 1 (number of array elements in A[f::l], and if l� f > 0 (so we set m = b(f + l)=2c), then
is m � f + 1 = dn=2e and is l � (m + 1) + 1 = bn=2c? If I de�ne � = (f + l)=2 � b(f + l)=2c, then
1 > � � 0, and

l� (m+ 1) + 1 = l�m = l�
�
f + l

2

�
= l� f + l

2
+ � =

�
l� f + l

2

�
=
�
l� f

2

�
=

�
l� f + 1

2

�
=
jn

2

k
(Verify dk=2e = b(k + 1)=2c for k 2 N, see Course Notes, Section 5.8, Theorem 5.14) This exercise
shows that if MergeSort is called on an array of size n > 1, then it recursively calls itself on sub-arrays
of sizes dn=2e and bn=2c. Recall from Lecture 1 that n = bn=2c + dn=2e.

Issue 3: Can we solve a special case of the recurrence? There doesn't seem to be a consistent way to
evaluate T (dn=2e) or T (bn=2c), so you can make the simplifying assumption that n = 2k for some
k 2 N | n is a natural power of 2. Now you can re-write T (n) as

T (2k) =

(
c; k = 0
2T (2k�1) + d2k; k > 0

:

Now there is a recursive pattern that can be revealed by \unwinding" T (2k):

T (2k) = 2T (2k�1) + d2k

= 2(2T (2k�2) + d2k�1) + d2k = 22T (2k�2) + 2d2k

= 22(2T (2k�3) + d2k�2) + 2d2k = 23T (2k�3) + 3d2k

...
= 2kT (2k�k) + kd2k = 2kc+ kd2k = 2k(c+ kd):

Notice how this expression works even when k = 0. However, the vertical dots amount to (careful)
hand-waving, so we'll need to use something (induction) to make the reasoning precise. You can use
PSI:

Claim: P (k): \T (2k) = 2k(c+ kd)" is true for all k 2 N.

Proof (induction on n): P (0) states that T (1) = c, which is certainly true, given the de�nition
of T (n).
Induction step: I want to show that P (k) ) P (k + 1), so I assume that P (k) is true for
some arbitrary k 2 N. Now I unwind T (2k+1) a little, and then use the inductive hypothesis
(IH) on it:

T (2k+1) = 2T (2k) + 2k+1d = 2(2k(c+ kd)) + 2k+1d = 2k+1(c+ [k + 1]d)

This is exactly what P (k + 1) asserts, so P (k) ) P (k + 1).
I conclude that P (k) is true for all k 2 N. QED.

Translating this result back into n = 2k, this says that whenever n is a natural power of 2, then T (n)
= nc+ n log2(n)d.

Issue 4: What about all the other n that aren't powers of 2? We'd like to show that if n = 2x (x is a
non-negative real number), then T (2x) � T (2dxe). This would be immediate if we knew that T (n)
were monotonic (so m < n would imply that T (m) � T (n)), so that's the next thing to show.
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Claim: P (n) \For every positive integer m less than n, T (m) � T (n)" is true for all n 2 N� f0g.
Proof (complete induction on n): You need to show that for an arbitrary positive integer n,

P (f1; : : : ; n� 1g) ) P (n). So, for an arbitrary n 2 N� f0g, assume P (f1; : : : ; n� 1g).
P (1) is trivially true, because there are no positive integers m less than 1. P (2) states that T (1)
� T (2), or in other words c � 2T (1) + 2d = 2c + 2d, which is also true because c and d are not
negative.
Now consider P (n) when n > 2. This means that 1 < n � 1 < n, and (by Lemma 3.5, above)
1 � bn=2c � dn=2e � n. Since you've assume P (f1; : : : ; n� 1g), in particular you have assumed
P (n � 1), P (bn=2c), and P (dn=2e). By assuming P (n � 1) you've assumed that T (n � 1) is no
smaller than T (m) for any positive natural number m less than n� 1, so all you need now is to
show that T (n� 1) � T (n). We have (by de�nition, since n� 1 > 1):

