CSC236 quiz 8, Tuesday July 19

Name:
Student number:

1. Using only logical equivalences (Law of double negation, De Morgan's laws, commutative law, associative law, distributive law, identity law, idempotency law, \rightarrow law, \leftrightarrow law), but no truth table, prove the following:

$$
(x \rightarrow y) \wedge(x \rightarrow z) \wedge(x \rightarrow w) \text { LEQV } x \rightarrow(y \wedge z \wedge w)
$$

SAMPLE SOLUTION:

$$
\begin{array}{rlll}
(x \rightarrow y) \wedge(x \rightarrow z) \wedge(x \rightarrow w) & \text { LEQV } & (\neg x \vee y) \wedge(\neg x \vee z) \wedge(\neg x \vee w) \quad \text { [} \rightarrow \text { law] } \\
& \text { LEQV } & (\neg x \vee y) \wedge(\neg x \vee(z \wedge w)) \quad \text { [Distributive and associative laws] } \\
& \text { LEQV } & \neg x \vee(y \wedge z \wedge w) \quad \text { [Distributive law] } \\
& \text { LEQV } & x \rightarrow(y \wedge z \wedge w) \quad[\rightarrow \text { law] }
\end{array}
$$

2. Write a DNF (Disjunctive Normal Form) formula equivalent to $x \rightarrow(y \wedge z)$.

SAMPLE SOLUTION: Apply the \rightarrow rule, and $\neg x \vee(y \wedge z)$ is a DNF formula, since is is a disjunction of minterms (minterms are conjunctions of 1 or more literals).
A slightly longer, although equally good, solution is to examine the truth table, and create conjunctions of literals that are equivalent to the truth assignments that satisfy the formula:

x	$y z$	$x \rightarrow(y \wedge z)$		
0	0	0	1	$(\neg x \wedge \neg y \wedge \neg z)$
0	0	1	1	$(\neg x \wedge \neg y \wedge z)$
0	1	0	1	$(\neg x \wedge y \wedge \neg z)$
0	1	1	1	$(\neg x \wedge y \wedge z)$
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	$(x \wedge y \wedge z)$

Tying these together gives the DNF formula:

$$
(\neg x \wedge \neg y \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z) \vee(\neg x \wedge y \wedge \neg z) \vee(\neg x \wedge y \wedge z) \vee(x \wedge y \wedge z)
$$

