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Tree example re-visited
Last week we began an example about full binary trees. We need some de�nitions.

A tree is a directed graph with the property that one of its nodes (if it has � 1 nodes) is distinguished as
the root, and for every node there is a unique (one and only one) path from the root to that node.

The parent of node v is the node u if (u; v) is an edge of the tree. In this case v is u's child. A childless
node is called a leaf, and a node with at least one child is called an internal node.

A binary tree is one where each node has, at most, two children, and (if they exist) the children are
labelled �left� or �right� (but not both). Each parent has no more than one left or right child. In
practice we draw the children to the left or right of their parent, rather than labelling them.

A full binary tree is a binary tree where every node has either 0 or two children (equivalently, every
internal node has two children).

Claim: Let P (n) be �If a full binary tree has n nodes, then n is odd.� Then for all n 2 N� f0g; P (n).

Proof (complete induction on n ): 1

Base cases other than 0
In the last example our claim was not true for n = 0, but true for every other natural number. A small
modi�cation of induction allows you to use induction when you start from some natural number n0 > 0.
Here's a recipe for showing that induction beginning from n0 > 0 is equivalent to starting from 0. Create a
new predicate, S(n) = P (n+ n0). With this notation you must show

1. P (n0) is true (equivalent to showing that S(0) is true).

2. For an arbitrary n � n0, P (n) implies P (n + 1) (equivalent to showing that for an arbitrary m 2 N,
S(m) implies S(m+ 1)).

Now you can conclude that P (n) is true for all n � n0; n 2 N. You may also use more than one base case,
since there may be several initial values of n where P (n) is true, but they can't be derived from smaller
values. Here's an example that is analogous to Example 1.12 in the Course Notes.
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Another postage stamp problem
Claim: There exists a natural number n0 such that for all natural numbers n � n0, postage of n cents can

be formed using 5- and 3-cent stamps.

Proof: There's two parts to this claim. The �rst part involves �nding a suitable n0, which you can
probably achieve through trial-and-error.2 Now we proceed by complete induction on n, starting
from n0 =?

Claim: Let P (n) be �Postage of n cents can be formed using 5- and 3-cent stamps.� Then for all
natural numbers n �?; P (n).

Proof (complete induction on n): 3

A set of n elements has 2n subsets
Claim: Let P (n) be �A set of n elements has exactly 2n subsets.� Then 8n 2 N; P (n).

Proof (complete induction on n): 4

All hexagons have the same number of sides
This result may seem so obvious that it doesn't require a proof, but humour me. We'll turn induction loose
on it, and see where we get.

Claim: Let P (n) be �No set of n hexagons contains a pair of hexagons with di�erent numbers of sides.�
Then 8n 2 N; P (n).

Proof (complete induction on n): 5

Be very suspicious of this �proof.� Although the conclusion is certainly true, the way we got there is not
valid. Take a pencil and go back over the proof, replacing each occurrence of the string �hexagon� with
�polygon.� Good � now you've proved that a triangle has the same number of sides as a hexagon. What
went wrong?

Check the base cases.6 What is the smallest counter-example you can construct, that is the smallest
set of polygons that contradict P (n)?7 Go back through the induction step with this set to see what goes
wrong.

The sum Pn
t=0 2t = 2n+1, doesn't it?

In most proofs by induction, the real work is in the induction step, proving that P (n) ) P (n + 1), and
verifying the base cases is trivial. So in the next proof we'll jump right into the induction step.

Claim: Let P (n) be �The sum Pn
t=0 2t = 2n+1.� Then 8n 2 N; P (n).

Proof (induction on n): 8

Oh-oh, we've just �proved� something that that isn't true (�nd a counter-example). The induction step is
certainly valid, but we never bothered with the base case. A bit of checking will show that P (n) is false for
any n 2 N (if it were true for any n 2 N, it would we true for all n's successors). So we really need to check
the base case.