T (n� 1) = T
��

n� 1
2

��
+ T

��
n� 1

2

��
+ d(n� 1)

[by P (bn=2c), P (dn=2e), and d � 0] � T (bn=2c) + T (bn=2c) + dn
= T (n):

Therefore, T (n� 1) � T (n), so P (f1; : : : ; n� 1g) ) P (n), as wanted.
Conclude that P (n) is true for all n 2 N� f0g, in other words, if m and n are natural numbers
with m < n, then T (m) � T (n).

Bounding T (n)

Suppose n is an arbitrary natural number (not necessarily a natural power of 2). You know that n is no
bigger than the next largest natural power of 2 bn, that is

n=2 < 2blog2 nc � n = 2log2 n � 2dlog2 ne = bn < 2n:

Now you can use what you already know about T (2dlog2 ne) to create an upper bound for T (n), let 2dlog2 ne
= bn for convenience, and for any n � 2:

[T (n) monotone, and bn is a power of 2] T (n) � T (bn) = bn(c+ d log2 bn)
[log monotone, and bn < 2n] � 2n(c+ d log2[2n]) = 2n(c+ d+ d log2 n)

[log2 n � 1 if n � 2] � 2n(c log2 n+ d log2 n+ d log2 n)
[where � = (2c+ 4d)] = �n log2 n

In other words, T (n) is big-oh of n logn. A very similar computation shows that T (n) � �0n log2 n (�0 6= �),
which means that T (n) is big-omega of n logn. Let 2blog2 nc = �n, and since T (n) is monotone, for n � 4:

T (n) � T (�n) = �n(c+ d log2 �n)

[n=2 < �n, and log2 monotone] � n
2

(c+ d log2(n=2)) =
n
2

(c+ d log2 n� d)
[log2 n � 2 for n � 4] =

n
2

�
c+

d
2

log2 n+ d
�

log2 n
2
� 1
��

[c, d are nonnegative. Let �0 = d=4.] � n
2

�
d
2

log2 n
�

= �0n log2 n:

The meaning of this is that if you drew the graph of T (n), you could sandwich it between � logn, and
�0 logn (except for the �rst few values, perhaps).
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Divide and conquer: the Master Theorem (Chapter 3)

The strategy of MergeSort can be generalized to other algorithms. The idea is to divide the input of size
n into pieces that are of size roughly n=b (for some positive natural number b), solve the smaller problems,
and combine them using a technique that is polynomial in n, that is requiring dnl, for some natural number
l. Assume there is some ad-hoc method for solving very small instances of the problem (between 1 and b),
and these take no more than c steps. Since n=b can hardly be expected to be a natural number for every
n, there will be a1 pieces of size dn=be, and a2 pieces of size bn=bc. Putting all this together gives you a
recursive relation for T (n):

T (n) =

(
c; 1 � n < b
a1T

��n
b

��
+ a2

��n
b

��
+ dnl; n � b

You can get a closed form for T (n) following the same steps as for MergeSort:

1. Solve the problem when n is a power of b, that is n = bk. In Assignment 2, you will show that, if
a = a1 + a2, then

T (n) = akT (1) + dnl
logb(n)�1X

j=0

� a
bl
�j

= cnlogb a + dnl
logb(n)�1X

j=0

� a
bl
�j
:

This is still not in closed form, due to the sum at the end. This is a geometric series with logb(n)
terms. Using a trick attributed to Gauss, and setting a=bl = � for convenience, this becomes

logb(n)�1X
j=0

�j =

(
(1� �logb(n))=(1� �); � 6= 1
logb(n); � = 1

:

This means that T (n) will have di�erent forms according to whether � is less than, equal to, or greater
than, one. In the Course Notes pages 90 and 91 you can work out the algebra for these three cases to
show that if n is a natural power of b, then for some non-negative constant �:

