CSC236 QUIZ 8, TUESDAY JULY 19

Name:

Student number:

 Using only logical equivalences (Law of double negation, De Morgan's laws, commutative law, associative law, distributive law, identity law, idempotency law, → law, ↔ law), but no truth table, prove the following:

 $(x
ightarrow y) \wedge (x
ightarrow z) \wedge (x
ightarrow w)$ leqv $x
ightarrow (y \wedge z \wedge w).$

SAMPLE SOLUTION:

$$\begin{array}{ll} (x \rightarrow y) \wedge (x \rightarrow z) \wedge (x \rightarrow w) & \texttt{LEQV} & (\neg x \lor y) \wedge (\neg x \lor z) \wedge (\neg x \lor w) & [\rightarrow \texttt{law}] \\ & \texttt{LEQV} & (\neg x \lor y) \wedge (\neg x \lor (z \wedge w)) & [\texttt{Distributive and associative laws}] \\ & \texttt{LEQV} & \neg x \lor (y \wedge z \wedge w) & [\texttt{Distributive law}] \\ & \texttt{LEQV} & x \rightarrow (y \wedge z \wedge w) & [\rightarrow \texttt{law}] \end{array}$$

- 2. Write a DNF (DISJUNCTIVE NORMAL FORM) formula equivalent to $x \to (y \land z)$.
 - SAMPLE SOLUTION: Apply the \rightarrow rule, and $\neg x \lor (y \land z)$ is a DNF formula, since is a disjunction of minterms (minterms are conjunctions of 1 or more literals).

A slightly longer, although equally good, solution is to examine the truth table, and create conjunctions of literals that are equivalent to the truth assignments that satisfy the formula:

x	;	y z	$x ightarrow (y \wedge z)$		
0)	0	0	1	$(\neg x \land \neg y \land \neg z)$
0)	0	1	1	$(\neg x \wedge \neg y \wedge z)$
0)	1	0	1	$(\neg x \wedge y \wedge \neg z)$
0)	1	1	1	$(\neg x \wedge y \wedge z)$
1		0	0	0	
1	-	0	1	0	
1		1	0	0	
1	-	1	1	1	$(x \wedge y \wedge z)$

Tying these together gives the DNF formula:

$$(\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land y \land z) \lor (x \land y \land z)$$