CSC236 QUIZ 4, TUESDAY JUNE 14TH

Name:

Student number:

Recall the language of well-formed arithmetic expressions, \mathcal{E} defined in class as the smallest set such that:

- 1. x, y, z are in \mathcal{E} (this is the basis).
- 2. If e_1 and e_2 are in \mathcal{E} , then so are $(e_1 + e_2)$, $(e_1 e_2)$, $(e_1 \times e_2)$, and $(e_1 \div e_2)$ (this is the induction step).

Use structural induction to prove that the number of left-parentheses ["("] equals the number of rightparentheses [")"] for every $e \in \mathcal{E}$.

SAMPLE SOLUTION: Let lp(e) be the number of left parentheses in expression e and rp(e) be the number of right parentheses in e.

CLAIM: For all $e \in \mathcal{E}$, lp(e) = rp(e).

- PROOF (STRUCTURAL INDUCTION ON e): If e is defined in the basis, then $e \in \{x, y, z\}$, so lp(e) = 0 = rp(e), since e has no parentheses. Thus the claim holds for the basis.
- INDUCTION STEP: Assume that the claim holds for e_1 and e_2 , arbitrary elements of \mathcal{E} , and $e = (e_1 \oplus e_2)$, where $\oplus \in \{+, -, \times, \div\}$. Thus the number of left parentheses in e is the sum of those in e_1 and e_2 , plus one extra left parenthesis that begins the expression. Similarly, the number of right parentheses in e is the sum of those in e_1 and e_2 , plus one right parenthesis that ends the expression, so

$$lp(e) = 1 + lp(e_1) + lp(e_2)$$
 [by observation above]
= $1 + rp(e_1) + rp(e_2)$ [by IH]
= $rp(e)$ [by observation above]

Thus $P(\{e_1, e_2\}) \Rightarrow P(e)$, since $(e_1 \oplus e_2)$ is an arbitrary expression formed during the induction step, and thus the induction step preserves P(e). I conclude that P(e) is true for all $e \in \mathcal{E}$. QED.