
Introduction to the theory of computation
week 11 (Course Notes, chapter 6)

Logically equivalent formulas

Two formulas F1 and F2 are logically equivalent if and only if every interpretation that satis�es one satis�es
the other. This is a pretty tall order: you can specify di�erent domains, di�erent meanings for the predicates,
di�erent values for the constants, and a di�erent valuation, �, for the variables, but still F1 and F2 must
have the same truth value in every interpretation. We don't have any �nite representation, such as truth
tables, to establish the equivalence (since there are in�nitely many interpretations). However, �rst-order
formulas have some standard equivalences that allow us to transform them into equivalent formulas. Here
are some:

Negate quantifiers: :8xF leqv :9x:F . Symmetrically, :9xF leqv 8x:F . The equivalence of these
follows from the de�nition of a formula being true/false in �rst-order logic.

Factor quantifiers over conjunctions and disjunctions: Suppose x is not a free variable of E, then

E ^ 8xF leqv 8x(E ^ F )
E ^ 9xF leqv 9x(E ^ F ):

However, be careful if x is a free variable of E:1

8xE(x) ^ 8xF (x) leqv 8x(E(x) ^ F (x))
9xE(x) ^ 9xF (x) not leqv 9x(E(x) _ F (x))

Again, suppose x is not a free variable of E, then

E _ 8xF leqv 8x(E _ F )
E _ 9xF leqv 9x(E _ F )

Again, be careful if x is a free variable of E:

8xE(x) _ 8xF (x) not leqv 8x(E(x) _ F (x))
9xE(x) _ 9xF (x) leqv 9x(E(x) _ F (x)):

Factor quantifiers over implications: There is a strange asymmetry, depending on whether you are
factoring from the consequent or the antecedent. Assume that x is not a free variable of E.2

E ! 8xF leqv 8x(E ! F )
E ! 9xF leqv 9x(E ! F )
8xE ! F leqv 9x(E ! F )
9xE ! F leqv 8x(E ! F )

1



Rename quantified variables: Suppose variable y does not occur in F , and let F xy denote the formula
obtained by replacing every free occurrence of x by y in F . Then 8xF leqv 8yF xy , and 9xF leqv
9yF xy . You can do this systematically to make sure that the names of all bound variables are distinct
from each other and all free variables (recti�cation).

Use equivalences from propositional logic: De Morgan's Law, commutativity, associativity, distribu-
tivity, etcetera still apply.

Substitute equivalent sub-formulas: Use any of the above rules to substitute an equivalent part of a
formula.

Prenex normal form

By using the logical equivalences listed above, you can transform formula F into an equivalent formula F 0
where all the quanti�ers precede a sub-formula that is quanti�er-free. If Qi represents either 8 or 9, it is
possible to apply the logical equivalences until F 0 has the form:

Q1x1Q2x2 � � �QnxnE:
We say that F 0 is in Prenex Normal Form (PNF). Try this:

8x(8z((P (x; y; z) _ 9uS(z; u))!M(z)) leqv [renaming]
8x(8v(P (x; y; v) _ 9uS(v; u))!M(z)) leqv [factor quanti�er]
8x9v((P (x; y; v) _ 9uS(v; u))!M(z)) leqv [factor quanti�er]
8x9v(9u(P (x; y; v) _ S(v; u))!M(z)) leqv [factor quanti�er]
8x9v8u((P (x; y; v) _ S(v; u))!M(z))

Notice how recti�cation made some of the factoring possible.
When a formula is in PNF, the order of quanti�ers 8 and 9 becomes obvious. If S(x; y; z) is interpreted

as x+ y = z, and our domain is the integers, what can you say about changing the order of the quanti�ers:

8x9yS(x; y; 0) 9y8xS(x; y; 0):

The meaning of PNF formulas is very sensitive to the order of quanti�ers. Is either the formula below, or
its converse, a valid formula (is the consequent satis�ed by every interpretation that satis�es the antecedent)?

8x9yM(x; y)! 9y8xM(x; y)

Is the following a valid formula?3

8x9y(M(x) ^ F (y))$ 9y8x(M(x) ^ F (y))

More scope

We've already seen that free variables are those that are not bound by (i.e. don't occur within the scope of)
any quanti�er. Another subtlety is which quanti�er a given bound (dummy) variable is bound by. Consider
the following formula, where F (y) is interpreted as \y is female," M(y) is interpreted as \y is male," and
S(x; y) is interpreted as \x and y are siblings."

