Introduction to the theory of computation
week 6 (chapter 2 of Course Notes)

21st June 2005

- Note (under web page announcements) that your A1 mark is increased by 6/59.
- A2 is due Thursday at 10 am, in drop box or electronic submission of a PDF file.

Binary search example, continued...

Last time we were in the midst of proving the following loop invariant, which we believe will help us to prove binary search correct with respect to its specifications:

Let $P(i)$ be “If the precondition of binSearch is satisfied and the loop as at least i iterations, then $0 \leq f_i \leq l_i \leq A.length - 1$ and $(t_x \in [f_i, l_i]) \land x \not\in A$, where t_x denotes the lowest index, if it exists, such that $A[t_x] == x$.”

Claim: $P(i)$ is true for all $i \in \mathbb{N}$.

Proof (induction on i): When $i = 0$, $P(i)$ states that $0 \leq f_0 \leq l_0 \leq A.length - 1$ and $(t_x \in [f_0, l_0]) \land x \not\in A$. Well, according to the program $f_0 = 0$ and $l_0 = A.length - 1$, so the claim holds for the base case.

Induction Step: Assume that $P(i)$ is true for some arbitrary natural number i. I need to show that this implies $P(i+1)$. If there is no $(i + 1)$th iteration of the loop, then $P(i + 1)$ is vacuously true. Otherwise, the loop did not exit after iteration i, which means that $f_i < l_i$, since by $P(i)$ $f_i \leq l_i$ and (by non-exiting) $f_i \neq l_i$. Recall that $m_{i+1} = (f_i + l_i)/2$. Thus

$$m_{i+1} = \frac{f_i + l_i}{2} \geq (f_i + f_i)/2 = f_i$$

on the other hand

$$m_{i+1} = \frac{f_i + l_i}{2} \leq \frac{(l_i - 1 + l_i)}{2} = \frac{|(2l_i - 1)/2|}{2} = \frac{|l_i - \frac{1}{2}|}{2}$$

so $f_i \leq m_{i+1} < l_i$.

(full solution here)

Now combine the loop invariant with the assumption that binSearch terminates:
CLAIM: The precondition plus termination imply the postcondition.2

This proves partial correctness. To prove termination, you need to make precise your intuition that if the gap from f to l gets steadily smaller, but never less than zero, eventually you must have $f = l$. In symbols this says that if $g_i = l_i - f_i$, then g_i is always non-negative, and if g_{i+1} exists, then $g_i > g_{i+1}$. If you can prove these two things, then the sequence (g_0, g_1, \ldots) is finite (by well-ordering it has a smallest element g_k, and hence no g_{k+1}), so there are finitely many loop iterations. Since l_i and f_i are integers, so is their difference, and (by the loop invariant proved above) $l_i \geq f_i$, so g_i is a natural number. It remains to show that (g_i) is strictly decreasing.

CLAIM: If the loop is executed at least $i + 1$ times, then $g_{i+1} < g_i$.3

Notice that nowhere did we claim that the loop exit condition would be satisfied. In general, reasoning that some function of the loop index defines a strictly decreasing sequence of natural numbers is easier than directly showing that the loop condition is eventually satisfied.

CLAIM: Suppose the precondition is satisfied. Then $\text{binSearch}(A, x)$ terminates.4

Binary multiplication

Multiply binary numbers $(m = 101) \times (n = 11)$ (using distributivity) is the same as $1 \times 11 + 00 \times 11 + 100 \times 11$ (the same product in base 10 translates into: 5×3 equals $1 \times 3 + 0 \times 3 + 4 \times 3$). This is the same as our usual algorithm for multiplying numbers in base 10.

\[
\begin{array}{c}
11 \\
\times 101 \\
\hline
- - - - - \\
\end{array}
\]

\[
\begin{array}{c}
z_0 = 0 \\
z_1 = 1 \times 11 = z_0 + 2^0 \times 1 \times 11 \\
z_2 = 01 \times 11 = z_1 + 2^1 \times 0 \times 11 \\
z_3 = 101 \times 11 = z_2 + 2^2 \times 1 \times 11 \\
\hline
1111
\end{array}
\]

The program $\text{mult}(m, n)$ assumes that you can quickly multiply and divide by 2 (perhaps using left-shift and right-shift), and then implements multiplication of natural number m by integer n (see program listing Example.java). (By the way, Java integer division / and mod operator % don’t match our definition from Chapter 1 for negative arguments).

