CSC236 quiz 3, Tuesday June 7th

Name:
Student number:

Using simple induction, prove that

$$
\left(\sum_{t=0}^{n} 2 \cdot 3^{t}\right)=3^{n+1}-1
$$

\ldots is true for all $n \in \mathbb{N}$.
SAMPLE SOLUTION: Let $P(n)$ be " $\sum_{t=0}^{n} 2 \cdot 3^{t}=3^{n+1}-1$." Then for all $n \in \mathbb{N}, P(n)$
PROOF (INDUCTION ON n): Suppose $n=0$. Then $P(n)$ claims that $2 \cdot 3^{0}=2=3^{1}-1$, which is certainly true, so the base case, $P(0)$ is verified.
Inductive step: For some arbitrary $n \in \mathbb{N}$, assume that $P(n)$ is true. I must show that this implies $P(n+1)$. The sum $\sum_{t=0}^{n+1} 2 \cdot 3^{t}$ can be broken up as

$$
\begin{aligned}
\left(\sum_{t=0}^{n} 2 \cdot 3^{t}\right)+2 \cdot 3^{n+1} & =3^{n+1}-1+2 \cdot 3^{n+1} \quad(\text { by IH }) \\
& =3 \cdot 3^{n+1}-1=3^{n+2}-1
\end{aligned}
$$

This is exactly what $P(n+1)$ claims, so $P(n)$ implies $P(n+1)$.
I conclude that $P(n)$ is true for all $n \in \mathbb{N}$. QED.

