
Introduction to the theory of computation
week 5 (chapters 4 and 2 of Course Notes)

14th June 2005

Proving non-membership in recursively-defined sets
Occasionally you may want to prove that some element, or class of elements, cannot belong to a set. If
the set has been de�ned by recursively, one way not to prove non-membership is to generate a list of set
elements and demonstrate that the forbidden element (or class of elements) isn't/aren't on the list. The
problem is that the list is probably in�nitely long.

An approach that often works is to think of some property of a recursively-de�ned set that the element
violates. If you can prove that every element e 2 E has a property, and that the element being discussed,
x, does not, then x 62 E. Consider an example from our set E of well-formed arithmetic expressions.

Claim: If n is a natural number, then no element of E has 6n characters.

You can examine lots of elements of E and verify that they don't have a natural multiple of 6 characters, but
this lack of examples isn't a proof. After trying a few examples, it becomes apparent that all the well-formed
arithmetic expressions have an odd number of characters. If you could prove this, then this property would
make it easy to prove that no natural multiple of 6 is in E.

Claim: Let P (e) be �e has an odd number of characters.� Then for all e 2 E, P (e).1

Now if x has 6n characters, x 62 E, since P (x) is false.

Recursively defined sets as trees
It is sometimes useful to think of a recursively-de�ned set as a tree. The most basic elements are the leaves,
and the internal nodes combine elements �below� them using the operators de�ned in the induction step.
For example, the expression ((x+y)� ((y�z)+x)) as a tree looks like (well, see etree.pdf on the web page).
Once you convince yourself there is a correspondence between the recursively-de�ned set and trees, consider

� What kind of trees are they?

� What does the claim (from last week) that op(e) + 1 = vr(e) emean if we consider these as trees?

� What connection can you make with this week's claim that expression in E have an odd number of
characters and trees?

If you make a correspondence between recursively-de�ned sets and trees, then you can transfer things you
know about trees to the recursively-de�ned sets, and vice versa. If you formulate the correspondence carefully,
any fact that you prove about trees leads to a proof of the analogous fact about the recursively-de�ned set.

In a completely di�erent direction, you can use the technique of recursive de�nition to de�ne trees (see
Course Notes), but we don't visit that idea during this course.

1



What do we mean by a correct program?
We now discuss a (probably under-used) concept incomputer science, program correctness. We limit our
discussion to terminating, deterministic programs (the correctness of non-terminating daemons are beyond
the scope of this course).

We want a program to �do what we intend� every time we run it. To make this desire precise, we say that
a program is correct with respect ot its speci�cation if whenever the user satis�es the precondition, the
program terminates and satis�es the postcondition.

Precondition: The user guarantees the state of relevant program variables when the program begins.

Postcondition: The author(s) of the program guarantee(s) it will terminate, and at that time the program
variables will be in the speci�ed state.

If the precondition is violated, all bets are o�. The program could crash, toxic sludge could seep over the
user's �ngers, or the program variables could be in some unspeci�ed state. If the precondition is met, the
program author(s) guarantee that the postcondition speci�es the state of program variables. Consider the
following precondition/postcondition pair:

Precondition: A is an integer array, x is an integer.

Postcondition: Return i such that A[i] == x, or else A:length if A has no element equal to x.

Some common-sense assumptions aren't stated. We assume (but don't state) in the precondition that
there is a stable supply of electricity (or whatever fuel the computer runs on), and that the immediate
neighbourhood isn't fully of baseball-bat-wielding computer smashers. We assume (but don't state) that the
program doesn't change the contents of A (otherwise there is a trivial way to guarantee the postcondition
� how?)2. When in doubt, state assumptions.

In what follows I will be using Java as a common language. Ask questions about anything that is unclear.

Binary search example
Here's a description of binary search in words:

�If you have a sorted list with more than one element, examine the middle element to decide whether
you want to search the �rst half or the second half of the list. Repeat this halving until you have a list of
one element.�

This intuitive description needs the details to be �rmed up. What is the �middle,� what are the ��rst
half� and the �second half�? Consider the computer listing for binary search (see web page).