8x8y(F (y) ^ 8y(S(x; y)!M(y))! :S(y; x))

The intended meaning is that every female is not a sibling of anyone who has only male siblings. Which
quanti�ed y binds which instance of variable y? The y in S(y; x) is bound to the \nearest" (working out)
8y. Things become clearer if you rename that y to, say, u, or draw a tree representation.

2



Formal languages (course notes, chapter 7)

In the theory of formal languages, we consider languages as sets of strings over an alphabet (loosely analogous
to the written form of some natural languages such as English or Aramaic). Here are some de�nitions and
conventions:

An alphabet: Is a set (often denoted �) whose elements are atomic (not sub-dividable) symbols (charac-
ters).

A string: (over �) is a �nite sequence of symbols from �. The empty sequence, denoted ", is a string of
length zero. The set of all possible strings over � is denoted ��. For example, 0110 is a string over
� = f0; 1g. We usually use variables from the beginning of the Latin alphabet (a; b; c : : :) to denote
symbols, and variables from the end of the Latin alphabet (w; x; y; z) to denote strings.

A language: (over �) is a subset of ��. In particular, �� itself is a language. We often assume that
� = f0; 1g in this course.

String operations: If x and y are strings, then jxj is the length of x (so j"j = 0), and xy is the concate-
nation of x and y. (x)R is the reversal of string x (so (string)R = gnirts). The kth power of a string
is de�ned recursively:

xk =

(
"; k = 0
xk�1x; k > 0

Strings x and y are equal if jxj = jyj and x[i] = y[i] for 0 � i < jxj. Notions of (proper) substrings,
pre�xes, and su�xes are exactly what you would expect, provided you allow " to be a pre�x, substring,
or su�x of any string.

Why do we care about formal languages

Manipulating formal languages is an import of computer science:

� Compilers need to recognize the language of identi�ers, the language of arithmetic expressions, and
translate source code into the language of the processor's instruction set.

� Part of bioinformatics involves distinguishing \interesting" strings over � = fA;C; T;Gg from other
strings.

� We've already constructed and manipulated languages of �rst-order formulas, propositional formulas.

� Di�cult problems in theory derived from deciding whether a given string s is in some language L.

Operations on languages

Operations on languages combine set operations with (possibly repeated) string concatenation. Suppose L1

and L2 are languages over �:

Complement: L1 (the complement of L1) is �� � L1.

Union: L1 [ L2 contains any string that is in either language (or both).

Intersection: L1 \ L2 contains any string that is in both languages.

Concatenation: L1L2 contains all strings of the form xy, where x 2 L1 and y 2 L2. Notice that ;L1 = ;
for any language L1.

3



Kleene star: " 2 L�1, and if x 2 L�1 and y 2 L1, then xy 2 L�1. Informally, all possible concatenations of 0
or more strings from L1.

Exponentiation: De�ned recursively:

Lk1 =

(f"g; k = 0
Lk�1

1 L1; k > 0

Informally, all concatenations of k strings from L1.

Reversal: Rev(L1) = f(x)R : x 2 L1g, the set of all reversals of strings in L1.

Regular expressions

A very terse description of a formal language is often possible, using a regular expression. The set of regular
expressions (RE) over � (this set is itself a language), is de�ned recursively:

Basis: ;, ", and a (for each a 2 �) are in RE.

Induction step: If R and S are in RE, then so are (R+ S), (RS) and R�. Notice that since each regular
expression has �nite length, it uses only a �nite subset of �.

Examples: Over alpha � = f0; 1g, you may have regular expressions 0, (0 + 1), ((01) + (10)).

The language denoted by a given regular expression, R, is called L(R), and de�ned inductively (what
else?).

Basis: L(;) = ;, L(") = f�g, L(a) = fag (for any a 2 �).

Induction step: Suppose L(R) and L(S) have been de�ned inductively. Then L(R + S) = L(R) [ L(S),
L(RS) = L(R)L(S), and L(R�) = (L(R))�.

