
Introduction to the theory of computation
week 4

21st June 2005

Fibonacci sequence
Last week we looked brie�y at a recursively-de�ned function that came from the world of applied rabbit-
breeding:

F (n) =

8<: 0; n = 0
1; n = 1
F (n� 2) + F (n� 1); n > 1

This allowed Fibonacci and his colleagues to calculate F (n), the number of breeding pairs of rabbits after
n breeding periods, if they began with 0 and 1 breeding pairs, respectively, during the 0th and 1st breeding
periods.1 The Fibonacci sequence is full of patterns and connections. For example:

Claim: Let P (n) be �Pn
i=0 F (i) = F (n+ 2)� 1.� Then, for all n 2 N, P (n):2

Here's another pattern in the Fibonacci sequence.

Claim: Let P (n) be �Pn
i=0 F (2i+ 1) = F (2(n+ 1)).� Then P (n) is true for all n 2 N.3

Notice that in the induction step of both proofs I used the recursive de�nition of F (n), so I had to reassure
myself that the value of n I was using was greater than 1, so that the recursive de�nition applied.

Counting strings
Suppose you want to know how many binary strings of length n do not have adjacent zeros. You could
probably use combinatorial methods (if you had learned them) to work this out, but you would need to
either prove (or have other reason to believe) those identities. Another approach is to use a recursive formula
to count the number of eligible strings of each length.

Clearly the number of strings of length 0 without adjacent 0s is 1 (considering the empty string to be
a string in its own right turns out to be useful). How many strings of length 1 are there without adjacent
0s?4 If n > 1 there are 2 cases to consider: does the string end in 1 or 0? Each eligible string ending in 1
corresponds to a string of length n� 1 that has no adjacent 0s. Each eligible string ending in 0 corresponds
to a string of length n� 2 with the su�x 10 added. Putting these ideas together gives us

G(n) =

8<: 1; n = 0
2; n = 1
G(n� 2) +G(n� 1); n > 1

That looks something like that Fibonacci sequence, just with di�erent starting values. What is G(n)
in terms of F (n)? It is possible to establish, using induction, the seemingly self-evident fact that G(n) is
de�ned for every n 2 N, and that it counts the number of strings of length n that have no adjacent 0s.

1

You could write a computer program to calculate G(n) or F (n) simply by dealing with the cases n = 0
and n = 1 and then calculating the higher values iteratively. It may seem inconvenient that in order to �nd
the the value of G(387) you must �rst �nd the value of G(n) for every 0 � n < 387, but this is just a linear
computation for a computer. Here is a much better paper-and-pencil approach for F (n) (the Fibonacci
sequence), which you can probably adapt to G(n).

Closed form for F (n)

The course notes, on pages 79�80, prove that

F (n) = (�n � �̂n)=
p

5;

... where � = (1 +
p

5)=2 and �̂ = (1�p5)=2. The notes prove this using induction, and it is worth your
while to read over the proof. However, you are probably left with a nagging question: how in the world did
anyone ever come up with the original conjecture about F (n) involving � and �̂?

The terms for F (n) satisfy the recurrence relation F (n) = F (n�1)+F (n�2), and empirically they seem
to increase by some geometric ratio r, somewhere between 1.5 and 2. Now we operate in wild conjecture
mode and wonder whether there is some number r that satis�es rn = rn�1 + rn�2. Numbers have nice
properties, including divisibility, so if we had such an r, then

r2 = r + 1:

This is a quadratic formula, and you can solve it for 2 real roots: r0 = (1 +
p

5)=2 and r1 = (1�p5)=2.
Both r1 and r2 satisfy our original recurrence relation, as will any linear combination:

rn0 + rn1 = rn�1
0 + rn�1

1 + rn�2
0 + rn�2

0

�rn0 = �rn�1
0 + �rn�2

0

�rn0 + �rn1 = �rn�1
0 + �rn�1

1 + �rn�2
0 + �rn�2

1 :

This give us enough degrees of freedom to match �rn0 + �rn1 to our initial data, F (0) = 0 and F (1) = 1:

�r0
0 + �r0

1 = 0) � = ��
�r1

0 + �r1
1 = 1) �(r0 � r1) = 1) � =

1p
5
; � = � 1p

5
:

Your solution ensures that �rn0 + �rn1 matches F (n) when n is either 0 or 1, and since this linear
combination satis�es the recurrence relation, we know that it matches F (n) for n > 1 as well. The same r1

and r2 must work for G(n), but � and � will be di�erent.

Defining sets by induction
One way to de�ne the natural numbers is as the smallest set that satis�es these two conditions:

1. 0 2 N

2. if t 2 N, then t+ 1 2 N.

Many sets satisfy these two conditions,5 but since (according to the principle of induction) any set that
satis�es these conditions contains N, from a set-containment point-of-view N is the smallest set that does
so: no proper subset of N has these two properties. Another way of saying the same thing is that N is the
intersection of all the sets that satis�es these two conditions.

If that seems like a lot of trouble just to de�ne N, consider this approach to de�ning the set of well-formed
arithmetic expressions involving x, y, and z (see example 4.1 in the Course Notes).

2

Definition: Let E be the smallest set that satis�es:

Basis: x; y; z 2 E.
Induction step: If e1; e2 2 E, then the following four expressions are also in E:

1. (e1 + e2)
2. (e1 � e2)
3. (e1 � e2)
4. (e1 � e2)

You must have the requirement that E be the smallest set that satis�es the basis and induction step,
otherwise all sorts of extraneous elements such as �w might �nd their way into E.