T (n) �
8>><>>:
�nl; a < bl

�nl logb(n); a = bl

�nlogb(a); a > bl
:

2. Prove that T (n) is monotone increasing (similar to the proof for MergeSort).

3. Extend the bound on T (n) to all n, not just powers of b. Derive a closed-form upper bound for T (n),
for some non-negative constant �:

T (n) �
8>><>>:
�nl; a < bl

�nl logb(n); a = bl

�nlogb(a); a > bl
:

4. Derive a lower bound on T (n) for some non-negative constant �0:

T (n) �
8>><>>:
�0nl; a < bl

�0nl logb(n); a = bl

�0nlogb(a); a > bl
:

This gives an upper and lower bound for an entire class of algorithms.
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Propositional formulas and truth (Chapter 5)

From CSC165 you know that propositions (aka statements) are sentences that can be evaluated to exactly
one value from ftrue; falseg. For example:

True: \Water is wet."

False: \Snow is carnivorous."

You can combine old propositions to get new ones using connectives:

Conjunction: \Water is wet and snow is carnivorous." (false, because and requires both propositions to
be true).

Disjunction: \Water is wet or snow is carnivorous." (true, because or requires at least one proposition
to be true).

Conditional: \Water is wet implies that snow is carnivorous." (false, since we can have wet water
without carnivorous snow).

Biconditional: \Water is wet if and only if snow is carnivorous." (false again).

Negation: \It is not true that snow is carnivorous." (true, because it negates something false).

The English language is a verbose and slippery object. Long and complex propositions become very di�-
cult to accurately evaluate. The notation of propositional formulas allows us to make complex propositional
formulas briefer and (usually) clearer.

Propositional variables: Our set of propositional variables, PV contains strings representing the sim-
plest (most primitive) propositions we are currently considering.

Propositional formulas: Our set of propositional formulas, FPV , is the smallest set such that

1. Any propositional variable in PV belongs to FPV .

2. FPV is closed under the following operations on members P1 and P2:

(a) f1(P1) = :P1.
(b) f2(P1; P2) = (P1 ! P2).
(c) f3(P1; P2) = (P1 $ P2).
(d) f4(P1; P2) = (P1 ^ P2).
(e) f5(P1; P2) = (P1 _ P2).

Operators f2; : : : ; f4 insert one of the binary connectives f!;$;^;_g between its arguments and wrap the
result with parentheses. Operator f1 prepends the unary connective : to its argument and leaves out the
parentheses.

By applying the basis and induction step you can build an arbitrarily complex formula with an unam-
biguous structure | each separate formula can be uniquely parsed by matching left and right parentheses
(see the Unique Readability Theorem in the Course Notes). This means that there is one and only one
way to read the formula as one or more sub-formulas combined with a connective. Here's a propositional
formula:

((:x ^ (y _ z))! (:((x ^ z) _ y)! (x _ z)))

Unique readability comes at the cost of very thick layers of parentheses for even moderately complex formulas.
There are agreed-upon conventions that allow us to (informally)write formulas with fewer parentheses by
using rules of precedence (some operators bind \tighter" than others) and associativity:
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1. Omit the outer parentheses.

2. ^ and _ have precedence over ! and $, while ^ has precedence over _.

3. If the same connective is used several times in a row, grouping is assumed to be to the right. Using
these rules, re-write the example above:

((:x ^ (y _ z)) ! (:((x ^ z) _ y)! (x _ z)))
:x ^ (y _ z) ! :(x ^ z _ y)! x _ z

So far we have de�ned what is a well-formed (legal) propositional formula. However, these are meaningless
strings unless you assign truth values to the basis elements (propositional variables), and have consistent
rules for truth values of more complicated variables. Assigning truth values can be thought of as setting the
current state of the universe (what's true, what's false).
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