CSC236 quiz 5, Tuesday June 21st

Name:
Student number:

Suppose that f and l are integers, that $l>f+1$, and that $m=\lfloor(f+l) / 2\rfloor(\lfloor x\rfloor$ is the greatest integer no bigger than x, also called the floor of x). Prove that $f<m<l$ (no induction required).

Proof: By assumption l and $f+1$ are integers, so $l>f+1$ implies that l is at least $f+2$. This means that

$$
\begin{aligned}
m & =\left\lfloor\frac{f+l}{2}\right\rfloor \quad[\text { by definition] } \\
& \leq\left\lfloor\frac{l-2+l}{2}\right\rfloor \quad[\text { since } f \leq l-2] \\
& =\left\lfloor\frac{2 l-2}{2}\right\rfloor=\lfloor l-1\rfloor=l-1 \quad \text { [defn. of floor, since } l-1 \text { is an integer] } \\
& <l
\end{aligned}
$$

Thus $m<l$. On the other hand

$$
\begin{aligned}
m & =\left\lfloor\frac{f+l}{2}\right\rfloor \quad[\text { by definition] } \\
& \geq\left\lfloor\frac{f+f+2}{2}\right\rfloor \quad[\text { since } l \geq f+2] \\
& =\left\lfloor\frac{2 f+2}{2}\right\rfloor=\lfloor f+1\rfloor=f+1 \quad \text { [defn. of floor, since } f+1 \text { is an integer] } \\
& >f .
\end{aligned}
$$

Thus $f<m$. Combining the two results, $f<m<l$. QED.

