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Why does anybody want to be able to talk rigorously about
computing?
More than just hacking Your experience in CSC108 and CSC148 should have convinced you that there's

more to computer science than just trial-and-error. You need a good idea of whether (and how well)
your design will work before you write many lines of code. You need to be able to analyze other
people's code for correctness and performance.

Testing isn't everything At this point you probably have acquired the habit of systematically testing
your code as you write it. That's good. However, you are also probably well aware that it is impossible
to test every case (for example, there are in�nitely many instances of String). Using mathematics
allows you to reason about in�nitely many starting conditions for your programs. You can even reason
about programs that nobody has written yet.

You might get theoretical You could get to like this, and �nd that at least part of your life as a
computer scientist involves theory.

How does somebody talk rigourously about computing?
It's grubby: Mathematics is not done at a keyboard (so if I produce any mathematics in this document,

it's a fraud). Usually it involves scratching away with a pencil, chalk, rejecting ideas that don't work,
and polishing ideas that nearly work.

Tools of the trade We begin with pencil, paper, erasers and lots of time. We need a body of
commonly-acknowledged �facts� � things we already agree are true, either because we can easily
�nd (or derive) a proof, or because they are so obvious they don't require proof (axioms).

Time You should get in the habit of thinking about course material over many days and weeks. Good
problems �ght back, and often the solution doesn't come to you the �rst time you attempt it.
Try to solve simpler and/or related problems. If you start to wake up in the middle of the night
thinking about CSC236, then you might have gotten the right spirit.
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It's art: Rigorous mathematics is a way of talking to others in the same �eld. Sometimes it involves a lot
of unfriendly notation (8, 9, P), but mostly it involves saying things precisely. As well as convincing
your audience, you should aim to write well, clearly, and perhaps have surprising or unexpected steps
in your proofs.

Nobody (IMHO) gets it completely right.

How to succeed in CSC236
Course information sheet Look at the draft. If there's anything you strongly object to, let me know

now. This is the document that we (try to) live by in this course.

Marking scheme
35% of the marks are for assignments, so you should be obsessed with them during your wak-

ing hours. Instructors have a rule-of-thumb that says you should spend 10 hours/week on
our course (lectures and tutorials plus 7 more). You may have a di�erent rule-of-thumb,
but assignments are devised with that 7-hours-outside-class model. Since you have at least
a couple of weeks to think about them, assignments in this course (as in other CS courses)
will go well beyond examples covered in class. Let me know if assignments are too easy or
too hard.

Another large (but not too large) portion (35%) of the marks are for the �nal exam. I
require that you reach a threshold of 40% on the �nal exam to pass this course. The rationale
for this is to make sure that you understand the material in the assignments, and don't simply
coast on the work of others. Be sure you understand assignment and lecture material, since
these are good sources for related exam, test, and quiz questions.

Two midterms worth 10% each. You should think of these as an early warning. You may be
doing okay on the assignments, but you must also be able to demonstrate your mastery of
the material in a test and exam setting. If the midterm doesn't go well for you, talk to me
about how to change your study methods before the �nal exam.

Five quizzes worth 2% each. These are to re-inforce your review of the previous lecture.
Contact Ask questions during lectures. It makes both our jobs easier. Sometimes I'll ask questions

back...
I've tried to schedule adequate o�ce hours that work for daytime and evening students. You
should make use of o�ce hours, and tutorials, to ask questions about assignments and lecture
material, since you pay very high tuition for them.
The course web page has a bulletin board where you can post questions about the course and
assignments. I will try to answer questions, and post hints. Please don't post your solutions on
the bulletin board (that could be an academic o�ense).

