CSC236 quiz 10, Tuesday August 8

Name:
Student number:

Let $\Sigma=\{0,1\}$, and $L=\left\{x \in \Sigma^{*}: x\right.$ has at most two 0 s $\}$. Prove that $L=L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1 *\right)$. Hint: You must prove that each language includes the other as a subset.

Claim: $L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*} \subseteq L\right.$.
Proof: Let x be an arbitrary element of $L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right)$. By definition $L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right)=$ $L\left(1^{*}\right) L(0+\varepsilon) L\left(1^{*}\right) L(0+\varepsilon) L\left(1^{*}\right)$, so $x=u v w y z$, where $u, w, z \in L\left(1^{*}\right)$, and $v, y \in L(0+\varepsilon)$. Thus u, w, z contain no 0 s , and v, y contain, at most, one 0 each, for a total of (at most) two 0 s. So $x \in L$, and since x was chosen arbitrarily, $L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right) \subseteq L$. QED.

Claim: $L \subseteq L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right)$.
Proof: Let x be an arbitrary element of L. If x has no zeros, then $x=\varepsilon \varepsilon \varepsilon \varepsilon t$, where $t \in L\left(1^{*}\right)$, and (since $\varepsilon \in L\left(1^{*}\right)$ and $\left.\varepsilon \in L(0+\varepsilon)\right) x \in L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right)$. If x has one zero, then $x=u 0 \varepsilon \varepsilon t$, where $u, t \in L\left(1^{*}\right)$, and (since $\varepsilon \in L\left(1^{*}\right)$ and $\left.\varepsilon, 0 \in L(0+\varepsilon)\right), x \in L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right)$. If x has two zeros, then $x=u 0 v 0 y$, where $u, v, y \in L\left(1^{*}\right)$ and (since $\left.0 \in L(0+\varepsilon)\right), x \in L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right)$. In all cases $x \in L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right)$, and (since x was chosen arbitrarily) $L \subseteq L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right)$. QED.

Claim: $L=L\left(1^{*}(0+\varepsilon) 1^{*}(0+\varepsilon) 1^{*}\right)$.
PROOF: In the previous claims I showed mutual inclusion, so the two languages are equal (as sets).

