CSC236 quiz 9, Tuesday July 26

Name:
Student number:

Suppose \mathcal{L} is a first-order language that contains the following formula:

$$
\forall x \forall y \forall z(\neg L(x, z) \Rightarrow(\neg L(y, z) \vee \neg L(x, y))
$$

Give one interpretation, \mathcal{I}_{1}, that satisfies the formula, and one interpretation, \mathcal{I}_{2}, that falsifies the formula.

Sample solution: Let $\mathcal{I}_{1}=\left(S_{1}, \sigma_{1}\right)$, where S_{1} has the domain D the set of integers, and $L(x, y)$ means $x<y$, no constants are defined, and σ_{1} is not specified. Then the formula is simply the contrapositive of:

$$
\forall x \forall y \forall z((L(x, y) \wedge L(y, z)) \rightarrow L(x, z))
$$

which is simply the transitive property of the $<$ relation.
Let $\mathcal{I}_{2}=\left(S_{2}, \sigma_{2}\right)$, where S_{2} has the domain D of all people, and $L(x, y)$ means that x likes y. There are examples of 3 people where x likes y, y likes z but x doesn't like (or perhaps even know) z.