Plagiarism (not!) Don't gamble that you can plagiarize and get through this course. If a TA thinks
you are passing o� somebody else's work as your own, they are duty-bound to bring it to my
attention. If I agree with them, I'm duty-bound to bring it to the attention of the Faculty of Arts
and Science. The consequences are long (about a year for a decision), messy, and unpleasant for
all concerned.
If you escape detection, you still have to pass the midterms and get at least 40% on the �nal exam.
These thresholds are designed to be di�cult if you haven't mastered the assignment material. I
think the worst possible result is to attend 13 weeks of the course, and then bomb the exam.
Finally, if you escape all those consequences, plagiarism devalues the U of T degree. We claim our
graduates are bright, independent thinkers, and we don't want widespread plagiarism to make
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this untrue.
Give generous credit to whomever (and whatever) you consult as sources. Work alone when
possible. Consult your instructor and TAs.

What sort of proof techniques are there?
The mathematical community agrees on certain conventional rules that a proof is allowed to use (implication,
contradiction, etcetera). As well, there are certain commonly-used categories of proof. Here are some:

Direct proof: (If integer n is even )n2 is even)
In everyday language, an implication corresponds to the forms �P implies Q,� �Q follows from P ,� �if
P then Q,� and �P is su�cient for Q� (among others). You can think of this as a Venn diagram where
P is a subset of Q (think �all P are Q�). In a direct proof, the idea is to assume that n is even and
derive the fact that n2 is even. Try to use de�nitions and already well-known implications that follow
from n being even.

Rough work: What do we know already about even integers? How can we represent a generic
(arbitrary) even integer? n = 2k, so n2 = 4k2. so What properties of integers will we need to
verify that the square is even?
Sample solution:1

In general, having proved that n even ) n2 is even does not prove the converse, n2 even ) n even. It
turns out that (in this particular case), the converse is true. Try to prove it directly, to see what sort
of di�culties you run into (I predict it doesn't follow as smoothly as the proof above).

Contrapositive (of converse): (n odd ) n2 is odd)
The idea is that the implication A ) B is logically equivalent to :B ) :A, so proving one proves
the other. In the Venn diagram from the previous example, this corresponds to observing that if P
is a subset of Q, then Q (the complement of Q) is a subset of P . It appears as though proving the
contrapositive of �For integer n, n2 even ) n is even� is easier to prove than the direct implication.

Rough work: What do we know about odd integers, and how can we represent an arbitrary one?
What properties of integers help us verify that the square is odd?

Sample solution:2

A natural number p is prime if (a) p is greater than 1, and (b) the only natural numbers that divide p are
1 and p itself. You can practice proving that if a natural number p is both prime and greater than 2, then p
is odd. Notice that the converse is false: it is not the case that if a natural number is odd, then it is both
prime and greater than 2.

Contradiction (in�nitely many primes)
You may think of contradiction as a special case of the contrapositive. Suppose I want to prove fact
F . I gather together the entire body of human knowledge, which I denote as the conjunction of facts
F1 ^ F2 ^ � � � ^ Fk (as a species, I'm assuming humans know exactly k facts). I want to show that
F1 ^ � � � ^Fk ) F . This is equivalent to the contrapositive, :F ) :(F1 ^ � � � ^Fk). So if I assume F is
false and �nd that this contradicts even one of the huge number of facts, Fi already known to be true,
then this implies that the conjunction F1 ^ � � � ^ Fk is false, and I've just proved the contrapositive.
Claim: There are in�nitely many primes (Euclid).
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Rough work: What do we know about �nite sets that might help us? What do we know about primes
that could help? If somebody told you that the largest prime is p, how would you convince them
otherwise?
Sample solution:3

Constructive (long prime-free stretches)
Sometimes a cleverly-constructed (counter)-example is all that's needed to prove a given fact. If
somebody were to claim that there are no coyotes in Toronto, you might be able to take them to High
Park and show them one. Similarly, somebody might argue that since there are in�nitely many primes,
at least one prime occurs in any su�ciently-long stretch of natural numbers. You could counter with
an example.
Claim: For any natural number k, there are k consecutive composite numbers.

Rough work: Engage in wishful thinking. If you had a long composite sequence of numbers, wouldn't
it be nice if their prime factors were arranged in some orderly way? Try to make this so.
2(3)(4)(5)(6) � � � (k + 1) is our huge number. Tell me something about huge number plus 2?