At every iteration of the loop, z_i holds our result so far. Examining the algorithm, z_i holds n times the right-most i bits of m (write this out). In symbols:

\[
z_i = n \times (\text{right-most } i \text{ bits of } m)
\]

\[
= n \times (m - (m/2^i) \times 2^i)
\]

\[
= nm - (m/2^i)n2^i
\]

\[
= nm - x_i y_i
\]

We state (and prove) this invariant below. However (since it is easier) we prove termination of $\text{mult}(m, n)$ first.

CLAIM: If the loop is iterated at least $i + 1$ times, then $x_i > x_{i+1}$.5
CLAIM: The loop in \(\text{mult}(m, n) \) terminates.\(^6\)

CLAIM: \(P(i) \): “If the loop has \(i \) iterations, then \(z_i = mn - x_iy_i \)” is true for all \(i \in \mathbb{N} \).\(^7\)

CLAIM (PARTIAL CORRECTNESS): Suppose the precondition holds and \(\text{mult}(m, n) \) terminates. Then, when it terminates, the postcondition holds.\(^8\)

Thus we’ve proved termination and then partial correctness of \(\text{mult}(m, n) \). The hard work was coming up with the appropriate loop invariant.
Notes

1 Proof (induction on i): P(0) states that if the precondition of binSearch is satisfied, and the loop has at least i iterations, then \(0 \leq f_0 \leq l_0 \leq A.length - 1\) and \((t_x \in [f_i, l_i]) \lor x \notin A\). Inspecting the program we see that \(f_0 = 0\) and \(l_0 = A.length - 1\), so the first part of the invariant is true, and either \(t_x \in [0, A.length - 1]\) or else \(x \notin A\), so the claim holds for the base case.

Induction Step: Assume that \(P(i)\) holds for some arbitrary natural number \(i\). If there is no \((i + 1)th\) iteration, then \(P(i + 1)\) holds vacuously (empty antecedent). Otherwise, \(f_i \neq l_i\), so (since \(f_i \leq l_i\)) we must have \(f_i < l_i\). This means that

\[
m_{i+1} = \frac{(f_i + l_i)}{2}
\]

integer division monotonic:

\[
\geq \frac{(f_i + f_i)}{2} = f_i
\]

... and you also

\[
m_{i+1} = \frac{(f_i + l_i)}{2}
\]

\[
\leq \frac{(l_i - 1 + l_i)}{2}
\]

integer division floors real division

\[
= \lfloor\frac{l_i - 1}{2}\rfloor
\]

\[
< l_i
\]

So \(f_i \leq m_{i+1} < l_i\), and we need to consider two cases.

1. If \(A[m_{i+1}] \geq x\), then you set \(f_{i+1} = f_i \leq m_{i+1} = l_{i+1}\), and so \(0 \leq f_{i+1} \leq l_{i+1} \leq A.length - 1\), as wanted. If \(t_x\) exists, we must have \(t_x \leq m_{i+1} = l_{i+1}\), since array \(A\) is sorted, and by \(P(i), t_x \in [f_i, l_i]\), so \(t_x \geq f_i = f_{i+1}\). Thus either \(t_x \in [f_{i+1}, l_{i+1}]\) or \(x \notin A\).

2. If \(A[m_{i+1}] < x\), then you set \(f_i < f_{i+1} = m_{i+1} + 1 \leq l_{i+1} = l_i\), so \(0 \leq f_{i+1} \leq l_{i+1} \leq A.length - 1\), as wanted. If \(t_x\) exists we must have \(t_x \geq m_{i+1} + 1 = f_{i+1}\), since the array \(A\) is sorted, and by \(P(i)\) \(t_x \in [f_i, l_i]\), so \(t_x \leq l_i = l_{i+1}\). Thus either \(t_x \in [f_{i+1}, l_{i+1}]\) or \(x \notin A\).

In both cases, the two invariants hold, so we have shown that \(P(i) \Rightarrow P(i + 1)\), and we conclude that \(P(i)\) holds for all \(i \in \mathbb{N}\). QED.

