
Introduction to the theory of computation
week 13 (Course Notes, chapter 7)

11th August 2005

� Midterm 2 is marked. I'll hand it back before lecture and during the break (?!!). The average was
65%, the term average is 71%

� O�ce hours: Tuesday after lecture, Wednesday 11�4:30, Thursday after lecture, and Monday 2:30�4:30,
5:30�8pm

� Re-mark requests, medical excuses, and special consideration: email me for my decision during exam
week.

Every regex has an FSA
Last week we showed that if we used Non-deterministic Finite State Automata (NFSA) we could implement
the union (+), concatenation (RS) and Kleene star (�) operations of regular expressions. We also showed
that we could build DFSAs that accept L(;), L("), and L(a) (for any a 2 �). Thus every language that can
be denoted by a regular expression can be accepted by some NFSA. In addition, the subset construction
allows us to convert an NFSA into a DFSA, so if you can write a regular expression for a language, you can
build a DFSA for it.

In addition, we can implement FSAs for some of the common operations on languages. If we hav e a
DFSA that accepts language L, we can transform it into a DFSA that accepts L (the complement, or set
of strings not in L) by simply changing accepting states to non-accepting states and vice-versa. If we have
an FSA that accepts L, we can transform it into an FSA that accepts rev(L) (the language of reverses of
strings in L) by making the start state the unique accepting state, reversing the direction of all transitions,
and adding an "-transition from a new start state to all the former accepting states. If we have DFSAs that
accepts languages L1 and L2, then we can build a new DFSA that accepts L1 \ L2 (the strings that are in
both L1 and L2) as follows:

1. The new machine's states are the Cartesian product of the states of L1 and L2: QL1\L2 = QL1 �QL2 .

2. The new machine's transitions function is the product of the old transition functions: �L1\L2((q1i; q2j); a)
= (�L1(q1i; a); �L2(q2j ; a)).

3. An accepting state is in the Cartesian product of accepting states, that is an accepting state is
(q1i; q2j) 2 F1 � F2.

Here's an an example where M1 accepts the set of binary strings with an odd number of characters and M2

accepts the set of binary strings with an odd number of zeros:

1

0,1

1
1

0 0

1
1

S

For each transition in the machine that implements the intersection, M1 tells you which column your
state is in, and M2 tells you which row your state is in (see Exercise 7.8 in the Course Notes).

2

Every FSA has a regex
If M is a DFSA, then we can certainly devise regular expressions for the simplest transitions, those that
take us a single �hop� from one state to another. Suppose a string x takes M from state q to state q0. Then
either x = a, where �(q; a) = q0, or x = " and q = q0.

Label all the states with positive integers 1; : : : ; n = jQj. Then the (very) small language that takes
M directly from state i to state j without any intermediate states is denoted L0

i;j (meaning the set of all
strings that take M from state i to state j using only intermediate states 0 or less). This means that
L0
i;j = fa : �(i; a) = jg or L0

i;j = f" + a : �(i; a) = j; i = jg. This language is �nite, since there are a �nite
set of characters that take M from i to j.

Now think inductively. If you already know Lki;j for every possible pair of states i; j 2 Q and some
particular k, then Lk+1

i;j simply consists of Lki;j (they worked without passing through k+1), plus the strings
that take M from i to k + 1 using only intermediate states up to k, then take M from k + 1 to k + 1 using
only intermediate states up to k, and then take M from k + 1 to j, using only intermediate states up to k:

Lk+1
i;j = Lki;j [Lki;k+1L

k
k+1;k+1L

k
k+1;j

If you've worked out the corresponding regular expressions Rki;j , Rki;k+1, and Rkk+1;j , then you have:

Rk+1
i;j = Rki;j +Rki;k+1R

k
k+1;k+1R

k
k+1;j

This provides you with an algorithm for �nding a regular expression for any DFSA. First �nd Rns;ft ,
where s is the start state, and for any accepting state ft 2 F , and where n is the number of states, jQj = n.
This is not a nice algorithm with a paper and pencil, but it is a snap for a computer (it is an example of
a polytime dynamic programming algorithm). Consider the machine for accepting strings of odd length
over f0; 1g:

1 2

0,1

0,1
Start/�nish 0 1 2

Rk11 " "
Rk12 (0 + 1) (0 + 1) (0 + 1) + (0 + 1)("+ (0 + 1)(0 + 1))�("+ (0 + 1)(0 + 1))
Rk21 (0 + 1) (0 + 1)
Rk22 " "+ (0 + 1)(0 + 1)

3

New regular languages from old
We have shown that the set of languages denoted by regular expressions and the set of languages accepted
by FSAs are identical � you can derive one from the other. These languages are called regular, and given
regular languages L1 and L2, you can derive regular expressions for the following regular languages:

� L1 [L2

� L1 \ L2

� L1

� L1L2

� L�1
� rev(L1)

Not every language is regular
Since we now have several tools for generating regular languages, it is tempting to think that all easily-
described languages are regular. This is not true. Here is a property of all regular languages. If you can
prove that some language you are interested in does not have this property, then it is not regular.