Sample solution:4

Cases (�oor/ceiling stu�)
You may need to prove an implication of the form (A1_A2_� � �_Ak)) P . This is logically equivalent
to showing (A1 ) P ) ^ � � � ^ (Ak ) P ) (you can draw a Venn diagram, or wait until we cover this in
Chapter 5 of the notes). If this seems a bit messy or tedious, that's because it is. However, occasionally
it seems to be the natural way to proceed.
De�nition: If x is a real number (it possibly has a fractional part), then the floor of x, denote bxc,
is the largest integer that is no larger than x. Symmetrically, the ceiling of x, denoted dxe, is the
smallest integer that is no smaller than x. Operations on �oors and ceilings can be a bit tricky, and it
is occasionally helpful to consider cases.
Claim: If n is a natural number, then bn=2c+ dn=2e = n.

Rough work: What do the �oor and ceiling of n=2 look like when n is odd/even? Is one case
particularly easy (do it �rst if that's the case). How can you write the cases in a generic fashion?

Sample solution:5

Since the claim holds for both odd and even n, it holds for all natural numbers n . QED.

Induction
In this course many of the properties we'd like to prove are connected to the natural numbers (for example,
by iterations of a loop in a program). A useful proof technique is induction, which comes in several �avours:
Simple Induction (aka PMI), Complete Induction (aka Strong Induction), Well-Ordering Principle, Structural
Induction. We'll look at:

Principle of Mathematical Induction: what is it, and why do we think it works?

Complete Induction: what is it, why do we think it works

Well-Ordering Principle: what is it?

Next we'll look at the connection between the three principles.
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Notes
1Proof: Assume n is even. This means that n = 2k for some integer k. Squaring this gives you n2 = 4k2.

Since 2 and k are integers, so are k2 and 2k2. Thus n2 = 2(2k2), which is an even integer. So, if n is even,
so is n2. QED.

2Proof: Assume that n is odd. This means that n = 2k + 1 for some integer k. Squaring this gives you
n2 = 4k2 +4k+1. Since k is an integer, so are k2, 2k, and 2k2, so we can re-write n2 = 2(2k2 +2k)+1, where
2k2 + 2k is an integer. This implies that n2 is odd. So n odd implies n2 is odd, which is the contrapositive
of what we want to prove. QED.

3Proof: Suppose not. Then there is a �nite collection of primes, which we could list as p1; p2; : : : ; pk.
Take the product of these k primes and add 1: n = p1 � � � � � pk + 1. Notice that n is not divisible by
any of the primes on our list (a remainder of 1 is left if you divide by any of the pi). Since n is a natural
number greater than 2, by Proposition 1.14 in the course notes, n can be written as the product of primes
(this includes unary products, so that 3 can be represented as the product of prime 3). However, none of
the prime factors of n appear in the list p1; : : : ; pk, contradicting our assumption that this is a complete list
of primes. Thus there are in�nitely many primes, QED.

4Claim: Let k be your favourite (at the moment) natural number. Then there exists k consecutive
composite (that is, non-prime) natural numbers.
Proof: Let n = (k + 1)! = (k + 1)(k)(k � 1) � � � (2)(1). Then the k consecutive numbers from n + 2 up to
n+k+1 are composite, since for any i 2 f2; : : : k+1g, you have n+ i = i[(k+1) � � � (i+1)(i�1) � � � (2)+1].
This constructs the proof of the claim, by exhibiting k consecutive composite numbers.

5Case 1: n is even, that is n = 2k for some natural number k. Then bn=2c = k = dn=2e, so the result
holds.
Case 2: n is odd, that is n = 2k+ 1 for some natural number k. Then bn=2c = b(2k+ 1)=2c = bk+ 1

2c = k,
and dn=2e = d(2k + 1)=2e = dk + 1

2e = k + 1, and

bn=2c+ dn=2e = k + k + 1 = n:

... and the claim holds.
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