A reasonable thing to worry about is whether this sort of de�nition really de�nes a set, or just de�nes
ways of augmenting the simplest elements that never really converges to a set. There are a couple of theorems
to counteract this worry. One show the existence of a set de�ned this way by converging to it from the
outside (see Theorem 4.2 in the Course Notes).

Theorem: Let S0 be a set, B be a subset of S0, m be some positive integer with f1; : : : ; fm operators on S0
with arity k1; : : : ; km. Then there is a unique subset S � S0 that satis�es

1. B � S
2. S is closed under f1; : : : ; fm

3. S � S00 for any S00 � S0 that satis�es the �rst two conditions.

In this theorem, B is the set containing the simplest elements, and operators f1; : : : ; fm are the rules for
building new elements from old. The set S0 is chosen big enough to be closed under all the fi, and then we
are guaranteed a unique smallest set S that satis�es our de�nition. To prove this, let S be the intersection
of every S00 that satis�es 1 and 2, and it's easy to show that S then satis�es all three conditions.

In our example of well-formed expressions over x; y, and z our simplest set B = fx; y; zg, our largest set
S0 could be the set of all possible strings over the alphabet fx; y; z;+;��;� (;)g and we had m = 4
binary operators: Plus(e1; e2) = (e1 + e2), Minus(e1; e2) = (e1 � e2), Times(e1; e2) = (e1 � e2), and
Div(e1; e2) = (e1 � e2).The theorem above guarantees that there is a unique smallest set that is closed
under Plus, Minus, Times, and Div that also contains B.

The theorem just given proves the existence of a set S, but it seems a bit unsatisfying, we don't feel we
know a lot about S. An equivalent construction builds S by enlarging the basis set B, as follows.

S0 = B
S1 = S0 [ffi(a1; : : : ; aki) : (a1; : : : ; aki) 2 S0; 1 � i � mg

...
Sn = Sn�1 [ffi(a1; : : : ; aki) : (a1; : : : ; aki) 2 Sn�1; 1 � i � mg

Then [i2NSi (the in�nite union of the Si) is the smallest subset of S0 that contains B and is closed
under f1; : : : ; fm.

Constructing sets inductively allows us to use induction on them. This �avour of induction is called
structural induction. Use the set of well-formed arithmetics expressions over fx; y; zg (see above) as an
example, and denote the number of instances of the variables x; y; z in the expression e as vr(e), and the
number of instances of operators from f+;�;��g in e as op(e). Try out a few and you might try to prove
the following predicate:

3

Claim: Let P (e) be �vr(e) = op(e) + 1.� Then 8e 2 E;P (e).

Proof (structural induction on e): Suppose e is de�ned in the basis. Then e 2 x; y; z, so
vr(e) = 1 and op(e) = 0, so the claim holds for the basis.

Induction step: Assume P (e1) and P (e2) are true for arbitrary expressions e1 and e2 2 E, and that
e = e1 � e2, where � 2 f+;�;��g. Observe that the number of variables in e is the sum of the
number of variables in e1 and e2, while e has one more operator than the sum of the number of
operators in e1 and e2, so

by observation above vr(e) = vr(e1) + vr(e2)
by IH = op(e1) + 1 + op(e2) + 1

by observation above = op(e) + 1

Thus P (e1) and P (e2) imply P (e), so the induction step preserves the claim.
I conclude that P (e) is true for all e 2 E. QED.

4

Notes
1And other useful quantities, such as the maximum depth of an AVL tree with n nodes.
2Proof (induction on n): If n = 0, then P (n) asserts that the sum F (0) = 0 = F (2)� 1 = 1� 1, which

is clearly true so the base case P (0) holds.

Inductive step: For some arbitrary natural number n, assume P (n). I must now show that P (n))
P (n+ 1). The sum Pn+1

i=0 F (i) can be broken up into two terms:

n+1X
i=0

F (i) =

nX
i=0

F (i)

!
+ F (n)

by IH = F (n+ 2)� 1 + F (n+ 1)
by defn of F (n+ 3); n+ 3 > 1 = F (n+ 3)� 1

This is exactly what P (n+ 1) claims, so P (n)) P (n = 1).
I conclude that P (n) is true for all n 2 N. QED.

3Proof (induction on n): Suppose n = 0, then P (0) claims that the sum F (1) = F (2), which is true since
(by de�nition) F (1) = F (2) = 1. Thus the base case P (0) holds.

Induction step: For some arbitrary natural number n assume P (n). I must show that this implies P (n+1).
The sumPn+1

i=0 F (2i+ 1) can be broken up into two terms, and then the IH and the de�nition of F (n)
can be applied:

n+1X
i=0

F (2i+ 1) =

nX
i=0

F (2i+ 1)

!
+ F (2(n+ 1) + 1)

by IH = F (2(n+ 1)) + F (2n+ 3)
by defn of F (2n+ 4); 2n+ 4 > 1 = F (2n+ 4) = F (2(n+ 1 + 1))

This is exactly what P (n+ 1) claims, so P (n)) P (n+ 1).
I conclude that P (n) is true for all n 2 N. QED.

4Two � 0 and 1.
5Z;R, and C do, as does any superset of N.

5

