Using simple induction, prove that
\[
\left(\sum_{i=0}^{n} 2 \cdot 3^i \right) = 3^{n+1} - 1
\]
... is true for all \(n \in \mathbb{N} \).

Sample solution: Let \(P(n) \) be "\(\sum_{i=0}^{n} 2 \cdot 3^i = 3^{n+1} - 1 \)." Then for all \(n \in \mathbb{N} \), \(P(n) \).

Proof (induction on \(n \)): Suppose \(n = 0 \). Then \(P(n) \) claims that \(2 \cdot 3^0 = 2 = 3^1 - 1 \), which is certainly true, so the base case, \(P(0) \) is verified.

Inductive step: For some arbitrary \(n \in \mathbb{N} \), assume that \(P(n) \) is true. I must show that this implies \(P(n + 1) \). The sum \(\sum_{i=0}^{n+1} 2 \cdot 3^i \) can be broken up as
\[
\left(\sum_{i=0}^{n} 2 \cdot 3^i \right) + 2 \cdot 3^{n+1} = 3^{n+1} - 1 + 2 \cdot 3^{n+1} \quad \text{(by IH)}
= 3 \cdot 3^{n+1} - 1 = 3^{n+2} - 1.
\]

This is exactly what \(P(n + 1) \) claims, so \(P(n) \) implies \(P(n + 1) \).

I conclude that \(P(n) \) is true for all \(n \in \mathbb{N} \). QED.