The body of this proof will work for a modi�ed predicate. Try P (n): �The sumPn
t=0 2t = 2n � 1.� Now

8n 2 N; P (n). Just plug this predicate into the �proof� above, and you will prove something that's actually
true!
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Notes
1Suppose a complete binary tree has n � 1 nodes, and assume that P (f1; : : : ; n�1g) is true. I must show

that this assumption implies P (n). If n = 1, then P (n) holds, since 1 is well-known to be odd. Otherwise,
if n > 1, there are nodes other than the root, hence the root has children and (by the de�nition of a full
binary tree) exactly two children. It is easy to verify that these children are themselves the roots of full
binary subtrees, with nL and nR nodes, respectively. Since the subtrees have fewer than n, but at least 1
node, I can use the induction hypothesis and nL is odd, as is nR. Counting the root plus the nodes in its
two subtrees yields nR + nL + 1 � an odd number. Thus P (f1; : : : ; n� 1g) implies P (n).
Conclude that P (n) is true for every positive natural number n. QED.

2n0 = 8 should work. Is it the smallest?
3For an arbitary natural number � 8, assume that P (f8; : : : ; n�1g) is true. I must show that this implies

P (n). If n 2 f8; 9; 10g, it is easy to verify that we can form postage of n cents using 5- and 3-cent stamps.
If n > 10, then the IH says we can form postage of n � 3 cents using 5- and 3-cent stamps. Take that
postage and add one 3-cent stamps, and this provides postage of n cents using 5- and 3-cent stamps. So
P (f8; : : : ; n� 1g)) P (n). Conclude that P(n) is true for all natural numbers n � 8. QED.

4P (0) states that a set with zero elements, the empty set, has 20 = 1 subset. This is true since ; � ;,
and that is its only subset.

Induction step: I want to show that P (n) ) P (n+ 1), so I assume that P (n) is true for some arbitrary
natural number n. Let X = fx1; : : : ; xn+1g be an arbitrary set of n + 1 elements. In order to count
the subsets of X more easily, I partition them into mutually exclusive collections XL contains all the
subsets of X that do not contain the element xn+1, and XR contains all the subsets of X that do
contain the element xn+1. By the inductive hypothesis I already know that XL contains 2n subsets,
since it contains all the subsets of X � fxn+1g, a set of size n. I dream up the bijection:

f : XL ! XR f(s) = s [ fxn+1g
Function f takes subsets in collection XL to subsets in collection XR by adding the element xn+1,
and it is easy to verify that f is a bijection. This means that XL and XR have the same number of
elements, so in total X has 2n + 2n = 2n+1 subsets, and P (n)) P (n+ 1).
We conclude that P (n) is true for all n 2 N. QED.

5P (0) states that the empty set doesn't contain a pair of hexagons with a di�erent number of sides, which
is clearly true. P (1) states that a set of 1 hexagon doesn't contain a pair of hexagons with di�erent numbers
of sides, which is also clearly true, since the hexagon must have the same number of sides as itself. So the
base cases P (0) and P (1) hold.

Induction step: I want to show that P (n) ) P (n+ 1), so I assume that P (n) is true for some arbitrary
natural number n � 1. Now I consider a set H = fh1; : : : ; hn; hn+1g, of n+ 1 hexagons. I can break H
up into two subsets of n hexagons each, HL = fh1; : : : ; hng and HR = fh2; : : : ; hn; hn+1g. Since HL
and HR have n hexagons each, the inductive hypothesis applies, so by P (n) these sets have no pairs
of hexagons with di�erent numbers of sides. Let (hi; hj) be a pair of hexagons from our original set
H. If hi and hj are either both in HL or HR, by the inductive hypothesis they have the same number
of sides. Otherwise, WLOG hi 2 HL and hj 2 HR, and by the inductive hypothesis hi has the same
number of sides as hn (which is in HL), which in turn has the same number of sides as hj (because hn
is also in HR). Thus hi has the same number of sides as hj , and P (n)) P (n+ 1).
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We conclude that P (n) ) P (n + 1), so any �nite set of hexagons never contains a pair of hexagons
with di�erent numbers of sides. QED.

6They're okay.
7How about ftriangle; hexagong, a set of two polygons.
8I want to show that P (n)) P (n+ 1), so I assume P (n) for some arbitrary n 2 N: Now I consider the

sum Pn+1
t=0 2t, and I break it into two parts:

n+1X
t=0

2t =

 
nX
t=0

2t
!

+ 2n+1

By the inductive hypothesis I know that Pn
t=0 2t = 2n+1, so altogether I've got 2n+1 + 2n+1 = 2n+2, and

P (n+ 1) holds. Thus P (n)) P (n+ 1).
I conclude that P (n) is true for all n 2 N.
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