Reduce parentheses by omitting the outer parentheses and parentheses that don't change associative
operations like union and concatenation. Also note that concatenation has higher precedence than union,
and Kleene star has higher precedence than either. Here are some examples of regular expressions and the
languages they denote:

Regular expression Language
(0 + 1)� All strings containing only 0s and 1s (��).
((0 + 1)(0 + 1)�) All non-empty strings in ��
((0 + 1)(0 + 1))� All even-length strings
"+ 0 + 0(0 + 1)�0 All strings that don't begin or end in 1.

The computer utility \grep" implements regular expressions with �� as a text �le, (a + e) is denoted
[ae], and (a+ b+ � � �+ z) is denoted .*. Depending on where the �le \words" lives, you might try:

grep ĝ[ae]m.*t$ /usr/share/dict/words
The material below was not covered during the lecture, but you should be familiar with it.
In general there is more than one way to denote the same language. Suppose L = fx 2 �� : x contains at least one 0g.

Then L = L(R1) = L(R2) = L(R3), where R1 = (0 + 1)�0(0 + 1)�, R2 = 1�0(0 + 1)�, and R3 = (0 + 1)�01�.
To prove from scratch that two regular expressions are equivalent means that you prove that the languages
(sets) denoted by them are equal, usually by mutual inclusion.

Claim: L(1�0(0 + 1)�) � L.

4



Proof: Let x be a arbitrary string of L(1�0(0 + 1)�). This means, by de�nition, that x = u0t, where
u 2 L(1�), and t 2 L((0+1)�). By inspection u0t contains at least one 0, so x 2 L. Since x was chosen
arbitrarily, L(1�0(0 + 1)�) � L. QED.

Claim: L � L(1�0(0 + 1)�). Let x 2 L be an arbitrary string in L. Since x has at least one zero, it certainly
has a �rst zero, so x can be parsed as x = u0v, where u is the (possibly empty) pre�x of x before the
�rst 0, and v is the (possibly empty) su�x of x after the �rst 0. Thus u 2 L(1�) (since it contains no
zeros), and v 2 L((0 + 1)�) (since it is some string over f0; 1g), thus x = u0v 2 L(1�)L(0)L((0 + 1)�).
Since x was chosen arbitrarily, L � L(1�0(0 + 1)�). QED.

Thus we have shown that L � L(1�0(0+1)�) and L(1�0(0+1)�) � L, so the two languages are equivalent.
A similar sort of proof is necessary to show that L(1�0(0 + 1)�) is the same language as L((0 + 1)�01�).

Claim: L((0 + 1)�01� � L(1�0(0 + 1)�).

Proof: Let x = u0t be an arbitrary element of L((0 + 1)�01�), where u 2 L((0 + 1)�), 0 2 L(0), and
t 2 L(1�). If u contains no zeros, then u 2 L(1�), and (in any case) t 2 L((0 + 1)�), and x = u0t
2 L(1�0(0 + 1)�). Otherwise, u has a �rst 0, and can be re-written as u = z0y, where z is the
(possibly empty) zero-free pre�x of u and y is the su�x of u following its �rst 0. Thus z 2 L(1�), and
y0t 2 (0 + 1)�, so x = z0y0t 2 L(1�)L(0)L((0 + 1)�), that is x 2 L(1�0(0 + 1)�). Since x was chosen
arbitrarily, L((0 + 1)�01�) � L(1�0(0 + 1)�). QED.

Claim: L(1�0(0 + 1)�) � L((0 + 1)�01�).

Proof: Let x = u0t be an arbitrary element of L(1�0(0+1)�), where u 2 L(1�), 0 2  L(0), and t 2 L((0+1)�).
Certainly u 2 L((0 + 1)�), and if t contains no zeros then 5 2 L(1�), and we're done since x = u0t
2 L((0 + 1)�01�). Otherwise, t contains a last zero, and can be re-written as t = z0y, where z is the
(possibly empty) pre�x before the last zero, and y is the (possibly empty) zero-free su�x. In this case,
u0z 2 L((0 + 1)�) and y 2 L(1�), so x = u0z0y 2 L((0 + 1)�01�). In either case, x 2 L((0 + 1)�01�),
and since x was chosen arbitrarily, this shows that L(1�0(0 + 1)�) � L((0 + 1)�01�). QED.

Equivalence: Since L(1�0(0 + 1)�) and L((0 + 1)�01�) contain each others, they are equal.

5



Notes

1Try E(x) means \x is odd," and F (x) means \x is even" in the second formula.

2If you use the ! rule, these become clear.

3Try factoring the quanti�ers.

6