The program seems plausible: f and l bracket the area to be searched, and they get closer together until
they either converge on the value you want, or exclude the entire array as a legitimate area to be searched.
But how do you know you should set l to m, and not, say, m� 1? How about setting f to m+ 1 instead of
m?

We break up correctness into two parts:

1. Partial correctness: If the precondition is satis�ed and binSearch terminates, then the postcon-
dition is satis�ed. In other words, if A is a sorted array of length at least 1, x is an integer, and
binsearch(A; x) terminates, then it either returns t such that A(t) == x, or else it returns A:length.

2. Termination: If the precondition is satis�ed, then binSearch terminates. In other words, if A is a
sorted array of length at least 1, then binSearch(A; x) terminates.

2



Taken together, these would guarantee that binSearch is correct with respect to its speci�cation. It is
usually easier to prove the two parts of correctness separately. Here's how to go about it.

To prove partial correctness, you need to show that if the program terminates (when f == l), then
A(f) == x (so binSearch returns f), or else x 62 A (so binSearch returns A:length). The informal reason
we think this is true is that we think that f and l always bracket the area to be searched, so when f == l
the area to be searched consists of a single element.

This idea of bracketing can be made sharper if you think about what happens when there are two or more
instances of x in the array. Which instance does binSearch return the index of?3 We believe this bracketing
property is invariant throughout every iteration of the loop, so if we denote the value of variables at the
end of the ith iteration of the loop by a subscript i, and if we denote the lowest index of x in the array (if it
exists) as tx, then we believe that the following loop invariants are true:4 If we could prove these were true,
then partial correctness won't be di�cult.

Let P (i) be �If the precondition of binSearch is satis�ed and the loop as at least i iterations, then
0 � fi � li � A:length � 1 and (tx 2 [fi; li]) _ x 62 A, where tx denotes the lowest index, if it exists, such
that A[tx] == x.�

Claim: P (i) is true for all i 2 N.5

Now combine the loop invariant with the assumption that binSearch terminates:

Claim: The precondition plus termination imply the postcondition.6

This proves partial correctness. To prove termination, you need to make precise your intuition that if the
gap from f to l gets steadily smaller, but never less than zero, eventually you must have f = l. In symbols
this says that if gi = li � fi, then gi is always non-negative, and if gi+1 exists, then gi > gi+1. If you can
prove these two things, then the sequence hg0; g1; : : :i is �nite (by well-ordering it has a smallest element
gk, and hence no gk+1), so there are �nitely many loop iterations. Since li and fi are integers, so is there
di�erence, and (by the loop invariant proved above) li � fi, so gi is a natural number. It remains to show
that hgii is strictly decreasing.

Claim: If the loop is executed at least i+ 1 times, then gi+1 < gi.7

Claim: Suppose the precondition is satis�ed. Then binSearch(A; x) terminates.Proof: The sequence hgii is
composed of natural numbers, since li and fi are integers with li � fi by the loop invariant. The set
of values in hgii form a non-empty subset of N (containing at least l0� f0), and hence have a smallest
element gk. Since (by the previous claim) hgii is strictly decreasing, gk is the last element, hence there
are no more than k loop iterations and binSearch(A; x) terminates. QED.8

3



Notes
1Proof (structural induction on e): If e is de�ned in the basis, then e 2 fx; y; zg, so e has 1, hence an

odd number, of characters. Thus P (e) holds for the basis.

Induction step: Assume that P (e1) and P (e2) hold for arbitrary elements e1;e2; 2 E, and that e =
(e1 � e2), where � 2 f+;�;��g. I must show that this implies P (e). Expression e has the same
characters as e1 and e2, plus an extra opening parenthesis, closing parenthesis, and operator � �
three extra characters in all. By the IH e1 has an odd number of characters, say 2k + 1, for some
integer k, and e2 has an odd number of characters, say 2j + 1, for some integer j. This means that
e has 3 + 2j + 1 + 2k + 1 = 2(j + k + 2) + 1 characters, an odd number since j + k + 2 is an integer
(integers are closed under addition). Thus P (fe1; e2g) ) P (e), an arbitrary element of E de�ned in
the induction step.
I conclude that P (e) is true for all e 2 E.