2 Proof: Suppose binSearch terminates at the end of the \(kth\) loop iteration. Examination of the loop condition implies that \(f_k = t_k\). The loop invariant, \(P(k)\), implies that either \(t_x \in [f_k, f_k]\), in which case binSearch returns \(t_x = f_k\), and \(A[t_x] = x\), or else \(x \notin A\), and (since \(0 \leq f_k \leq A.length - 1\) implies that \(f_k\) is a valid index for \(A\), \(A[f_k] \neq x\), so binSearch \((A, x)\) returns \(A.length\). In either case binSearch \((A, x)\) satisfies the postcondition, as claimed. QED.

3 Proof: Suppose the loop iterates at least \(i + 1\) times. Since it doesn’t terminate at the end of loop \(i\), we must have \(f_i < l_i\), so (by result in loop invariant) \(f_i \leq m_{i+1} < l_i\). If \(A[m_{i+1}] \geq x\) then (by the program) \(f_{i+1} = f_i\) and \(l_{i+1} = m_{i+1}\), and so \(g_{i+1} = l_{i+1} - f_{i+1} = m_{i+1} - f_i < l_i - f_i = g_i\), and the claim holds. If
Proof: The sequence \(\langle g_i \rangle \) is composed of natural numbers, since \(l_i \) and \(f_i \) are integers with \(l_i \geq f_i \) by the loop invariant. The set of values in \(\langle g_i \rangle \) form a non-empty subset of \(\mathbb{N} \) (containing at least \(l_0 - f_0 \)), and hence have a smallest element \(g_k \). Since (by the previous claim) \(\langle g_i \rangle \) is strictly decreasing, \(g_k \) is also the last element, hence there are no more than \(k \) loop iterations and \(\text{binSearch}(A, x) \) terminates. QED.

Proof: Since \(x_0 = m \) is assumed (by the precondition) to be a natural number, repeated integer division yields natural number quotients so (by a short induction proof omitted here), \(x_i \) is a natural number. If there is an \((i + 1) \)th iteration of the loop, then \(x_i \neq 0 \) implies \(x_i > 0 \) (natural numbers are non-negative), so we have \(2x_i > x_i \), (add \(x_i \) to both sides), which in turn implies \(x_i > x_i / 2.0 \geq \lfloor x_i / 2.0 \rfloor = x_{i+1} \). QED.

Proof: The \(i \)th iteration of the loop is associated with natural number \(x_i \). By the previous claim the sequence \(\langle x_i \rangle \) is strictly decreasing sequence in \(\mathbb{N} \), and hence (PWO) finite. Call the last element of the sequence \(x_k \), in other words, there is no element \(x_{k+1} \). Thus the loop does not iterate \(k + 1 \) times, so it must terminate. QED.

Proof (induction on \(i \)): If \(i = 0 \) then \(P(0) \) asserts that \(x_0 = 0 = mn - x_0 y_0 = mn - mn \), which is clearly true, so the base case holds.

Induction Step: Let \(i \) be an arbitrary natural number, and assume that \(P(i) \) holds. I must use this assumption to show that \(P(i + 1) \) holds. If the loop does not have \(i + 1 \) iterations, there is nothing to prove. Otherwise, there are two cases to consider, depending on whether \(x_i \) is even or odd:

Case 1: \(x_i \mod 2 = 0 \), so \(x_i = 2x_{i+1} \), and

\[
\begin{align*}
z_{i+1} &= z_i \\
by \text{program} & = & z_i \\
y_i &= y_{i+1}/2.0 \\
by \text{IH} & = & mn - x_i y_i \\
\end{align*}
\]

as claimed.

Case 2: \(x_i \mod 2 = 1 \), so \(x_i = 2x_{i+1} + 1 \), and

\[
\begin{align*}
z_{i+1} &= z_i + y_i \\
by \text{program} & = & z_i + y_i \\
y_i &= y_{i+1}/2.0 \\
by \text{IH} & = & mn - x_i y_i + y_i \\
\end{align*}
\]

as claimed.

in both cases \(P(i + 1) \) holds, so \(P(i) \Rightarrow P(i + 1) \). I conclude that \(P(i) \) holds for all \(i \in \mathbb{N} \).

Proof: Suppose the precondition holds and \(\text{mult}(m, n) \) terminates at the \(k \)th iteration of the loop. By the exit condition \(x_k = 0 \), and by \(P(k) \), \(x_k = mn - x_k y_k = mn \). The program returns the value \(z_k = mn \), which is what the postcondition claims. QED.