Theorem (pumping lemma): Suppose L � �� is a regular language. Then there is some n 2 N (n depends
on L) such that if jxj � n and x 2 L, then there are strings u; v; w 2 �� such that x = uvw, v 6= ",
juvj � n, and uvkw 2 L for all k 2 N.

Proof: Let ML be a DFSA that accepts L, and suppose ML has n states. If x 2 L and jxj � n, then
denote x = a0a1 � � � an � � � al, where a0 = " is prepended to make the bookkeeping easier. Now denote
qm = ��(s; a0 � � � am) (the state that a0 � � � am takes the machine to), so q0 = ��(s; ") is the starting
state). Since there are n + 1 variables q0; : : : ; qn, there must be (pigeonhole principle) at least two
variables that represent the same state, say qi = qj , for some 0 � i < j � n. Let u = a1 � � � ai (u
is empty if i = 0), v = ai+1 � � � aj , and w = aj+1 � � � al. So x = uvw, juvj � n, and jvj 6= 0 (since
i < j). Then ��(s; u) = qi, ��(qj ; w) = ql (an accepting state), and ��(qi; v) = qj = qi. By iterating
the extended transition function, we get ��(qi; vk) = qi, so ��(s; uvkw) = ql, an accepting state, and
uvkw is accepted by M for all k 2 N. QED.

You can use the pumping lemma to prove that a given language is not regular. Here's an example.

Claim: Suppose L is the language of binary strings with the same number of 0s and 1s. Then L is not
regular.

Proof: Suppose, for the sake of contradiction, that L is regular. Thus, by the pumping lemma, there is
some n depending on L such that if x 2 L and jxj � n, then x can be expressed as uvw with juvj � n,
v 6= ", and uvkw 2 L for every natural number k. Let x = 1n0n (a string of n 1s concatenated with n
0s). Then x 2 L, so (assuming the pumping lemma applies) uv is a pre�x of 1n, so v = 1j , for some
1 � j � n. The pumping lemma asserts that uv2w = 1n+j0n 2 L, which contradicts the de�nition of
L as containing strings with the same number of 0s and 1s. Thus the assumption that L is regular is
false.

4

Exam summary and tactics
The �nal exam will last three hours and consist of nine questions, worth 10 marks each. You are allowed to
use pens, pencils, erasers, and ingenuity.

Although they have the same weight, you will probably �nd some questions easier than others. Roughly
six questions will be similar to topics worked in assignments, lectures, or quizzes. Three questions may be
somewhat less similar. You will have the option of leaving any question blank (or writing �I don't know how
to answer this question�) and getting 20% (or 2/10) for that question.

The exam is comprehensive, although Chapters 6 and 7 have greater weight. You should be familiar with
the following topics:

� induction (simple, complete, structural, well-ordering)

� recursive de�nition of functions

� program correctness (both iterative and recursive)

� propositional and predicate logic

� regular expressions, FSAs, regular languages, pumping lemma

Exam preparation
I recommend that you review the following material in (roughly) this order of priority:

1. Assignments 1�4, plus their posted solutions

2. Lecture summaries

3. Midterm solutions

4. Quiz solutions

5. Course Notes

Office hours
My remaining o�ce hours are Wednesday 11�4:30 in BA3222, Thursday 9pm�? in BA1180, and Monday
2�4:30 and 5:30�8pm in BA3222.

Tactics
The standard platitudes apply: try to be as well-rested as possible, have a source of ca�eine (if you use it)
handy. Also

� Read every exam question, since you may �nd some easier than others.

� Be sure you understand what you're being asked to do before you begin writing. Ask me or the other
invigilator if you have questions, and we will try to prove a fair answer.

� Write the outline of a proof even if there are steps you cannot �ll in. Indicate which steps you cannot
�ll in, rather than writing something you don't believe. Specify things you assume without proof.

� Use the space provided on the exam paper as a guide for length. The backs of the pages are provided
for over�ow.

5