2Set A[0] = x and return 0.
3the �rst one.
4

0 � fi � li � A:length� 1
(tx 2 [fi; li]) _ x 62 A

5Proof (induction on i): P (0) states that if the precondition of binSearch is satis�ed, and the loop has at
least i iterations, then 0 � f0 � l0 � A:length� 1 and (tx 2 [fi; li])_ x 62 A. Inspecting the program we see
that f0 = 0 and l0 = A:length� 1, so the �rst part of the invariant is true, and either tx 2 [0; A:length� 1
or else x 62 A, so the claim holds for the base case.

Induction step: Assume that P (i) holds for some arbitrary natural number i. If there is no (i + 1)th
iteration, then P (i+ 1) holds vacuously (empty antecedent). Otherwise, fi 6= li, so (since fi � li) we
must have fi < li. This means that

mi+1 = (fi + li)=2
integer division monotonic : � (fi + fi)=2

= fi

... and you also

mi+1 = (fi + li)=2
� (li � 1 + li)=2

integer division �oors real division = b(li � 1 + li)=2:0c
= bli � 1

2
c

< li

4



So fi � mi+1 < li, and we need to consider two cases.

1. If A[mi+1] � x, then you set fi+1 = fi � mi+1 = li+1, and so 0 � fi+1 � li+1 � A:length � 1, as
wanted.

2. If A[mi+1] < x, then you set fi < fi+1 = mi+1 + 1 � li+1 = li, so 0 � fi+1 � li+1 � A:length� 1, as
wanted.

In both cases, the �rst invariant holds. For the second invariant, consider two cases

1. If A[mi+1] � x, then if tx exists you must have tx � mi+1 = li+1 (since A is sorted), and since
fi = fi+1, by the IH tx � fi+1, so we have tx 2 [fi+1; li+1]; or else x 62 A.

2. If A[mi+1] < x, then if tx exists we must have tx � mi+1 + 1 = fi+1 (since A is sorted), and since
li+1 = li, by the IH tx � li+1, so either tx 2 [fi+1; li+1] or x 62 A.

In either case the second invariant holds. We have shown that P (i) ) P (i + 1), so we conclude that P (i)
holds for all i 2 N. QED.

6Proof: Suppose binSearch terminates at the end of the kth loop iteration. Examination of the loop
condition implies that fk = lk. The loop invariant, P (k), implies that either tx 2 [fk; fk], in which case
binSearch returns tx = fk, and A[tx] = x, or else x 62 A, and (since 0 � fk � A:length � 1 implies that
fk is a valid index for A), A[fk] 6= x, so binSearch(A; x) returns A:length. In either case binSearch(A; x)
satis�es the postcondition, as claimed. QED.

7Proof: Suppose the loop iterates at least i+ 1 times. Since it doesn't terminate at the end of loop i, we
must have fi < li, so (by result in loop invariant) fi � mi+1 < li. If A[mi+1] � x, then (by the program)
fi+1 = fi and li+1 = mi+1, and so gi+1 = li+1 � fi+1 = mi+1 � fi < li � fi = gi, and the claim holds. If
A[mi+1] < x, then (by the program) fi+1 = mi+1 + 1 and li+1 = li, so gi+1 = li+1 � fi+1 = li �mi+1 � 1 <
li � fi = gi, and the claim holds. In both cases the claim holds. QED.

8Proof: The sequence hgii is composed of natural numbers, since li and fi are integers with li � fi by
the loop invariant. The set of values in hgii form a non-empty subset of N (containing at least l0 � f0),
and hence have a smallest element gk. Since (by the previous claim) hgii is strictly decreasing, gk is the last
element, hence there are no more than k loop iterations and binSearch(A; x) terminates. QED.

5


